Package ‘mikropml’

August 21, 2023

Title User-Friendly R Package for Supervised Machine Learning Pipelines

Version 1.6.1

Date 2023-08-21

Description An interface to build machine learning models for classification and regression problems. ‘mikropml’ implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.

License MIT + file LICENSE

URL https://www.schlosslab.org/mikropml/,
https://github.com/SchlossLab/mikropml

BugReports https://github.com/SchlossLab/mikropml/issues

Depends R (>= 4.1.0)
Imports caret, dplyr, e1071, glmnet, kernlab, MLmetrics, randomForest, rlang, rpart, stats, utils, xgboost

Suggests assertthat, doFuture,forcats,foreach,future,future.apply,furr,ggplot2,knitr,progres,progressr,purrr,rmarkdown,rsample,testthat,tidyrr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no
Author Begüm Topçuoğlu [aut] (<https://orcid.org/0000-0003-3140-537X>),
 Zena Lapp [aut] (<https://orcid.org/0000-0003-4674-2176>),
 Kelly Sovacool [aut, cre] (<https://orcid.org/0000-0003-3283-829X>),
 Evan Snitkin [aut] (<https://orcid.org/0000-0001-8409-278X>),
 Jenna Wiens [aut] (<https://orcid.org/0000-0002-1057-7722>),
 Patrick Schloss [aut] (<https://orcid.org/0000-0002-6935-4275>),
 Nick Lesniak [ctb] (<https://orcid.org/0000-0001-9359-5194>),
 Courtney Armour [ctb] (<https://orcid.org/0000-0002-5250-1224>),
 Sarah Lucas [ctb] (<https://orcid.org/0000-0003-1676-5801>)

Maintainer Kelly Sovacool <sovacoool@umich.edu>

Repository CRAN

Date/Publication 2023-08-21 15:10:05 UTC

R topics documented:

 bootstrap_performance .. 3
 calc_balanced_precision 4
 calc_baseline_precision 5
 calc_mean_perf .. 6
 calc_model_sensspec .. 7
 calc_perf_metrics ... 9
 combine_hp_performance 10
 compare_models ... 11
 define_cv .. 12
 get_caret_processed_df 13
 get_feature_importance 14
 get_hp_performance .. 17
 get_hyperparams_list 18
 get_outcome_type .. 19
 get_partition_indices 20
 get_performance_tbl ... 21
 get_perf_metric_fn .. 22
 get_perf_metric_name 23
 get_tuning_grid ... 24
 group_correlated_features 25
 otu_data_preproc ... 26
 otu_mini_bin .. 26
 otu_mini_bin_results_glmnet 26
 otu_mini_bin_results_rf 27
 otu_mini_bin_results_rpart2 27
 otu_mini_bin_results_svmRadial 28
 otu_mini_bin_results_xgbTree 28
 otu_mini_cont_results_glmnet 29
 otu_mini_cont_results_nocv 29
 otu_mini_cv ... 30
 otu_mini_multi ... 30
 otu_mini_multi_group .. 30
bootstrap_performance

Calculate a bootstrap confidence interval for the performance on a single train/test split

Description

Uses `rsample::bootstraps()`, `rsample::int_pctl()`, and `furrr::future_map()`

Usage

```r
bootstrap_performance(
  ml_result, 
  outcome_colname, 
  bootstrap_times = 10000, 
  alpha = 0.05 
)
```

Arguments

- `ml_result` result returned from a single `run_ml()` call
- `outcome_colname` Column name as a string of the outcome variable (default `NULL`; the first column will be chosen automatically).
- `bootstrap_times` the number of bootstraps to create (default: `10000`)
- `alpha` the alpha level for the confidence interval (default `0.05` to create a 95% confidence interval)

Value

a data frame with an estimate (.estimate), lower bound (.lower), and upper bound (.upper) for each performance metric (term).
calc_balanced_precision

Calculate balanced precision given actual and baseline precision

Description

Implements Equation 1 from Wu *et al.* 2021 doi:10.1016/j.ajhg.2021.08.012. It is the same as Equation 7 if AUPRC (aka prAUC) is used in place of precision.

Usage

```r
calc_balanced_precision(precision, prior)
```

Arguments

- `precision`: actual precision of the model.
- `prior`: baseline precision, aka frequency of positives. Can be calculated with `calc_baseline_precision`

Value

the expected precision if the data were balanced

Author(s)

Kelly Sovacool <sovacool@umich.edu>
Examples

```
prior <- calc_baseline_precision(otu_mini_bin,
    outcome_colname = "dx",
    pos_outcome = "cancer"
)
calc_balanced_precision(otu_mini_bin_results_rf$performance$Precision, prior)

otu_mini_bin_results_rf$performance %>%
  dplyr::mutate(
    balanced_precision = calc_balanced_precision(Precision, prior),
    aubprc = calc_balanced_precision(prAUC, prior)
  ) %>%
  dplyr::select(AUC, Precision, balanced_precision, aubprc)

# cumulative performance for a single model
sensspec_1 <- calc_model_sensspec(
    otu_mini_bin_results_glmnet$trained_model,
    otu_mini_bin_results_glmnet$test_data,
    "dx"
)
head(sensspec_1)
prior <- calc_baseline_precision(otu_mini_bin,
    outcome_colname = "dx",
    pos_outcome = "cancer"
)
sensspec_1 %>%
  dplyr::mutate(balanced_precision = calc_balanced_precision(precision, prior)) %>%
  dplyr::rename(recall = sensitivity) %>%
  calc_mean_perf(group_var = recall, sum_var = balanced_precision) %>%
  plot_mean_prc(ycol = mean_balanced_precision)
```

calc_baseline_precision

Calculate the fraction of positives, i.e. baseline precision for a PRC curve

Description

Calculate the fraction of positives, i.e. baseline precision for a PRC curve

Usage

```
calc_baseline_precision(dataset, outcome_colname = NULL, pos_outcome = NULL)
```

Arguments

- **dataset**: Data frame with an outcome variable and other columns as features.
- **outcome_colname**: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
pos_outcome the positive outcome from outcome_colname, e.g. "cancer" for the otu_mini_bin dataset.

Value
the baseline precision based on the fraction of positives

Author(s)
Kelly Sovacool, <sovacool@umich.edu>

Examples

calculate the baseline precision
data.frame(y = c("a", "b", "a", "b")) %>%
calc_baseline_precision(
 outcome_colname = "y",
 pos_outcome = "a"
)

calc_baseline_precision(otu_mini_bin,
 outcome_colname = "dx",
 pos_outcome = "cancer"
)

if you're not sure which outcome was used as the 'positive' outcome during
model training, you can access it from the trained model and pass it along:
calc_baseline_precision(otu_mini_bin,
 outcome_colname = "dx",
 pos_outcome = otu_mini_bin_results_glmnet$trained_model$levels[1]
)

calc_mean_perf Generic function to calculate mean performance curves for multiple models

Description
Used by calc_mean_roc() and calc_mean_prc().

Usage
calc_mean_perf(sensspec_dat, group_var = specificity, sum_var = sensitivity)
Arguments

- `sensspec_dat` data frame created by concatenating results of `calc_model_sensspec()` for multiple models.
- `group_var` variable to group by (e.g. specificity or recall).
- `sum_var` variable to summarize (e.g. sensitivity or precision).

Value

data frame with mean & standard deviation of `sum_var` summarized over `group_var`

Author(s)

Courtney Armour
Kelly Sovacool

calc_model_sensspec
Calculate and summarize performance for ROC and PRC plots

Description

Use these functions to calculate cumulative sensitivity, specificity, recall, etc. on single models, concatenate the results together from multiple models, and compute mean ROC and PRC. You can then plot mean ROC and PRC curves to visualize the results. **Note:** These functions assume a binary outcome.

Usage

```
calc_model_sensspec(trained_model, test_data, outcome_colname = NULL)
calc_mean_roc(sensspec_dat)
calc_mean_prc(sensspec_dat)
```

Arguments

- `trained_model` Trained model from `caret::train()`.
- `test_data` Held out test data: dataframe of outcome and features.
- `outcome_colname` Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- `sensspec_dat` data frame created by concatenating results of `calc_model_sensspec()` for multiple models.

Value

data frame with summarized performance
Functions

- `calc_model_sensspec()`: Get sensitivity, specificity, and precision for a model.
- `calc_mean_roc()`: Calculate mean sensitivity over specificity for multiple models
- `calc_mean_prc()`: Calculate mean precision over recall for multiple models

Author(s)

Courtney Armour
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
## Not run:
library(dplyr)
# get cumulative performance for a single model
sensspec_1 <- calc_model_sensspec(
  otu_mini_bin_results_glmnet$trained_model,
  otu_mini_bin_results_glmnet$test_data,
  "dx"
)
head(sensspec_1)

# get performance for multiple models
get_sensspec_seed <- function(seed) {
  ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed)
  sensspec <- calc_model_sensspec(
    ml_result$trained_model,
    ml_result$test_data,
    "dx"
  ) %>%
    dplyr::mutate(seed = seed)
  return(sensspec)
}
sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed)

# calculate mean sensitivity over specificity
roc_dat <- calc_mean_roc(sensspec_dat)
head(roc_dat)

# calculate mean precision over recall
prc_dat <- calc_mean_prc(sensspec_dat)
head(prc_dat)

# plot ROC & PRC
roc_dat %>% plot_mean_roc()
baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer")
prc_dat %>%
  plot_mean_prc(baseline_precision = baseline_prec)

# balanced precision
prior <- calc_baseline_precision(otu_mini_bin,
```
calc_perf_metrics

outcome_colname = "dx",
 pos_outcome = "cancer"
)
bprc_dat <- sensspec_dat %>%
 dplyr::mutate(balanced_precision = calc_balanced_precision(precision, prior)) %>%
 dplyr::rename(recall = sensitivity) %>%
 calc_mean_perf(group_var = recall, sum_var = balanced_precision)
bprc_dat %>% plot_mean_prc(ycol = mean_balanced_precision) + ylab("Mean Bal. Precision")

End(Not run)

calc_perf_metrics Get performance metrics for test data

Description

Get performance metrics for test data

Usage

calc_perf_metrics(
 test_data,
 trained_model,
 outcome_colname,
 perf_metric_function,
 class_probs
)

Arguments

test_data Held out test data: dataframe of outcome and features.
trained_model Trained model from caret::train().
outcome_colname Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
perf_metric_function Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()). Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.
class_probs Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

Value

Dataframe of performance metrics.
Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
## Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
calc_perf_metrics(results$test_data,
                  results$trained_model,
                  "dx",
                  multiClassSummary,
                  class_probs = TRUE
)
## End(Not run)
```

combine_hp_performance

Combine hyperparameter performance metrics for multiple train/test splits

Description

Combine hyperparameter performance metrics for multiple train/test splits generated by, for instance, looping in R or using a snakemake workflow on a high-performance computer.

Usage

```r
combine_hp_performance(trained_model_lst)
```

Arguments

- `trained_model_lst`
 List of trained models.

Value

Named list:

- `dat`: Dataframe of performance metric for each group of hyperparameters
- `params`: Hyperparameters tuned.
- `Metric`: Performance metric used.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
compare_models

Examples

Not run:
results <- lapply(seq(100, 102), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed, cv_times = 2, kfold = 2)
})
models <- lapply(results, function(x) x$trained_model)
combine_hp_performance(models)

End(Not run)

compare_models

Perform permutation tests to compare the performance metric across all pairs of a group variable.

Description

A wrapper for permute_p_value().

Usage

compare_models(merged_data, metric, group_name, nperm = 10000)

Arguments

merged_data the concatenated performance data from run_ml
metric metric to compare, must be numeric
group_name column with group variables to compare
nperm number of permutations, default=10000

Value

a table of p-values for all pairs of group variable

Author(s)

Courtney R Armour, <armourc@umich.edu>

Examples

df <- dplyr::tibble(
 model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
 AUC = c(.2, 0.3, 0.8, 0.9, 0.85, 0.95)
)
set.seed(123)
compare_models(df, "AUC", "model", nperm = 10)
define_cv

Define cross-validation scheme and training parameters

Description

Define cross-validation scheme and training parameters

Usage

```r
define_cv(
  train_data,
  outcome_colname,
  hyperparams_list,
  perf_metric_function,
  class_probs,
  kfold = 5,
  cv_times = 100,
  groups = NULL,
  group_partitions = NULL
)
```

Arguments

- **train_data**
 Dataframe for training model.

- **outcome_colname**
 Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

- **hyperparams_list**
 Named list of lists of hyperparameters.

- **perf_metric_function**
 Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

- **class_probs**
 Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

- **kfold**
 Fold number for k-fold cross-validation (default: 5).

- **cv_times**
 Number of cross-validation partitions to create (default: 100).

- **groups**
 Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).

- **group_partitions**
 Specify how to assign groups to the training and testing partitions (default: NULL). If `groups` specifies that some samples belong to group "A" and some
belong to group "B", then setting group_partitions = list(train = c("A", "B"), test = c("B")) will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to training_frac as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

Value

Caret object for trainControl that controls cross-validation

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

training_inds <- get_partition_indices(otu_small %>% dplyr::pull("dx"),
 training_frac = 0.8,
 groups = NULL)
train_data <- otu_small[training_inds,]
test_data <- otu_small[-training_inds,]
cv <- define_cv(train_data,
 outcome_colname = "dx",
 hyperparams_list = get_hyperparams_list(otu_small, "glmnet"),
 perf_metric_function = caret::multiClassSummary,
 class_probs = TRUE,
 kfold = 5
)

get_caret_processed_df

Get preprocessed dataframe for continuous variables

Description

Get preprocessed dataframe for continuous variables

Usage

get_caret_processed_df(features, method)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>features</td>
<td>Dataframe of features for machine learning</td>
</tr>
<tr>
<td>method</td>
<td>Methods to preprocess the data, described in caret::preProcess() (default: c("center","scale"), use NULL for no normalization).</td>
</tr>
</tbody>
</table>
get_feature_importance

Value

Named list:

- processed: Dataframe of processed features.
- removed: Names of any features removed during preprocessing.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
get_caret_processed_df(mikropml::otu_small[, 2:ncol(otu_small)], c("center", "scale"))
```

Description

Calculates feature importance using a trained model and test data. Requires the `future.apply` package.

Usage

```r
get_feature_importance(
  trained_model,  
  test_data,  
  outcome_colname,  
  perf_metric_function,  
  perf_metric_name,  
  class_probs,  
  method,  
  seed = NA,  
  corr_thresh = 1,  
  groups = NULL,  
  nperms = 100,  
  corr_method = "spearman"
)
```

Arguments

- `trained_model`: Trained model from `caret::train()`.
- `test_data`: Held out test data: dataframe of outcome and features.
- `outcome_colname`: Column name as a string of the outcome variable (default `NULL`; the first column will be chosen automatically).
Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = “ROC”, multi-class classification = “logLoss”, regression = “RMSE”.

Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").

• `glmnet`: linear, logistic, or multiclass regression
• `rf`: random forest
• `rpart2`: decision tree
• `svmRadial`: support vector machine
• `xgbTree`: xgboost

Random seed (default: NA). Your results will only be reproducible if you set a seed.

For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).

Vector of feature names to group together during permutation. Each element should be a string with feature names separated by a pipe character (|). If this is NULL (default), correlated features will be grouped together based on `corr_thresh`.

number of permutations to perform (default: 100).

correlation method. options or the same as those supported by `stats::cor`: spearman, pearson, kendall. (default: spearman)

For permutation tests, the p-value is the number of permutation statistics that are greater than the test statistic, divided by the number of permutations. In our case, the permutation statistic is the model performance (e.g. AUROC) after randomizing the order of observations for one feature, and the test statistic is the actual performance on the test data. By default we perform 100 permutations per feature; increasing this will increase the precision of estimating the null distribution, but also increases runtime. The p-value represents the probability of obtaining the actual performance in the event that the null hypothesis is true, where the null hypothesis is that the feature is not important for model performance.

We strongly recommend providing multiple cores to speed up computation time. See our vignette on parallel processing for more details.

Data frame with performance metrics for when each feature (or group of correlated features; `feat`) is permuted (`perf_metric`), differences between the actual test performance metric on and the
get_feature_importance

permuted performance metric (\texttt{perf_metric_diff}; test minus permuted performance), and the p-value (pvalue: the probability of obtaining the actual performance value under the null hypothesis). Features with a larger \texttt{perf_metric_diff} are more important. The performance metric name (\texttt{perf_metric_name}) and seed (\texttt{seed}) are also returned.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
## Not run:
# If you called `run_ml()` with `feature_importance = FALSE` (the default),
# you can use `get_feature_importance()` later as long as you have the
# trained model and test data.
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
feat_imp <- get_feature_importance(results$trained_model, 
  results$trained_model$trainingData, 
  results$test_data, 
  "dx", 
  multiClassSummary, 
  "AUC", 
  class_probs = TRUE, 
  method = "glmnet"
)

# We strongly recommend providing multiple cores to speed up computation time.
# Do this before calling `get_feature_importance()`.
#future::registerDoFuture()
#future::plan(future::multicore, workers = 2)

# Optionally, you can group features together with a custom grouping
feat_imp <- get_feature_importance(results$trained_model, 
  results$trained_model$trainingData, 
  results$test_data, 
  "dx", 
  multiClassSummary, 
  "AUC", 
  class_probs = TRUE, 
  method = "glmnet", 
  groups = c("Otu00007", "Otu00008", "Otu00009", "Otu00011", "Otu00012", 
  "Otu00015", "Otu00016", "Otu00018", "Otu00019", "Otu00020", "Otu00022", 
  "Otu00023", "Otu00025", "Otu00028", "Otu00029", "Otu00030", "Otu00035", 
  "Otu00036", "Otu00037", "Otu00038", "Otu00039", "Otu00040", "Otu00047", 
  "Otu00050", "Otu00052", "Otu00054", "Otu00055", "Otu00056", "Otu00060", 
  "Otu00003|Otu00002|Otu00005|Otu00024|Otu00024|Otu00032|Otu00041|Otu00053", 
  "Otu00014|Otu00021|Otu00017|Otu00031|Otu00057", 
  "Otu00013|Otu00006", "Otu00026|Otu00001|Otu00034|Otu00048", 
```
get_hp_performance

Get hyperparameter performance metrics

Description

Get hyperparameter performance metrics

Usage

get_hp_performance(trained_model)
Arguments

trained_model trained model (e.g. from run_ml())

Value

Named list:

• dat: Dataframe of performance metric for each group of hyperparameters.
• params: Hyperparameters tuned.
• metric: Performance metric used.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool <sovacool@umich.edu>

Examples

get_hp_performance(otu_mini_bin_results_glmnet$trained_model)

Description

For more details see the vignette on hyperparameter tuning.

Usage

get_hyperparams_list(dataset, method)

Arguments

dataset Data frame with an outcome variable and other columns as features.
method ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").

• glmnet: linear, logistic, or multiclass regression
• rf: random forest
• rpart2: decision tree
• svmRadial: support vector machine
• xgbTree: xgboost

Value

Named list of hyperparameters.
get_outcome_type

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
get_hyperparams_list(otu_mini_bin, "rf")
get_hyperparams_list(otu_small, "rf")
get_hyperparams_list(otu_mini_bin, "rpart2")
get_hyperparams_list(otu_small, "rpart2")
```

Description

If the outcome is numeric, the type is continuous. Otherwise, the outcome type is binary if there are only two outcomes or multiclass if there are more than two outcomes.

Usage

```r
get_outcome_type(outcomes_vec)
```

Arguments

- `outcomes_vec` Vector of outcomes.

Value

Outcome type (continuous, binary, or multiclass).

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
get_outcome_type(c(1, 2, 1))
get_outcome_type(c("a", "b", "b"))
get_outcome_type(c("a", "b", "c"))
```
get_partition_indices

Select indices to partition the data into training & testing sets.

Description
Use this function to get the row indices for the training set.

Usage

get_partition_indices(
 outcomes,
 training_frac = 0.8,
 groups = NULL,
 group_partitions = NULL
)

Arguments

outcomes vector of outcomes

training_frac Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.

groups Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).

group_partitions Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some belong to group "B", then setting group_partitions = list(train = c("A", "B"), test = c("B")) will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to training_frac as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

Details
If groups is NULL, uses createDataPartition. Otherwise, uses create_grouped_data_partition(). Set the seed prior to calling this function if you would like your data partitions to be reproducible (recommended).

Value

Vector of row indices for the training set.
Author(s)
Kelly Sovacool, sovacool@umich.edu

Examples

```r
training_inds <- get_partition_indices(otu_mini_bin$dx)
train_data <- otu_mini_bin[training_inds, ]
test_data <- otu_mini_bin[-training_inds, ]
```

get_performance_tbl
Get model performance metrics as a one-row tibble

Description

Get model performance metrics as a one-row tibble

Usage

```r
get_performance_tbl(
  trained_model,  
  test_data,  
  outcome_colname,  
  perf_metric_function,  
  perf_metric_name,  
  class_probs,  
  method,  
  seed = NA
)
```

Arguments

- **trained_model**
 Trained model from `caret::train()`.

- **test_data**
 Held out test data: dataframe of outcome and features.

- **outcome_colname**
 Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

- **perf_metric_function**
 Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

- **perf_metric_name**
 The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".
class_probs Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

method ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
- glmnet: linear, logistic, or multiclass regression
- rf: random forest
- rpart2: decision tree
- svmRadial: support vector machine
- xgbTree: xgboost

seed Random seed (default: NA). Your results will only be reproducible if you set a seed.

Value
A one-row tibble with a column for the cross-validation performance, columns for each of the performance metrics for the test data, plus the method, and seed.

Author(s)
Kelly Sovacool, <sovacool@umich.edu>
Zena Lapp, <zenalapp@umich.edu>

Examples
```r
# Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
get_performance_tbl(results$trained_model, results$test_data, "dx",
                   multiClassSummary, "AUC",
                   class_probs = TRUE,
                   method = "glmnet"
)
# End(Not run)
```

get_perf_metric_fn Get default performance metric function

Description
Get default performance metric function

Usage
```r
get_perf_metric_fn(outcome_type)
```
get_perf_metric_name

Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric function.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

gget_perf_metric_fn("continuous")
gget_perf_metric_fn("binary")
gget_perf_metric_fn("multiclass")

get_perf_metric_name Get default performance metric name

Description

Get default performance metric name for cross-validation.

Usage

gget_perf_metric_name(outcome_type)

Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric name.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

gget_perf_metric_name("continuous")
gget_perf_metric_name("binary")
gget_perf_metric_name("multiclass")
get_tuning_grid

Generate the tuning grid for tuning hyperparameters

Description

Generate the tuning grid for tuning hyperparameters

Usage

```r
get_tuning_grid(hyperparams_list, method)
```

Arguments

- `hyperparams_list`: Named list of lists of hyperparameters.
- `method`: ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
 - glmnet: linear, logistic, or multiclass regression
 - rf: random forest
 - rpart2: decision tree
 - svmRadial: support vector machine
 - xgbTree: xgboost

Value

The tuning grid.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
ml_method <- "glmnet"
hparams_list <- get_hyperparams_list(otu_small, ml_method)
get_tuning_grid(hparams_list, ml_method)
```
Description

Group correlated features

Usage

```
group_correlated_features(
  features,
  corr_thres = 1,
  group_neg_corr = TRUE,
  corr_method = "spearman"
)
```

Arguments

- `features`: a dataframe with each column as a feature for ML.
- `corr_thres`: For feature importance, group correlations above or equal to `corr_thres` (range 0 to 1; default: 1).
- `group_neg_corr`: Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
- `corr_method`: correlation method. options or the same as those supported by `stats::cor`: spearman, pearson, kendall. (default: spearman)

Value

vector where each element is a group of correlated features separated by pipes (|)

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

```
features <- data.frame(
  a = 1:3, b = 2:4, c = c(1, 0, 1),
  d = (5:7), e = c(5, 1, 4), f = c(-1, 0, -1)
)
group_correlated_features(features)
```
otu_data_preproc

Mini OTU abundance dataset - preprocessed

Description
This is the result of running `preprocess_data("otu_mini_bin")`

Usage
```
otu_data_preproc
```

Format
An object of class `list` of length 3.

otu_mini_bin

Mini OTU abundance dataset

Description
A dataset containing relatives abundances of OTUs for human stool samples with a binary outcome, `dx`. This is a subset of `otu_small`.

Usage
```
otu_mini_bin
```

Format
A data frame. The `dx` column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.

otu_mini_bin_results_glmnet

Results from running the pipeline with L2 logistic regression on otu_mini_bin with feature importance and grouping

Description
Results from running the pipeline with L2 logistic regression on `otu_mini_bin` with feature importance and grouping

Usage
```
otu_mini_bin_results_glmnet
```
Format

An object of class list of length 4.

Description

Results from running the pipeline with random forest on otu_mini_bin

Usage

otu_mini_bin_results_rf

Format

An object of class list of length 4.

Description

Results from running the pipeline with rpart2 on otu_mini_bin

Usage

otu_mini_bin_results_rpart2

Format

An object of class list of length 4.
otu_mini_bin_results_svmRadial

Results from running the pipeline with svmRadial on otu_mini_bin

Description

Results from running the pipeline with svmRadial on otu_mini_bin

Usage

otu_mini_bin_results_svmRadial

Format

An object of class list of length 4.

otu_mini_bin_results_xgbTree

Results from running the pipeline with xgbTree on otu_mini_bin

Description

Results from running the pipeline with xgbTree on otu_mini_bin

Usage

otu_mini_bin_results_xgbTree

Format

An object of class list of length 4.
otu_mini_cont_results_glmnet

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome

Description

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome

Usage

otu_mini_cont_results_glmnet

Format

An object of class list of length 4.

otu_mini_cont_results_nocv

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation

Description

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation

Usage

otu_mini_cont_results_nocv

Format

An object of class list of length 4.

otu_mini_cv
Cross validation on train_data_mini with grouped features.

Description
Cross validation on train_data_mini with grouped features.

Usage
otu_mini_cv

Format
An object of class list of length 27.

otu_mini_multi
Mini OTU abundance dataset with 3 categorical variables

Description
A dataset containing relatives abundances of OTUs for human stool samples

Usage
otu_mini_multi

Format
A data frame The dx column is the colorectal cancer diagnosis: adenoma, carcinoma, normal. All other columns are OTU relative abundances.

otu_mini_multi_group
Groups for otu_mini_multi

Description
Groups for otu_mini_multi

Usage
otu_mini_multi_group

Format
An object of class character of length 490.
Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Description

Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Usage

otu_mini_multi_results_glmnet

Format

An object of class list of length 4.

Small OTU abundance dataset

Description

A dataset containing relatives abundances of 60 OTUs for 60 human stool samples. This is a subset of the data provided in extdata/otu_large.csv, which was used in Topçuoğlu et al. 2020.

Usage

otu_small

Format

A data frame with 60 rows and 61 variables. The dx column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.
permute_p_value

Description

Calculated a permuted p-value comparing two models

Usage

```
permute_p_value(
    merged_data,  
    metric,  
    group_name,  
    group_1,  
    group_2,  
    nperm = 10000
)
```

Arguments

- `merged_data`: the concatenated performance data from `run_ml`
- `metric`: metric to compare, must be numeric
- `group_name`: column with group variables to compare
- `group_1`: name of one group to compare
- `group_2`: name of other group to compare
- `nperm`: number of permutations, default=10000

Value

numeric p-value comparing two models

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Courtney R Armour, <armourc@umich.edu>

Examples

```r
df <- dplyr::tibble(
  model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
  AUC = c(.2, .3, .8, .9, .85, .95)
)
set.seed(123)
permute_p_value(df, "AUC", "model", "rf", "glmnet", nperm = 100)
```
plot_hp_performance

Plot hyperparameter performance metrics

Description

Plot hyperparameter performance metrics

Usage

plot_hp_performance(dat, param_col, metric_col)

Arguments

dat
dataframe of hyperparameters and performance metric (e.g. from get_hp_performance() or combine_hp_performance())

param_col
hyperparameter to be plotted. must be a column in dat.

metric_col
performance metric. must be a column in dat.

Value

ggplot of hyperparameter performance.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Kelly Sovacool <sovacool@umich.edu>

Examples

plot for a single `run_ml()` call
hp_metrics <- get_hp_performance(otu_mini_bin_results_glmnet$trained_model)
plot_hp_performance(hp_metrics$dat, lambda, AUC)

Not run:
plot for multiple `run_ml()` calls
results <- lapply(seq(100, 102), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed)
})
models <- lapply(results, function(x) x$trained_model)
hp_metrics <- combine_hp_performance(models)
plot_hp_performance(hp_metrics$dat, lambda, AUC)

End(Not run)
plot_mean_roc
Plot ROC and PRC curves

Description
Plot ROC and PRC curves

Usage
plot_mean_roc(dat, ribbon_fill = "#C6DBEF", line_color = "#08306B")

plot_mean_prc(
 dat,
 baseline_precision = NULL,
 ycol = mean_precision,
 ribbon_fill = "#C7E9C0",
 line_color = "#00441B"
)

Arguments
- **dat**: sensitivity, specificity, and precision data calculated by calc_mean_roc()
- **ribbon_fill**: ribbon fill color (default: "#D9D9D9")
- **line_color**: line color (default: "#000000")
- **baseline_precision**: baseline precision from calc_baseline_precision()
- **ycol**: column for the y axis (Default: mean_precision)

Functions
- plot_mean_roc(): Plot mean sensitivity over specificity
- plot_mean_prc(): Plot mean precision over recall

Author(s)
Courtney Armour
Kelly Sovacool <sovacool@umich.edu>

Examples
```r
# Not run:
library(dplyr)
# get performance for multiple models
get_sensspec_seed <- function(seed) {
  ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed)
  sensspec <- calc_model_sensspec(
```
```

```ml_result$trained_model,
ml_result$test_data,
"dx"
) %>%
mutate(seed = seed)
return(sensspec)
}
sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed)

plot ROC & PRC
sensspec_dat %>%
calc_mean_roc() %>%
plot_mean_roc()
baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer")
sensspec_dat %>%
calc_mean_prc() %>%
plot_mean_prc(baseline_precision = baseline_prec)

End(Not run)
Examples

```r
## Not run:
# call `run_ml()` multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
  run_ml(otu_small, "glmnet", seed = seed)
})
# extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
  result[["performance"]]
}) %>%
dplyr::bind_rows()
# plot the performance results
p <- plot_model_performance(perf_df)

# call `run_ml()` with different ML methods
param_grid <- expand.grid(
  seeds = seq(100, 104),
  methods = c("glmnet", "rf")
)
results_mtx <- mapply(
  function(seed, method) {
    run_ml(otu_mini_bin, method, seed = seed, kfold = 2)
  },
  param_grid$seeds, param_grid$methods
)
# extract and combine the performance results
perf_df2 <- dplyr::bind_rows(results_mtx["performance", ])
# plot the performance results
p <- plot_model_performance(perf_df2)

# you can continue adding layers to customize the plot
p +
  theme_classic() +
  scale_color_brewer(palette = "Dark2") +
  coord_flip()

## End(Not run)
```

preprocess_data
Preprocess data prior to running machine learning

Description

Function to preprocess your data for input into `run_ml()`.

Usage

```r
preprocess_data(
```

```r
```
```r
preprocess_data

dataset,
outcome_colname,
method = c("center", "scale"),
remove_var = "nzv",
collapse_corr_feats = TRUE,
to_numeric = TRUE,
group_neg_corr = TRUE,
prefilter_threshold = 1
)

Arguments

dataset
Data frame with an outcome variable and other columns as features.

outcome_colname
Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

method
Methods to preprocess the data, described in `caret::preProcess()` (default: c("center","scale"), use NULL for no normalization).

remove_var
Whether to remove variables with near-zero variance ("nzv"; default), zero variance ("zv"), or none (NULL).

collapse_corr_feats
Whether to keep only one of perfectly correlated features.

to_numeric
Whether to change features to numeric where possible.

group_neg_corr
Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
prefilter_threshold
Remove features which only have non-zero & non-NA values N rows or fewer (default: 1). Set this to -1 to keep all columns at this step. This step will also be skipped if to_numeric is set to FALSE.

Value

Named list including:

- dat_transformed: Preprocessed data.
- grp_feats: If features were grouped together, a named list of the features corresponding to each group.
- removed_feats: Any features that were removed during preprocessing (e.g. because there was zero variance or near-zero variance for those features).

If the progressr package is installed, a progress bar with time elapsed and estimated time to completion can be displayed.

More details

See the `preprocessing vignette` for more details.

Note that if any values in outcome_colname contain spaces, they will be converted to underscores for compatibility with caret.
randomize_feature_order

Randomize feature order to eliminate any position-dependent effects

Description

Randomize feature order to eliminate any position-dependent effects

Usage

randomize_feature_order(dataset, outcome_colname)

Arguments

dataset

Data frame with an outcome variable and other columns as features.

outcome_colname

Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

Value

Dataset with feature order randomized.
**remove_singleton_columns**

**Examples**

```r
dat <- data.frame(
 outcome = c("1", "2", "3"),
 a = 4:6, b = 7:9, c = 10:12, d = 13:15
)
randomize_feature_order(dat, "outcome")
```

---

**Description**

Removes columns which only have non-zero & non-NA values in `threshold` row(s) or fewer.

**Usage**

```r
remove_singleton_columns(dat, threshold = 1)
```

**Arguments**

- `dat` dataframe
- `threshold` Number of rows. If a column only has non-zero & non-NA values in `threshold` row(s) or fewer, it will be removed.

**Value**

dataframe without singleton columns

**Author(s)**

Kelly Sovacool, <sovacool@umich.edu>

Courtney Armour

**Examples**

```r
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6), threshold = 0)
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, NA), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(1, 1, 1), c = 4:6))
```
replace_spaces  
Replace spaces in all elements of a character vector with underscores

Description
Replace spaces in all elements of a character vector with underscores

Usage
replace_spaces(x, new_char = "_")

Arguments
x  
a character vector
new_char  
the character to replace spaces (default: _)

Value
character vector with all spaces replaced with new_char

Author(s)
Kelly Sovacool, <sovacool@umich.edu>

Examples
dat <- data.frame(
  dx = c("outcome 1", "outcome 2", "outcome 1"),
  a = 1:3, b = c(5, 7, 1)
)
  dat$dx <- replace_spaces(dat$dx)
dat

run_ml  
Run the machine learning pipeline

Description
This function splits the data set into a train & test set, trains machine learning (ML) models using k-fold cross-validation, evaluates the best model on the held-out test set, and optionally calculates feature importance using the framework outlined in Topçuoglu et al. 2020 (doi:10.1128/mBio.0043420). Required inputs are a data frame (must contain an outcome variable and all other columns as features) and the ML method. See vignette('introduction') for more details.
Usage

```r
run_ml(
 dataset,
 method,
 outcome_colname = NULL,
 hyperparameters = NULL,
 find_feature_importance = FALSE,
 calculate_performance = TRUE,
 kfold = 5,
 cv_times = 100,
 cross_val = NULL,
 training_frac = 0.8,
 perf_metric_function = NULL,
 perf_metric_name = NULL,
 groups = NULL,
 group_partitions = NULL,
 corr_thresh = 1,
 seed = NA,
 ...
)
```

Arguments

dataset  Data frame with an outcome variable and other columns as features.

method   ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
  • glmnet: linear, logistic, or multiclass regression
  • rf: random forest
  • rpart2: decision tree
  • svmRadial: support vector machine
  • xgbTree: xgboost

outcome_colname  Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

hyperparameters  Dataframe of hyperparameters (default NULL; sensible defaults will be chosen automatically).

find_feature_importance  Run permutation importance (default: FALSE). TRUE is recommended if you would like to identify features important for predicting your outcome, but it is resource-intensive.

calculate_performance  Whether to calculate performance metrics (default: TRUE). You might choose to skip this if you do not perform cross-validation during model training.

kfold  Fold number for k-fold cross-validation (default: 5).

cv_times  Number of cross-validation partitions to create (default: 100).
cross_val

a custom cross-validation scheme from caret::trainControl() (default: NULL, uses kfold cross validation repeated cv_times). kfold and cv_times are ignored if the user provides a custom cross-validation scheme. See the caret::trainControl() docs for information on how to use it.

training_frac

Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.

perf_metric_function

Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()). Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.

perf_metric_name

The column name from the output of the function provided to perf_metric_function that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

groups

Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).

group_partitions

Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some belong to group "B", then setting group_partitions = list(train = c("A", "B"), test = c("B")) will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to training_frac as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

corr_thresh

For feature importance, group correlations above or equal to corr_thresh (range 0 to 1; default: 1).

seed

Random seed (default: NA). Your results will only be reproducible if you set a seed.

...

All additional arguments are passed on to caret::train(), such as case weights via the weights argument or ntree for rf models. See the caret::train() docs for more details.

Value

Named list with results:

- trained_model: Output of caret::train(), including the best model.
- test_data: Part of the data that was used for testing.
• **performance**: Data frame of performance metrics. The first column is the cross-validation performance metric, and the last two columns are the ML method used and the seed (if one was set), respectively. All other columns are performance metrics calculated on the test data. This contains only one row, so you can easily combine performance data frames from multiple calls to `run_ml()` (see vignette("parallel")).

• **feature_importance**: If feature importances were calculated, a data frame where each row is a feature or correlated group. The columns are the performance metric of the permuted data, the difference between the true performance metric and the performance metric of the permuted data (true - permuted), the feature name, the ML method, the performance metric name, and the seed (if provided). For AUC and RMSE, the higher perf_metric_diff is, the more important that feature is for predicting the outcome. For log loss, the lower perf_metric_diff is, the more important that feature is for predicting the outcome.

More details
For more details, please see the vignettes.

Author(s)
Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples
```r
Not run:
regression
run_ml(otu_small, "glmnet",
 seed = 2019)

random forest w/ feature importance
run_ml(otu_small, "rf",
 outcome_colname = "dx",
 find_feature_importance = TRUE)

custom cross validation & hyperparameters
run_ml(otu_mini_bin[, 2:11],
 "glmnet",
 outcome_colname = "Otu00001",
 seed = 2019,
 hyperparameters = list(lambda = c(1e-04), alpha = 0),
 cross_val = caret::trainControl(method = "none"),
 calculate_performance = FALSE)
```
```
tidy_perf_data

Tidy the performance dataframe

Description

Used by plot_model_performance().

Usage

```r
tidy_perf_data(performance_df)
```

Arguments

- `performance_df` dataframe of performance results from multiple calls to `run_ml()`

Value

Tidy dataframe with model performance metrics.

Author(s)

Begüm Topçuoglu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
## Not run:
# call 'run_ml()' multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
  run_ml(otu_small, "glmnet", seed = seed)
})
# extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
  result[["performance"]]
}) %>%
  dplyr::bind_rows()
# make it pretty!
tidy_perf_data(perf_df)

## End(Not run)
```
Description
Train model using `caret::train()`.

Usage
```
train_model(
  train_data,  
  outcome_colname,  
  method,  
  cv,  
  perf_metric_name,  
  tune_grid,  
  ...  
)
```

Arguments
- **train_data**: Training data. Expected to be a subset of the full dataset.
- **outcome_colname**: Column name as a string of the outcome variable (default `NULL`; the first column will be chosen automatically).
- **method**: ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
 - glmnet: linear, logistic, or multiclass regression
 - rf: random forest
 - rpart2: decision tree
 - svmRadial: support vector machine
 - xgbTree: xgboost
- **cv**: Cross-validation caret scheme from `define_cv()`.
- **perf_metric_name**: The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".
- **tune_grid**: Tuning grid from `get_tuning_grid()`.
- **...**: All additional arguments are passed on to `caret::train()`, such as case weights via the `weights` argument or `ntree` for `rf` models. See the `caret::train()` docs for more details.

Value
Trained model from `caret::train()`.
Author(s)
Zena Lapp, <zenalapp@umich.edu>

Examples

```r
## Not run:
training_data <- otu_mini_bin_results_glmnet$trained_model$trainingData %>%
dplyr::rename(dx = .outcome)
method <- "rf"
hyperparameters <- get_hyperparams_list(otu_mini_bin, method)
cross_val <- define_cv(training_data, "dx",
  hyperparameters,
  perf_metric_function = caret::multiClassSummary,
  class_probs = TRUE,
  cv_times = 2
)
tune_grid <- get_tuning_grid(hyperparameters, method)

rf_model <- train_model(
  training_data, "dx", method, cross_val, "AUC", tune_grid, ntree = 1000
)
rf_model$results %>% dplyr::select(mtry, AUC, prAUC)

## End(Not run)
```
Index

* datasets
 - otu_data_preproc, 26
 - otu_mini_bin, 26
 - otu_mini_bin_results_glmnet, 26
 - otu_mini_bin_results_rf, 27
 - otu_mini_bin_results_rpart2, 27
 - otu_mini_bin_results_svmRadial, 28
 - otu_mini_bin_results_xgbTree, 28
 - otu_mini_cont_results_glmnet, 29
 - otu_mini_cont_results_nocv, 29
 - otu_mini_cv, 30
 - otu_mini_multi, 30
 - otu_mini_multi_group, 30
 - otu_mini_multi_results_glmnet, 31
 - otu_small, 31

 bootstrap_performance, 3
 calc_balanced_precision, 4
 calc_baseline_precision, 4, 5
 calc_mean_perf, 6
 calc_mean_prc (calc_model_sensspec), 7
 calc_mean_roc (calc_model_sensspec), 7
 calc_model_sensspec, 7
 calc_perf_metrics, 9
 caret::defaultSummary(), 9, 12, 15, 21, 42
 caret::preProcess(), 13, 37
 caret::train(), 7, 9, 14, 21, 42, 45
 combine_hp_performance, 10
 compare_models, 11
 createDataPartition, 20

 define_cv, 12

 furrr::future_map(), 3

 get_caret_processed_df, 13
 get_feature_importance, 14
 get_hp_performance, 17
 get_hyperparams_list, 18
 get_outcome_type, 19

 get_partition_indices, 20
 get_perf_metric_fn, 22
 get_perf_metric_name, 23
 get_performance_tbl, 21
 get_tuning_grid, 24
 group_correlated_features, 25

 otu_data_preproc, 26
 otu_mini_bin, 26
 otu_mini_bin_results_glmnet, 26
 otu_mini_bin_results_rf, 27
 otu_mini_bin_results_rpart2, 27
 otu_mini_bin_results_svmRadial, 28
 otu_mini_bin_results_xgbTree, 28
 otu_mini_cont_results_glmnet, 29
 otu_mini_cont_results_nocv, 29
 otu_mini_cv, 30
 otu_mini_multi, 30
 otu_mini_multi_group, 30
 otu_mini_multi_results_glmnet, 31
 otu_small, 31

 permute_p_value, 32
 plot_curves (plot_mean_roc), 34
 plot_hp_performance, 33
 plot_mean_prc (plot_mean_roc), 34
 plot_mean_roc, 34
 plot_model_performance, 35
 preprocess_data, 36

 randomize_feature_order, 38
 remove_singleton_columns, 39
 replace_spaces, 40
 rsample::bootstraps(), 3
 rsample::int_pctl(), 3
 run_ml, 40
 run_ml(), 3, 36

 sensspec (calc_model_sensspec), 7

 tidy_perf_data, 44
train_model, 45