Package ‘midrangeMCP’

July 14, 2016

Type Package

Title Multiple Comparisons Procedures Based on Studentized Midrange and Range Distributions

Version 1.3

Date 2016-07-13

Description Apply tests of multiple comparisons based on studentized midrange and range distributions. The tests are: Tukey Midrange test, Student-Newman-Keuls Midrange test, Skott-Knott Midrange test and Skott-Knott Range test.

Imports stats, utils, graphics, grDevices, SMR, WriteXLS, xtable

License GPL (>= 2)

LazyData TRUE

Author Ben Deivide [aut, cre], Daniel Furtado [aut]

Maintainer Ben Deivide <ben.deivide@gmail.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-14 00:28:32

R topics documented:

MRbarplot ... 2
MRtest ... 3
MRwrite ... 6

Index 8
MRbarplot

Plotting the result of the multiple comparison procedures

Description

MRbarplot creates a bar plot with vertical or horizontal bars to compare the mean treatments by the tests: Skott-Knott midrange, Skott-Knott range, Student-Newman-Keuls and Tukey midrange.

Usage

MRbarplot(x, MCP = "all", col = heat.colors(10), horiz = FALSE, ...)

Arguments

x An object of the MRtest function
MCP Allows choosing the multiple comparison test. The default is "all". This option will perform all tests available in the MRtest object.
col A specification for the plotting color. The default is heat.colors(10).
horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the left. If TRUE, the bars are drawn horizontally with the first at the bottom.
... Parameters of the barplot function

Details

The MCP argument allows choosing several tests of multiple comparisons from the MRtest object. For plots in papers, use col = gray.colors(10). For details, see colors function.

Value

MRbarplot return the bar plot of the tests chosen ("SKM", "SKR", "SNKM" and "TM") to evaluate the treatment means.

Examples

Simulated data (completely randomized design)
rv <- c(100.08, 105.66, 97.64, 100.11, 102.60, 121.29, 100.80, 99.11, 104.43, 122.18, 119.49, 124.37, 123.19, 134.16, 125.67, 128.88, 148.07, 134.27, 151.53, 127.31)

Treatments
treat <- factor(rep(LETTERS[1:5], each = 4))

Anova
test <- aov(rv\-treat)

Loading the midrangeMCP package
library(midrangeMCP)

Choosing tests
results <- MRtest(y = res, trt = "treat", alpha = 0.05,
 main = "Multiple Comparison Procedures",
 MCP = c("SKM", "TM"))

MRbarplot(results, MCP = "all") # It will be shown two
graphs. First, for the
results of \code{SKM}
and the second for the
results of \code{TM}.

MRbarplot(results, MCP = "SKM") # It will be shown
only the graph
for the result of
\code{SKM}

Plot for papers
MRbarplot(results, MCP = "all", col = gray.colors(10))

MRtest

Multiple comparison procedures to the means of a factor using the studentized range and midrange distributions.

Description

MRtest applies the Skott-Knott midrange, Skott-Knott range, Student-Newman-Keuls midrange and Tukey midrange tests. These are new tests for multiple comparisons proposed by the authors (2015), that are in publication fase.

Usage

MRtest(y, trt = NULL, derror = NULL, merror = NULL,
 replication = NULL, alpha = 0.05, main = NULL, MCP = "all",
 ismean = FALSE)

Arguments

- **y**: Model (aov or lm), numeric vector containing the response variable or the mean of the treatments.
- **trt**: Constant (y = model) or a vector containing the treatments.
- **derror**: Degrees of freedom of the Mean Square Error.
- **merror**: Mean Square Error.
- **replication**: Number of repetitions of the treatments in the experiment. For unbalanced data should be informed the harmonic mean of repetitions. This argument should also be informed if ismean = TRUE.
alpha Significant level. The default is \(\alpha = 0.05 \).

main Title of the analysis.

MCP Allows choosing the multiple comparison test; the default is "all". This option will go perform all tests. However, the options are: the Skott-Knott midrange test ("SKM"), the Skott-Knott Range test ("SKR"), the Student-Newman-Keuls midrange test ("SNKM") and the Tukey midrange test ("TM").

ismean Logic. If FALSE (default), the \(y \) argument represents a model (aov or lm) or a numeric vector containing the response variable. If TRUE the \(y \) argument represents the mean of treatments.

Details

The MCP argument allows you to choose various tests of multiple comparisons at once. For example, MCP = c("SKM", "SKR"), and so on.

Value

\(\text{MRtest} \) returns the print of a list of results. First, the summary of \(y \). Second, the statistics of the test chosen. And finally, the mean group results for each test. If \(\text{MRtest} \) function is stored in an object, the results will be printed and also stored in the object.

Examples

Simulated data (completely randomized design)

Response variable
rv <- c(100.08, 105.66, 97.64, 100.11, 102.60, 121.29, 100.80, 99.11, 104.43, 122.18, 119.49, 124.37, 123.19, 134.16, 125.67, 128.88, 148.07, 134.27, 151.53, 127.31)

Treatments
treat <- factor(rep(LETTERS[1:5], each = 4))

Anova
res <- anova(aov(rv~treat))
Dferror <- res$Df[2]
MSerror <- res$'Mean Sq'\[2\]

Loading the midrangeMCP package
library(midrangeMCP)

applying the tests
results <- MRtest(y = rv,
 trt = treat,
 dfeerror = Dferror,
 mseerror = MSerror,
 alpha = 0.05,
 main = "Multiple Comparison Procedure: SKM test",
 MCP = c("SKM"))

Other option for the MCP argument is "all". All tests are used.
results$Groups # Results of the tests
results$Statistics # Main arguments of the tests
results$Summary # Summary of the response variable

Using the y argument as aov or lm model
res <- aov(rv~treat)

MRtest(y = res, trt = "treat", alpha = 0.05,
 main = "Multiple Comparison Procedure: SKM test",
 MCP = c("SKM"))

For unbalanced data: It will be used the harmonic mean of
the number of experiment replicates

Using the previous example
rv <- rv[-1]
treat <- treat[-1]

res <- lm(rv~treat) # Linear model

Multiple comparison procedure: SKR test
MRtest(y = res, trt = "treat", alpha = 0.05,
 main = "Multiple Comparison Procedure: SKR test",
 MCP = c("SKR"))

Assuming that the available data are the averages
of the treatments and the analysis of variance

Analysis of Variance Table

Response: rv
Df Sum Sq Mean Sq F value Pr(>F)
treat 4 4135.2 1033.80 14.669 4.562e-05 ***
Residuals 15 1057.1 70.47

mean.treat <- c(100.87, 105.95, 117.62, 127.97, 140.30)
treat <- factor(LETTERS[1:5])
DError <- 15
MSError <- 70.47488
replic <- 4

MRtest(y = mean.treat,
 trt = treat,
 dferror = DError,
 mserror = MSError,
 replication = replic,
 alpha = 0.05,
 main = "Multiple Comparison Procedure: SKM test",
 MCP = c("SKM"),
 ismean = TRUE)
MRwrite

Export the results of the MRtest function.

Description

The x object from a MRtest is written to file arguments.

Usage

```
MRwrite(x, MCP = "all", extension = "csv", dataMR = "all")
```

Arguments

- **x**: object from the MRtest functions.
- **MCP**: Allows choosing the multiple comparison test. The *default* is "all". This option will go perform all tests from the MRtest object.
- **extension**: Type of format of the file. Four options "csv", "txt" "xlsx" and "latex". The *default* is "csv".
- **dataMR**: Allows to choose the results to be written. Three options are available: "groups", "summary" or "all". The option "groups" writes the treatment mean groups evaluated by the chosen test in the MCP argument. The "summary" writes the descriptive statistics of the response variable. The options "all" should be chosen for both results.

Details

Note that the choice of the tests in the MRwrite function must be in accordance with the tests chosen in the x argument.

Value

MRwrite writes the most important results for the chosen tests in the MCP argument.

Examples

```r
# Simulated data (completely randomized design)
rv <- c(100.08, 105.66, 97.64, 100.11, 102.60, 121.29, 100.80, 99.11, 104.43, 122.18, 119.49, 124.37, 123.19, 134.16, 125.67, 128.88, 148.07, 134.27, 151.53, 127.31)

# Treatments
treat <- factor(rep(LETTERS[1:5], each = 4))

# Anova
res <- aov(rv~treat)

# Loading the midrangeMCP package
```
library(midrangeMCP)

Choosing any tests
results <- MRtest(y = res, trt = "treat", alpha = 0.05,
 main = "Multiple Comparison Procedures",
 MCP = c("SKM", "TM"))

#Export file in latex (Output in Console)
MRwrite(results, MCP = "all", extension = "latex", dataMR = "all")

#Export file with extension txt (Output in Directory)
MRwrite(results, MCP = "all", extension = "txt", dataMR = "all")

#Export file with extension csv (Output in Directory)
MRwrite(results, MCP = "all", extension = "csv", dataMR = "all")

#Export file to Microsoft excel (Output in Directory)
MRwrite(results, MCP = "all", extension = "xlsx", dataMR = "all")

#Observation: The MRwrite function export
only one extension at a time
Index

barplot, 2

colors, 2

MRbarplot, 2
MRtest, 3
MRwrite, 6