Package ‘mikropml’

April 15, 2023

Title User-Friendly R Package for Supervised Machine Learning Pipelines

Version 1.6.0

Date 2023-04-14

Description An interface to build machine learning models for classification and regression problems. ‘mikropml’ implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.

License MIT + file LICENSE

URL https://www.schlosslab.org/mikropml/,
 https://github.com/SchlossLab/mikropml

BugReports https://github.com/SchlossLab/mikropml/issues

Depends R (>= 4.1.0)

Imports caret, dplyr, e1071, glmnet, kernlab, MLmetrics, randomForest, rlang, rpart, stats, utils, xgboost

Suggests assertthat, doFuture, forcats, foreach, future, future.apply, furrr, ggplot2, knitr, progress, progressr, purrr, rmarkdown, rsample, testthat, tidyr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no
Author Begüm Topcuoğlu [aut] (<https://orcid.org/0000-0003-3140-537X>),
Zena Lapp [aut] (<https://orcid.org/0000-0003-4674-2176>),
Kelly Sovacool [aut, cre] (<https://orcid.org/0000-0003-3283-829X>),
Evan Snitkin [aut] (<https://orcid.org/0000-0001-8409-278X>),
Jenna Wiens [aut] (<https://orcid.org/0000-0002-1057-7722>),
Patrick Schloss [aut] (<https://orcid.org/0000-0002-6935-4275>),
Nick Lesniak [ctb] (<https://orcid.org/0000-0002-9359-5194>),
Courtney Armour [ctb] (<https://orcid.org/0000-0002-5250-1224>),
Sarah Lucas [ctb] (<https://orcid.org/0000-0003-1676-5801>)

Maintainer Kelly Sovacool <sovaco@umich.edu>

Repository CRAN

Date/Publication 2023-04-14 23:00:28 UTC

R topics documented:

- bootstrap_performance ... 3
- calc_balanced_precision ... 4
- calc_baseline_precision .. 5
- calc_mean_perf ... 6
- calc_model_sensspec ... 7
- calc_perf_metrics .. 9
- combine_hp_performance ... 10
- compare_models .. 11
- define_cv ... 12
- get_caret_processed_df ... 13
- get_feature_importance .. 14
- get_hp_performance .. 17
- get_hyperparams_list ... 18
- get_outcome_type .. 19
- get_partition_indices .. 20
- get_performance_tbl ... 21
- get_perf_metric_fn ... 22
- get_perf_metric_name .. 23
- get_tuning_grid .. 24
- group_correlated_features 25
- mikropml .. 26
- otu_data_preproc ... 26
- otu_mini_bin ... 27
- otu_mini_bin_results_glmnet 27
- otu_mini_bin_results_rf .. 28
- otu_mini_bin_results_rpart2 28
- otu_mini_bin_results_svmRadial 29
- otu_mini_bin_results_xgbTree 29
- otu_mini_cont_results_glmnet 30
- otu_mini_cont_results_nocv 30
- otu_mini_cv ... 31
- otu_mini_multi .. 31
bootstrap_performance

Calculate a bootstrap confidence interval for the performance on a single train/test split

Description

Uses `rsample::bootstraps()`, `rsample::int_pctl()`, and `furrr::future_map()`

Usage

```r
bootstrap_performance(
  ml_result,
  outcome_colname,
  bootstrap_times = 10000,
  alpha = 0.05
)
```

Arguments

- `ml_result`: result returned from a single `run_ml()` call
- `outcome_colname`: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- `bootstrap_times`: the number of bootstraps to create (default: 10000)
- `alpha`: the alpha level for the confidence interval (default 0.05 to create a 95% confidence interval)
calc_balanced_precision

Calculate balanced precision given actual and baseline precision

Description

Implements Equation 1 from Wu et al. 2021 doi:10.1016/j.ajhg.2021.08.012. It is the same as Equation 7 if AUPRC (aka prAUC) is used in place of precision.

Usage

calc_balanced_precision(precision, prior)

Arguments

- **precision**: actual precision of the model.
- **prior**: baseline precision, aka frequency of positives. Can be calculated with calc_baseline_precision

Value

the expected precision if the data were balanced

Author(s)

Kelly Sovacool <sovacool@umich.edu>
Examples

```r
prior <- calc_baseline_precision(otu_mini_bin,
    outcome_colname = "dx",
    pos_outcome = "cancer"
)
calc_balanced_precision(otu_mini_bin_results_rf$performance$Precision, prior)

otu_mini_bin_results_rf$performance %>%
dplyr::mutate(
    balanced_precision = calc_balanced_precision(Precision, prior),
    aubprc = calc_balanced_precision(prAUC, prior)
) %>%
dplyr::select(AUC, Precision, balanced_precision, aubprc)

# cumulative performance for a single model
sensspec_1 <- calc_model_sensspec(
    otu_mini_bin_results_glmnet$trained_model,
    otu_mini_bin_results_glmnet$test_data,
    "dx"
)
head(sensspec_1)
prior <- calc_baseline_precision(otu_mini_bin,
    outcome_colname = "dx",
    pos_outcome = "cancer"
)
sensspec_1 %>%
dplyr::mutate(balanced_precision = calc_balanced_precision(precision, prior)) %>%
dplyr::rename(recall = sensitivity) %>%
calc_mean_perf(group_var = recall, sum_var = balanced_precision) %>%
plot_mean_prc(ycol = mean_balanced_precision)
```

calc_baseline_precision

Calculate the fraction of positives, i.e. baseline precision for a PRC curve

Description

Calculate the fraction of positives, i.e. baseline precision for a PRC curve

Usage

```r
calc_baseline_precision(dataset, outcome_colname = NULL, pos_outcome = NULL)
```

Arguments

- **dataset**
 - Data frame with an outcome variable and other columns as features.
- **outcome_colname**
 - Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
pos_outcome the positive outcome from outcome_colname, e.g. "cancer" for the otu_mini_bin dataset.

Value
the baseline precision based on the fraction of positives

Author(s)
Kelly Sovacool, <sovacool@umich.edu>

Examples

calculate the baseline precision
data.frame(y = c("a", "b", "a", "b")) %>%
calc_baseline_precision(
 outcome_colname = "y",
 pos_outcome = "a"
)

calc_baseline_precision(otu_mini_bin,
 outcome_colname = "dx",
 pos_outcome = "cancer"
)

if you're not sure which outcome was used as the 'positive' outcome during
model training, you can access it from the trained model and pass it along:
calc_baseline_precision(otu_mini_bin,
 outcome_colname = "dx",
 pos_outcome = otu_mini_bin_results_glmnet$trained_model$levels[1]
)

calc_mean_perf Generic function to calculate mean performance curves for multiple models

Description
Used by calc_mean_roc() and calc_mean_prc().

Usage
calc_mean_perf(sensspec_dat, group_var = specificity, sum_var = sensitivity)
calc_model_sensspec

Arguments

- sensspec_dat: data frame created by concatenating results of calc_model_sensspec() for multiple models.
- group_var: variable to group by (e.g. specificity or recall).
- sum_var: variable to summarize (e.g. sensitivity or precision).

Value

data frame with mean & standard deviation of sum_var summarized over group_var

Author(s)

Courtney Armour
Kelly Sovacool

calc_model_sensspec Calculate and summarize performance for ROC and PRC plots

description

Use these functions to calculate cumulative sensitivity, specificity, recall, etc. on single models, concatenate the results together from multiple models, and compute mean ROC and PRC. You can then plot mean ROC and PRC curves to visualize the results. **Note:** These functions assume a binary outcome.

Usage

calc_model_sensspec(trained_model, test_data, outcome_colname = NULL)
calc_mean_roc(sensspec_dat)
calc_mean_prc(sensspec_dat)

Arguments

- trained_model: Trained model from caret::train().
- test_data: Held out test data: dataframe of outcome and features.
- outcome_colname: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- sensspec_dat: data frame created by concatenating results of calc_model_sensspec() for multiple models.

Value

data frame with summarized performance
Functions

- `calc_model_sensspec()`: Get sensitivity, specificity, and precision for a model.
- `calc_mean_roc()`: Calculate mean sensitivity over specificity for multiple models
- `calc_mean_prc()`: Calculate mean precision over recall for multiple models

Author(s)

Courtney Armour
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
## Not run:
library(dplyr)
# get cumulative performance for a single model
sensspec_1 <- calc_model_sensspec(
  otu_mini_bin_results_glmnet$trained_model,
  otu_mini_bin_results_glmnet$test_data,
  "dx"
)
head(sensspec_1)
# get performance for multiple models
get_sensspec_seed <- function(seed) {
  ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed)
  sensspec <- calc_model_sensspec(
    ml_result$trained_model,
    ml_result$test_data,
    "dx"
  ) %>%
    dplyr::mutate(seed = seed)
  return(sensspec)
}
sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed)
# calculate mean sensitivity over specificity
roc_dat <- calc_mean_roc(sensspec_dat)
head(roc_dat)
# calculate mean precision over recall
prc_dat <- calc_mean_prc(sensspec_dat)
head(prc_dat)
# plot ROC & PRC
roc_dat %>% plot_mean_roc()
baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer")
prc_dat %>%
  plot_mean_prc(baseline_precision = baseline_prec)
# balanced precision
prior <- calc_baseline_precision(otu_mini_bin,
  "dx", "cancer")
```
outcome_colname = "dx",
pos_outcome = "cancer"
)
bprc_dat <- sensspec_dat %>%
dplyr::mutate(balanced_precision = calc_balanced_precision(precision, prior)) %>%
dplyr::rename(recall = sensitivity) %>%
calc_mean_perf(group_var = recall, sum_var = balanced_precision)
bprc_dat %>% plot_mean_prc(ycol = mean_balanced_precision) + ylab("Mean Bal. Precision")

End(Not run)

calc_perf_metrics

Get performance metrics for test data

description
Get performance metrics for test data

Usage

calc_perf_metrics(
 test_data,
 trained_model,
 outcome_colname,
 perf_metric_function,
 class_probs
)

Arguments

test_data Held out test data: dataframe of outcome and features.

trained_model Trained model from caret::train().

outcome_colname Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

perf_metric_function Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()).

Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.

class_probs Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

Value

Dataframe of performance metrics.
Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
## Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
calc_perf_metrics(results$test_data,
    results$trained_model,
    "dx",
    multiClassSummary,
    class_probs = TRUE
)
## End(Not run)
```

combine_hp_performance

Combine hyperparameter performance metrics for multiple train/test splits

Description

Combine hyperparameter performance metrics for multiple train/test splits generated by, for instance, looping in R or using a snakemake workflow on a high-performance computer.

Usage

```r
combine_hp_performance(trained_model_lst)
```

Arguments

- `trained_model_lst`
 List of trained models.

Value

Named list:

- `dat`: Dataframe of performance metric for each group of hyperparameters
- `params`: Hyperparameters tuned.
- `Metric`: Performance metric used.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Examples

```r
## Not run:
results <- lapply(seq(100, 102), function(seed) {
  run_ml(otu_small, "glmnet", seed = seed, cv_times = 2, kfold = 2)
})
models <- lapply(results, function(x) x$trained_model)
combine_hp_performance(models)

## End(Not run)
```

compare_models

Perform permutation tests to compare the performance metric across all pairs of a group variable.

Description

A wrapper for `permute_p_value()`.

Usage

```r
compare_models(merged_data, metric, group_name, nperm = 10000)
```

Arguments

- **merged_data**: the concatenated performance data from `run_ml`
- **metric**: metric to compare, must be numeric
- **group_name**: column with group variables to compare
- **nperm**: number of permutations, default=10000

Value

A table of p-values for all pairs of group variable

Author(s)

Courtney R Armour, <armourc@umich.edu>

Examples

```r
df <- dplyr::tibble(
  model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
  AUC = c(.2, 0.3, 0.8, 0.9, 0.85, 0.95)
)
set.seed(123)
compare_models(df, "AUC", "model", nperm = 10)
```
Define cross-validation scheme and training parameters

Usage

```r
define_cv(
    train_data,  # Dataframe for training model.
    outcome_colname,  # Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
    hyperparams_list,  # Named list of lists of hyperparameters.
    perf_metric_function,  # Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()).
    class_probs,  # Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).
    kfold = 5,  # Fold number for k-fold cross-validation (default: 5).
    cv_times = 100,  # Number of cross-validation partitions to create (default: 100).
    groups = NULL,  # Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).
    group_partitions = NULL  # Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some
)```

Arguments

- `train_data`: Dataframe for training model.
- `outcome_colname`: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- `hyperparams_list`: Named list of lists of hyperparameters.
- `perf_metric_function`: Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()).
  - Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.
- `class_probs`: Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).
- `kfold`: Fold number for k-fold cross-validation (default: 5).
- `cv_times`: Number of cross-validation partitions to create (default: 100).
- `groups`: Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).
- `group_partitions`: Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some...
belong to group "B", then setting `group_partitions = list(train = c("A", "B"), test = c("B"))` will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to `training_frac` as possible. If the number of groups in the training set is larger than `kfold`, the groups will also be kept together for cross-validation.

**Value**

Caret object for `trainControl` that controls cross-validation

**Author(s)**

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

**Examples**

```r
training_inds <- get_partition_indices(otu_small %>% dplyr::pull("dx"),
 training_frac = 0.8,
 groups = NULL
)
train_data <- otu_small[training_inds,]
test_data <- otu_small[-training_inds,]
cv <- define_cv(train_data,
 outcome_colname = "dx",
 hyperparams_list = get_hyperparams_list(otu_small, "glmnet"),
 perf_metric_function = caret::multiClassSummary,
 class_probs = TRUE,
 kfold = 5
)
```

---

### get_caret_processed_df

*Get preprocessed dataframe for continuous variables*

**Description**

Get preprocessed dataframe for continuous variables

**Usage**

```r
get_caret_processed_df(features, method)
```

**Arguments**

- **features**: Dataframe of features for machine learning
- **method**: Methods to preprocess the data, described in `caret::preProcess()` (default: `c("center","scale"), use NULL for no normalization).
get_feature_importance

Value
Named list:
• processed: Dataframe of processed features.
• removed: Names of any features removed during preprocessing.

Author(s)
Zena Lapp, <zenalapp@umich.edu>

Examples
get_caret_processed_df(mikropml::otu_small[, 2:ncol(otu_small)], c("center", "scale"))

get_feature_importance

Get feature importance using the permutation method

Description
Calculates feature importance using a trained model and test data. Requires the future.apply package.

Usage
get_feature_importance(
  trained_model, 
  test_data, 
  outcome_colname, 
  perf_metric_function, 
  perf_metric_name, 
  class_probs, 
  method, 
  seed = NA, 
  corr_thresh = 1, 
  groups = NULL, 
  nperms = 100, 
  corr_method = "spearman"
)

Arguments

trained_model Trained model from caret::train().
test_data Held out test data: dataframe of outcome and features.
outcome_colname

Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
get_feature_importance

perf_metric_function
Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

perf_metric_name
The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

class_probs
Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

method
ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
- glmnet: linear, logistic, or multiclass regression
- rf: random forest
- rpart2: decision tree
- svmRadial: support vector machine
- xgbTree: xgboost

seed
Random seed (default: NA). Your results will only be reproducible if you set a seed.

corr_thresh
For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).

groups
Vector of feature names to group together during permutation. Each element should be a string with feature names separated by a pipe character (|). If this is NULL (default), correlated features will be grouped together based on `corr_thresh`.

nperms
number of permutations to perform (default: 100).

corr_method
correlation method. options or the same as those supported by `stats::cor`: spearman, pearson, kendall. (default: spearman)

Details
For permutation tests, the p-value is the number of permutation statistics that are greater than the test statistic, divided by the number of permutations. In our case, the permutation statistic is the model performance (e.g. AUROC) after randomizing the order of observations for one feature, and the test statistic is the actual performance on the test data. By default we perform 100 permutations per feature; increasing this will increase the precision of estimating the null distribution, but also increases runtime. The p-value represents the probability of obtaining the actual performance in the event that the null hypothesis is true, where the null hypothesis is that the feature is not important for model performance.

We strongly recommend providing multiple cores to speed up computation time. See our vignette on parallel processing for more details.

Value
Data frame with performance metrics for when each feature (or group of correlated features; `feat`) is permuted (`perf_metric`), differences between the actual test performance metric on and the
get_feature_importance

permuted performance metric (\texttt{perf\_metric\_diff}; test minus permuted performance), and the p-value (\texttt{pvalue}; the probability of obtaining the actual performance value under the null hypothesis). Features with a larger \texttt{perf\_metric\_diff} are more important. The performance metric name (\texttt{perf\_metric\_name}) and seed (\texttt{seed}) are also returned.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
Not run:
If you called `run_ml()` with `feature_importance = FALSE` (the default),
you can use `get_feature_importance()` later as long as you have the
trained model and test data.
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
feat_imp <- get_feature_importance(results$trained_model,
 results$trained_model$trainingData,
 results$test_data,
 "dx",
 multiClassSummary,
 "AUC",
 class_probs = TRUE,
 method = "glmnet"
)

We strongly recommend providing multiple cores to speed up computation time.
Do this before calling `get_feature_importance()`.
doFuture::registerDoFuture()
future::plan(future::multicore, workers = 2)

Optionally, you can group features together with a custom grouping
feat_imp <- get_feature_importance(results$trained_model,
 results$trained_model$trainingData,
 results$test_data,
 "dx",
 multiClassSummary,
 "AUC",
 class_probs = TRUE,
 method = "glmnet",
 groups = c("Otu00007", "Otu00008", "Otu00009", "Otu00011", "Otu00012",
 "Otu00015", "Otu00016", "Otu00018", "Otu00019", "Otu00020", "Otu00022",
 "Otu00023", "Otu00025", "Otu00028", "Otu00029", "Otu00030", "Otu00035",
 "Otu00036", "Otu00037", "Otu00038", "Otu00039", "Otu00040", "Otu00047",
 "Otu00050", "Otu00052", "Otu00054", "Otu00055", "Otu00056", "Otu00060",
 "Otu00063|Otu00002|Otu00005|Otu00024|Otu00022|Otu00024|Otu00041|Otu00053",
 "Otu00014|Otu00021|Otu00017|Otu00031|Otu00057",
 "Otu00013|Otu00006", "Otu00026|Otu00001|Otu00034|Otu00048",
```
## Description

Get hyperparameter performance metrics

## Usage

```r
get_hp_performance(trained_model)
```
get_hyperparams_list

Arguments

  trained_model  trained model (e.g. from run_ml())

Value

  Named list:
  • dat: Dataframe of performance metric for each group of hyperparameters.
  • params: Hyperparameters tuned.
  • metric: Performance metric used.

Author(s)

  Zena Lapp, <zenalapp@umich.edu>
  Kelly Sovacool <sovacool@umich.edu>

Examples

  get_hp_performance(otu_mini_bin_results_glmnet$trained_model)

---

get_hyperparams_list  Set hyperparameters based on ML method and dataset characteristics

Description

  For more details see the vignette on hyperparameter tuning.

Usage

  get_hyperparams_list(dataset, method)

Arguments

  dataset  Data frame with an outcome variable and other columns as features.
  method   ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
          • glmnet: linear, logistic, or multiclass regression
          • rf: random forest
          • rpart2: decision tree
          • svmRadial: support vector machine
          • xgbTree: xgboost

Value

  Named list of hyperparameters.
get_outcome_type

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
get_hyperparams_list(otu_mini_bin, "rf")
get_hyperparams_list(otu_small, "rf")
get_hyperparams_list(otu_mini_bin, "rpart2")
get_hyperparams_list(otu_small, "rpart2")
```

get_outcome_type

*Get outcome type.*

Description

If the outcome is numeric, the type is continuous. Otherwise, the outcome type is binary if there are only two outcomes or multiclass if there are more than two outcomes.

Usage

```r
get_outcome_type(outcomes_vec)
```

Arguments

- `outcomes_vec`: Vector of outcomes.

Value

Outcome type (continuous, binary, or multiclass).

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
get_outcome_type(c(1, 2, 1))
get_outcome_type(c("a", "b", "b"))
get_outcome_type(c("a", "b", "c"))
```
get_partition_indices  Select indices to partition the data into training & testing sets.

Description

Use this function to get the row indices for the training set.

Usage

get_partition_indices(
  outcomes,
  training_frac = 0.8,
  groups = NULL,
  group_partitions = NULL
)

Arguments

- outcomes: vector of outcomes
- training_frac: Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.
- groups: Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).
- group_partitions: Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some belong to group "B", then setting group_partitions = list(train = c("A", "B"), test = c("B")) will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to training_frac as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

Details

If groups is NULL, uses createDataPartition. Otherwise, uses create_grouped_data_partition(). Set the seed prior to calling this function if you would like your data partitions to be reproducible (recommended).

Value

Vector of row indices for the training set.
Author(s)

Kelly Sovacool, sovacool@umich.edu

Examples

```r
training_inds <- get_partition_indices(otu_mini_bin$dx)
train_data <- otu_mini_bin[train_data,]
test_data <- otu_mini_bin[-training_inds,]
```

get_performance_tbl  
Get model performance metrics as a one-row tibble

Description

Get model performance metrics as a one-row tibble

Usage

```r
get_performance_tbl(
 trained_model,
 test_data,
 outcome_colname,
 perf_metric_function,
 perf_metric_name,
 class_probs,
 method,
 seed = NA
)
```

Arguments

- **trained_model**: Trained model from `caret::train()`.
- **test_data**: Held out test data: dataframe of outcome and features.
- **outcome_colname**: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- **perf_metric_function**: Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.
- **perf_metric_name**: The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".
**get_perf_metric_fn**

`class_probs`  Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

`method`  ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
- glmnet: linear, logistic, or multiclass regression
- rf: random forest
- rpart2: decision tree
- svmRadial: support vector machine
- xgbTree: xgboost

`seed`  Random seed (default: NA). Your results will only be reproducible if you set a seed.

**Value**

A one-row tibble with a column for the cross-validation performance, columns for each of the performance metrics for the test data, plus the method, and seed.

**Author(s)**

Kelly Sovacool, <sovacool@umich.edu>
Zena Lapp, <zenalapp@umich.edu>

**Examples**

```r
Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
get_performance_tbl(results$trained_model, results$test_data, "dx",
 multiClassSummary, "AUC",
 class_probs = TRUE,
 method = "glmnet"
)
End(Not run)
```

---

**Description**

Get default performance metric function

**Usage**

`get_perf_metric_fn(outcome_type)`
get_perf_metric_name

Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric function.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

get_perf_metric_fn("continuous")
get_perf_metric_fn("binary")
get_perf_metric_fn("multiclass")

get_perf_metric_name Get default performance metric name

Description

Get default performance metric name for cross-validation.

Usage

get_perf_metric_name(outcome_type)

Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric name.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

get_perf_metric_name("continuous")
get_perf_metric_name("binary")
get_perf_metric_name("multiclass")
get_tuning_grid

Generate the tuning grid for tuning hyperparameters

Description

Generate the tuning grid for tuning hyperparameters

Usage

`get_tuning_grid(hyperparams_list, method)`

Arguments

- `hyperparams_list`: Named list of lists of hyperparameters.
- `method`: ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
  - `glmnet`: linear, logistic, or multiclass regression
  - `rf`: random forest
  - `rpart2`: decision tree
  - `svmRadial`: support vector machine
  - `xgbTree`: xgboost

Value

The tuning grid.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
ml_method <- "glmnet"
hparams_list <- get_hyperparams_list(otu_small, ml_method)
get_tuning_grid(hparams_list, ml_method)
```
**group_correlated_features**

*Group correlated features*

**Description**

Group correlated features

**Usage**

```r
group_correlated_features(
 features,
 corr_thresh = 1,
 group_neg_corr = TRUE,
 corr_method = "spearman"
)
```

**Arguments**

- **features**
  - a dataframe with each column as a feature for ML.
- **corr_thresh**
  - For feature importance, group correlations above or equal to corr_thresh (range 0 to 1; default: 1).
- **group_neg_corr**
  - Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
- **corr_method**
  - correlation method. options or the same as those supported by stats::cor: spearman, pearson, kendall. (default: spearman)

**Value**

vector where each element is a group of correlated features separated by pipes (|)

**Author(s)**

Kelly Sovacool, <sovacool@umich.edu>

**Examples**

```r
features <- data.frame(
 a = 1:3, b = 2:4, c = c(1, 0, 1),
 d = (5:7), e = c(5, 1, 4), f = c(-1, 0, -1)
)

group_correlated_features(features)
```
mikropml implements supervised machine learning pipelines using regression, support vector machines, decision trees, random forest, or gradient-boosted trees. The main functions are `preprocess_data()` to process your data prior to running machine learning, and `run_ml()` to run machine learning.

Authors

- Begüm D. Topçuoğlu (ORCID)
- Zena Lapp (ORCID)
- Kelly L. Sovacool (ORCID)
- Evan Snitkin (ORCID)
- Jenna Wiens (ORCID)
- Patrick D. Schloss (ORCID)

See vignettes

- Introduction
- Preprocessing data
- Hyperparameter tuning
- Parallel processing
- The mikropml paper

Description

This is the result of running `preprocess_data("otu_mini_bin")`

Usage

`otu_data_preproc`

Format

An object of class `list` of length 3.
**otu_mini_bin**

*Mini OTU abundance dataset*

**Description**

A dataset containing relatives abundances of OTUs for human stool samples with a binary outcome, `dx`. This is a subset of `otu_small`.

**Usage**

```r
otu_mini_bin
```

**Format**

A data frame The `dx` column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.

---

**otu_mini_bin_results_glmnet**

*Results from running the pipeline with L2 logistic regression on otu_mini_bin with feature importance and grouping*

**Description**

Results from running the pipeline with L2 logistic regression on `otu_mini_bin` with feature importance and grouping.

**Usage**

```r
otu_mini_bin_results_glmnet
```

**Format**

An object of class `list` of length 4.
otu_mini_bin_results_rf

*Results from running the pipeline with random forest on otu_mini_bin*

**Description**

Results from running the pipeline with random forest on otu_mini_bin

**Usage**

`otu_mini_bin_results_rf`

**Format**

An object of class `list` of length 4.

---

otu_mini_bin_results_rpart2

*Results from running the pipeline with rpart2 on otu_mini_bin*

**Description**

Results from running the pipeline with rpart2 on otu_mini_bin

**Usage**

`otu_mini_bin_results_rpart2`

**Format**

An object of class `list` of length 4.
otu_mini_bin_results_svmRadial

Results from running the pipeline with svmRadial on otu_mini_bin

Description

Results from running the pipeline with svmRadial on otu_mini_bin

Usage

otu_mini_bin_results_svmRadial

Format

An object of class list of length 4.

otu_mini_bin_results_xgbTree

Results from running the pipeline with xgbTree on otu_mini_bin

Description

Results from running the pipeline with xgbTree on otu_mini_bin

Usage

otu_mini_bin_results_xgbTree

Format

An object of class list of length 4.
**otu_mini_cont_results_glmnet**

*Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome*

**Description**

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome.

**Usage**

`otu_mini_cont_results_glmnet`

**Format**

An object of class `list` of length 4.

---

**otu_mini_cont_results_nocv**

*Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation*

**Description**

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation.

**Usage**

`otu_mini_cont_results_nocv`

**Format**

An object of class `list` of length 4.
Cross validation on `train_data_mini` with grouped features.

**Description**
Cross validation on `train_data_mini` with grouped features.

**Usage**
```
otu_mini_cv
```

**Format**
An object of class `list` of length 27.

---

Mini OTU abundance dataset with 3 categorical variables

**Description**
A dataset containing relatives abundances of OTUs for human stool samples

**Usage**
```
otu_mini_multi
```

**Format**
A data frame The `dx` column is the colorectal cancer diagnosis: adenoma, carcinoma, normal. All other columns are OTU relative abundances.

---

Groups for `otu_mini_multi`

**Description**
Groups for `otu_mini_multi`

**Usage**
```
otu_mini_multi_group
```

**Format**
An object of class `character` of length 490.
otu_mini_multi_results_glmnet

Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Description

Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Usage

otu_mini_multi_results_glmnet

Format

An object of class list of length 4.

otu_small

Small OTU abundance dataset

Description

A dataset containing relatives abundances of 60 OTUs for 60 human stool samples. This is a subset of the data provided in extdata/otu_large.csv, which was used in Topçuoğlu et al. 2020.

Usage

otu_small

Format

A data frame with 60 rows and 61 variables. The dx column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.
permutep_value

Calculated a permuted p-value comparing two models

Description
Calculated a permuted p-value comparing two models

Usage

permutep_value(
  merged_data,
  metric,
  group_name,
  group_1,
  group_2,
  nperm = 10000
)

Arguments

merged_data       the concatenated performance data from run_ml
metric            metric to compare, must be numeric
group_name        column with group variables to compare
group_1     name of one group to compare
group_2     name of other group to compare
nperm           number of permutations, default=10000

Value
numeric p-value comparing two models

Author(s)

Begüm Topçuoglu, <topcuoglu.begum@gmail.com>
Courtney R Armour, <armourc@umich.edu>

Examples

df <- dplyr::tibble(
  model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
  AUC = c(0.2, 0.3, 0.8, 0.9, 0.85, 0.95)
)
set.seed(123)
permutep_value(df, "AUC", "model", "rf", "glmnet", nperm = 100)


**plot_hp_performance**  
*Plot hyperparameter performance metrics*

**Description**
Plot hyperparameter performance metrics

**Usage**

```r
plot_hp_performance(dat, param_col, metric_col)
```

**Arguments**

- `dat`  
  dataframe of hyperparameters and performance metric (e.g. from `get_hp_performance()` or `combine_hp_performance()`)

- `param_col`  
  hyperparameter to be plotted. must be a column in `dat`.

- `metric_col`  
  performance metric. must be a column in `dat`.

**Value**

ggplot of hyperparameter performance.

**Author(s)**

Zena Lapp, <zenalapp@umich.edu>

Kelly Sovacool <sovacool@umich.edu>

**Examples**

```r
plot for a single 'run_ml()' call
hp_metrics <- get_hp_performance(otu_mini_bin_results_glmnet$trained_model)
plot_hp_performance(hp_metrics$dat, lambda, AUC)
Not run:
plot for multiple 'run_ml()' calls
results <- lapply(seq(100, 102), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed)
})
models <- lapply(results, function(x) x$trained_model)
hp_metrics <- combine_hp_performance(models)
plot_hp_performance(hp_metrics$dat, lambda, AUC)
End(Not run)
```
plot_mean_roc

Plot ROC and PRC curves

Description
Plot ROC and PRC curves

Usage
plot_mean_roc(dat, ribbon_fill = "#C6DBEF", line_color = "#08306B")

plot_mean_prc(
  dat,
  baseline_precision = NULL,
  ycol = mean_precision,
  ribbon_fill = "#C7E9C0",
  line_color = "#00441B"
)

Arguments
- dat: sensitivity, specificity, and precision data calculated by calc_mean_roc()
- ribbon_fill: ribbon fill color (default: 
- line_color: line color (default: 
- baseline_precision: baseline precision from calc_baseline_precision()
- ycol: column for the y axis (Default: mean_precision)

Functions
- plot_mean_roc(): Plot mean sensitivity over specificity
- plot_mean_prc(): Plot mean precision over recall

Author(s)
Courtney Armour
Kelly Sovacool <sovacool@umich.edu>

Examples
## Not run:
library(dplyr)
# get performance for multiple models
get_sensspec_seed <- function(seed) {
  ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed)
  sensspec <- calc_model_sensspec(
```r
ml_result$trained_model,
ml_result$test_data,
"dx"
) %>%
mutate(seed = seed)
return(sensspec)

sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed)

plot ROC & PRC
sensspec_dat %>%
calc_mean_roc() %>%
plot_mean_roc()
baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer")
sensspec_dat %>%
calc_mean_prc() %>%
plot_mean_prc(baseline_precision = baseline_prec)

End(Not run)

plot_model_performance

Plot performance metrics for multiple ML runs with different parameters

description

ggplot2 is required to use this function.

Usage

plot_model_performance(performance_df)

Arguments

performance_df dataframe of performance results from multiple calls to run_ml()

Value

A ggplot2 plot of performance.

Author(s)

Begüm Topçuoglu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>
```
Examples

```r
Not run:
call `run_ml()` multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed)
})
extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
 result[['performance']]})
#> plot the performance results
p <- plot_model_performance(perf_df)

call `run_ml()` with different ML methods
param_grid <- expand.grid(
 seeds = seq(100, 104),
 methods = c("glmnet", "rf")
)
results_mtx <- mapply(
 function(seed, method) {
 run_ml(otu_mini_bin, method, seed = seed, kfold = 2)
 },
 param_grid$seeds, param_grid$methods
)
extract and combine the performance results
perf_df2 <- dplyr::bind_rows(results_mtx["performance",])
plot the performance results
p <- plot_model_performance(perf_df2)
you can continue adding layers to customize the plot
p +
 theme_classic() +
 scale_color_brewer(palette = "Dark2") +
 coord_flip()
End(Not run)
```

---

**preprocess_data**  
Preprocess data prior to running machine learning

**Description**

Function to preprocess your data for input into `run_ml()`.

**Usage**

preprocess_data(
dataset,  
outcome_colname,  
method = c("center", "scale"),  
remove_var = "nzv",  
collapse_corr_feats = TRUE,  
to_numeric = TRUE,  
group_neg_corr = TRUE,  
prefilter_threshold = 1
)

Arguments

dataset
  Data frame with an outcome variable and other columns as features.
outcome_colname
  Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
method
  Methods to preprocess the data, described in caret::preProcess() (default: c("center", "scale"), use NULL for no normalization).
remove_var
  Whether to remove variables with near-zero variance (\textquotesingle{}nzv\textquotesingle{}; default), zero variance (\textquotesingle{}zv\textquotesingle{}), or none (NULL).
collapse_corr_feats
  Whether to keep only one of perfectly correlated features.
to_numeric
  Whether to change features to numeric where possible.
group_neg_corr
  Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
prefilter_threshold
  Remove features which only have non-zero & non-NA values N rows or fewer (default: 1). Set this to -1 to keep all columns at this step. This step will also be skipped if to_numeric is set to FALSE.

Value

Named list including:

- dat_transformed: Preprocessed data.
- grp_feats: If features were grouped together, a named list of the features corresponding to each group.
- removed_feats: Any features that were removed during preprocessing (e.g. because there was zero variance or near-zero variance for those features).

If the progressr package is installed, a progress bar with time elapsed and estimated time to completion can be displayed.

More details

See the preprocessing vignette for more details.

Note that if any values in outcome_colname contain spaces, they will be converted to underscores for compatibility with caret.
randomize_feature_order

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

preprocess_data(mikropml::otu_small, "dx")

# the function can show a progress bar if you have the progressr package installed
## optionally, specify the progress bar format
progressr::handlers(progressr::handler_progress(
    clear = FALSE,
    show_after = 0
))
## tell progressor to always report progress
## Not run:
progressr::handlers(global = TRUE)
## run the function and watch the live progress updates
dat_preproc <- preprocess_data(mikropml::otu_small, "dx")

## End(Not run)

randomize_feature_order

Randomize feature order to eliminate any position-dependent effects

Description

Randomize feature order to eliminate any position-dependent effects

Usage

randomize_feature_order(dataset, outcome_colname)

Arguments

dataset

Data frame with an outcome variable and other columns as features.

outcome_colname

Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

Value

Dataset with feature order randomized.
Author(s)

Nick Lesniak, <nlesniak@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
dat <- data.frame(
 outcome = c("1", "2", "3"),
 a = 4:6, b = 7:9, c = 10:12, d = 13:15
)
randomize_feature_order(dat, "outcome")
```

remove_singleton_columns

Remove columns appearing in only `threshold` row(s) or fewer.

Description

Removes columns which only have non-zero & non-NA values in `threshold` row(s) or fewer.

Usage

```r
remove_singleton_columns(dat, threshold = 1)
```

Arguments

- `dat`: dataframe
- `threshold`: Number of rows. If a column only has non-zero & non-NA values in `threshold` row(s) or fewer, it will be removed.

Value

dataframe without singleton columns

Author(s)

Kelly Sovacool, <sovacool@umich.edu>
Courtney Armour

Examples

```r
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6), threshold = 0)
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, NA), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(1, 1, 1), c = 4:6))
```
replace_spaces

Replace spaces in all elements of a character vector with underscores

Description

Replace spaces in all elements of a character vector with underscores

Usage

replace_spaces(x, new_char = "_")

Arguments

x     a character vector
new_char     the character to replace spaces (default: _)

Value

character vector with all spaces replaced with new_char

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

dat <- data.frame(
  dx = c("outcome 1", "outcome 2", "outcome 1"),
  a = 1:3, b = c(5, 7, 1)
)
dat$dx <- replace_spaces(dat$dx)
dat

run_ml

Run the machine learning pipeline

Description

This function splits the data set into a train & test set, trains machine learning (ML) models using k-fold cross-validation, evaluates the best model on the held-out test set, and optionally calculates feature importance using the framework outlined in Topçuoglu et al. 2020 (doi:10.1128/mBio.0043420). Required inputs are a data frame (must contain an outcome variable and all other columns as features) and the ML method. See vignette(‘introduction’) for more details.
Usage

run_ml(
    dataset,
    method,
    outcome_colname = NULL,
    hyperparameters = NULL,
    find_feature_importance = FALSE,
    calculate_performance = TRUE,
    kfold = 5,
    cv_times = 100,
    cross_val = NULL,
    training_frac = 0.8,
    perf_metric_function = NULL,
    perf_metric_name = NULL,
    groups = NULL,
    group_partitions = NULL,
    corr_thresh = 1,
    seed = NA,
    ...
)

Arguments

dataset Data frame with an outcome variable and other columns as features.

method ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").

• glmnet: linear, logistic, or multiclass regression
• rf: random forest
• rpart2: decision tree
• svmRadial: support vector machine
• xgbTree: xgboost

outcome_colname Column name as a string of the outcome variable (default NULL; the first column
will be chosen automatically).

hyperparameters Dataframe of hyperparameters (default NULL; sensible defaults will be chosen
automatically).

find_feature_importance Run permutation importance (default: FALSE). TRUE is recommended if you
would like to identify features important for predicting your outcome, but it
is resource-intensive.

calculate_performance Whether to calculate performance metrics (default: TRUE). You might choose to
skip this if you do not perform cross-validation during model training.

kfold Fold number for k-fold cross-validation (default: 5).

cv_times Number of cross-validation partitions to create (default: 100).
**cross_val**

A custom cross-validation scheme from `caret::trainControl()` (default: `NULL`, uses kfold cross validation repeated `cv_times`). kfold and `cv_times` are ignored if the user provides a custom cross-validation scheme. See the `caret::trainControl()` docs for information on how to use it.

**training_frac**

Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.

**perf_metric_function**

Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

**perf_metric_name**

The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

**groups**

Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: `NULL`).

**group_partitions**

Specify how to assign groups to the training and testing partitions (default: `NULL`). If `groups` specifies that some samples belong to group "A" and some belong to group "B", then setting `group_partitions = list(train = c("A", "B"), test = c("B"))` will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to `training_frac` as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

**corr_thresh**

For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).

**seed**

Random seed (default: NA). Your results will only be reproducible if you set a seed.

... All additional arguments are passed on to `caret::train()`, such as case weights via the `weights` argument or `ntree` for rf models. See the `caret::train()` docs for more details.

**Value**

Named list with results:

- `trained_model`: Output of `caret::train()`, including the best model.
- `test_data`: Part of the data that was used for testing.
- **performance**: Data frame of performance metrics. The first column is the cross-validation performance metric, and the last two columns are the ML method used and the seed (if one was set), respectively. All other columns are performance metrics calculated on the test data. This contains only one row, so you can easily combine performance data frames from multiple calls to `run_ml()` (see vignette("parallel").

- **feature_importance**: If feature importances were calculated, a data frame where each row is a feature or correlated group. The columns are the performance metric of the permuted data, the difference between the true performance metric and the performance metric of the permuted data (true - permuted), the feature name, the ML method, the performance metric name, and the seed (if provided). For AUC and RMSE, the higher perf_metric_diff is, the more important that feature is for predicting the outcome. For log loss, the lower perf_metric_diff is, the more important that feature is for predicting the outcome.

More details

For more details, please see the vignettes.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
Not run:

regression
run_ml(otu_small, "glmnet",
 seed = 2019
)

random forest w/ feature importance
run_ml(otu_small, "rf",
 outcome_colname = "dx",
 find_feature_importance = TRUE
)

custom cross validation & hyperparameters
run_ml(otu_mini_bin[, 2:11],
 "glmnet",
 outcome_colname = "Otu00001",
 seed = 2019,
 hyperparameters = list(lambda = c(1e-04), alpha = 0),
 cross_val = caret::trainControl(method = "none"),
 calculate_performance = FALSE
)

End(Not run)
```
Tidy the performance dataframe

Description

Used by `plot_model_performance()`.

Usage

```r
 tidy_perf_data(performance_df)
```

Arguments

- `performance_df`  
  dataframe of performance results from multiple calls to `run_ml()`

Value

Tidy dataframe with model performance metrics.

Author(s)

Begüm Topçuoglu, `<topcuoglu.begum@gmail.com>`
Kelly Sovacool, `<sovcool@umich.edu>`

Examples

```r
Not run:
call `run_ml()` multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
 run.ml(otu_small, "glmnet", seed = seed)
})
extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
 result["performance"]
}) %>%
 dplyr::bind_rows()
make it pretty!
tidy_perf_data(perf_df)
End(Not run)
```
**train_model**  
*Train model using caret::train().*

**Description**

Train model using caret::train().

**Usage**

```r
train_model(
 train_data,
 outcome_colname,
 method,
 cv,
 perf_metric_name,
 tune_grid,
 ...
)
```

**Arguments**

- `train_data`: Training data. Expected to be a subset of the full dataset.
- `outcome_colname`: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- `method`: ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
  - glmnet: linear, logistic, or multiclass regression
  - rf: random forest
  - rpart2: decision tree
  - svmRadial: support vector machine
  - xgbTree: xgboost
- `cv`: Cross-validation caret scheme from define_cv().
- `perf_metric_name`: The column name from the output of the function provided to perf_metric_function that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".
- `tune_grid`: Tuning grid from get_tuning_grid().
- `...`: All additional arguments are passed on to caret::train(), such as case weights via the weights argument or ntree for rf models. See the caret::train() docs for more details.

**Value**

Trained model from caret::train().
train_model

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
Not run:
training_data <- otu_mini_bin_results_glmnet$trained_model$trainingData %>%
dplyr::rename(dx = .outcome)
method <- "rf"
hyperparameters <- get_hyperparams_list(otu_mini_bin, method)
cross_val <- define_cv(training_data,
 "dx",
 hyperparameters,
 perf_metric_function = caret::multiClassSummary,
 class_probs = TRUE,
 cv_times = 2
)
tune_grid <- get_tuning_grid(hyperparameters, method)

rf_model <- train_model(
 training_data,
 "dx",
 method,
 cross_val,
 "AUC",
 tune_grid,
 ntree = 1000
)
rf_model$results %>% dplyr::select(mtry, AUC, prAUC)

End(Not run)
```
Index

* datasets
  - otu_data_preproc, 26
  - otu_mini_bin, 27
  - otu_mini_bin_results_glmnet, 27
  - otu_mini_bin_results_rf, 28
  - otu_mini_bin_results_rpart2, 28
  - otu_mini_bin_results_svmRadial, 29
  - otu_mini_bin_results_xgbTree, 29
  - otu_mini_cont_results_glmnet, 30
  - otu_mini_cont_results_nocv, 30
  - otu_mini_cv, 31
  - otu_mini_multi, 31
  - otu_mini_multi_group, 31
  - otu_mini_multi_results_glmnet, 32
  - otu_small, 32

  bootstrap_performance, 3
  calc_balanced_precision, 4
  calc_baseline_precision, 4, 5
  calc_mean_perf, 6
  calc_mean_prc (calc_model_sensspec), 7
  calc_mean_roc (calc_model_sensspec), 7
  calc_model_sensspec, 7
  calc_perf_metrics, 9
  caret::defaultSummary(), 9, 12, 15, 21, 43
  caret::preProcess(), 13, 38
  caret::train(), 7, 9, 14, 21, 43, 46
  combine_hp_performance, 10
  compare_models, 11
  createDataPartition, 20

  define_cv, 12

  furrr::future_map(), 3

  get_caret_processed_df, 13
  get_feature_importance, 14
  get_hp_performance, 17
  get_hyperparams_list, 18
  get_outcome_type, 19

  get_partition_indices, 20
  get_perf_metric_fn, 22
  get_perf_metric_name, 23
  get_performance_tbl, 21
  get_tuning_grid, 24
  group_correlated_features, 25

  mikropml, 26

  otu_data_preproc, 26
  otu_mini_bin, 27
  otu_mini_bin_results_glmnet, 27
  otu_mini_bin_results_rf, 28
  otu_mini_bin_results_rpart2, 28
  otu_mini_bin_results_svmRadial, 29
  otu_mini_bin_results_xgbTree, 29
  otu_mini_cont_results_glmnet, 30
  otu_mini_cont_results_nocv, 30
  otu_mini_cv, 31
  otu_mini_multi, 31
  otu_mini_multi_group, 31
  otu_mini_multi_results_glmnet, 32
  otu_small, 32

  permute_p_value, 33
  plot_curves (plot_mean_roc), 35
  plot_hp_performance, 34
  plot_mean_prc (plot_mean_roc), 35
  plot_mean_roc, 35
  plot_model_performance, 36
  preprocess_data, 37

  randomize_feature_order, 39
  remove_singleton_columns, 40
  replace_spaces, 41
  rsample::bootstraps(), 3
  rsample::int_pctl(), 3
  run_ml, 41
  run_ml(), 3, 37
  sensspec (calc_model_sensspec), 7
tidy_perf_data.45
train_model.46