Package ‘mikropml’

May 20, 2022

Title User-Friendly R Package for Supervised Machine Learning Pipelines

Version 1.3.0

Date 2022-05-20

Description An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) [doi:10.1128/mBio.00434-20] with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website [https://www.schlosslab.org/mikropml/] for more information, documentation, and examples.

License MIT + file LICENSE

URL https://www.schlosslab.org/mikropml/,
https://github.com/SchlossLab/mikropml

BugReports https://github.com/SchlossLab/mikropml/issues

Depends R (>= 4.1.0)

Imports caret, dplyr, e1071, glmnet, kernlab, MLmetrics, randomForest, rlang, rpart, stats, utils, xgboost

Suggests doFuture, foreach, future, future.apply, ggplot2, knitr, progress, progressr, purrr, rmarkdown, testthat, tidyr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation no

Author Begüm Topçuoğlu [aut] (https://orcid.org/0000-0003-3140-537X),
Zena Lapp [aut] (https://orcid.org/0000-0003-4674-2176),
Kelly Sovacool [aut, cre] (https://orcid.org/0000-0003-3283-829X),
Evan Snitkin [aut] (https://orcid.org/0000-0001-8409-278X),
Jenna Wiens [aut] (<https://orcid.org/0000-0002-1057-7722>),
Patrick Schloss [aut] (<https://orcid.org/0000-0002-6935-4275>),
Nick Lesniak [ctb] (<https://orcid.org/0000-0001-9359-5194>),
Courtney Armour [ctb] (<https://orcid.org/0000-0002-5250-1224>),
Sarah Lucas [ctb] (<https://orcid.org/0000-0003-1676-5801>)

Maintainer Kelly Sovacool <sovacool@umich.edu>
Repository CRAN
Date/Publication 2022-05-20 15:40:02 UTC

R topics documented:

calc_perf_metrics ... 3
combine_hp_performance 4
compare_models ... 5
define_cv ... 6
get_caret_processed_df 7
get_feature_importance 8
get_hp_performance 11
get_hyperparams_list 12
get_outcome_type ... 13
get_partition_indices 14
get_performance_tbl 15
get_perf_metric_fn 16
get_perf_metric_name 17
get_tuning_grid ... 18
group_correlated_features 19
mikropml ... 20
otu_mini_bin ... 20
otu_mini_bin_results_glmnet 21
otu_mini_bin_results_rf 21
otu_mini_bin_results_rpart2 22
otu_mini_bin_results_svmRadial 22
otu_mini_bin_results_xgbTree 22
otu_mini_cont_results_glmnet 23
otu_mini_cont_results_nocv 23
otu_mini_cv .. 24
otu_mini_multi ... 24
otu_mini_multi_group 24
otu_mini_multi_results_glmnet 25
otu_small .. 25
permute_p_value .. 26
plot_hp_performance 27
plot_model_performance 28
preprocess_data .. 29
randomize_feature_order 31
remove_singleton_columns 32
replace_spaces ... 32
calc_perf_metrics

Description

Get performance metrics for test data

Usage

calc_perf_metrics(
 test_data,
 trained_model,
 outcome_colname,
 perf_metric_function,
 class_probs
)

Arguments

test_data Held out test data: dataframe of outcome and features.

trained_model Trained model from caret::train().

outcome_colname Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

perf_metric_function Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()). Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.

class_probs Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

Value

Dataframe of performance metrics.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Examples

```r
## Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
calc_perf_metrics(results$test_data,
                 results$trained_model,
                 "dx",
                 multiClassSummary,
                 class_probs = TRUE
)

## End(Not run)
```

`combine_hp_performance`

Combine hyperparameter performance metrics for multiple train/test splits

Description

Combine hyperparameter performance metrics for multiple train/test splits generated by, for instance, looping in R or using a snakemake workflow on a high-performance computer.

Usage

```r
combine_hp_performance(trained_model_lst)
```

Arguments

- `trained_model_lst`
 List of trained models.

Value

Named list:

- `dat`: Dataframe of performance metric for each group of hyperparameters
- `params`: Hyperparameters tuned.
- `Metric`: Performance metric used.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
compare_models

Examples

```r
## Not run:
results <- lapply(seq(100, 102), function(seed) {
  run_ml(otu_small, "glmnet", seed = seed, cv_times = 2, kfold = 2)
})
models <- lapply(results, function(x) x$trained_model)
combine_hp_performance(models)

## End(Not run)
```

```r
compare_models Perform permutation tests to compare the performance metric across all pairs of a group variable.
```

Description

A wrapper for `permute_p_value()`.

Usage

```r
compare_models(merged_data, metric, group_name, nperm = 10000)
```

Arguments

- `merged_data`: the concatenated performance data from `run_ml`
- `metric`: metric to compare, must be numeric
- `group_name`: column with group variables to compare
- `nperm`: number of permutations, default=10000

Value

a table of p-values for all pairs of group variable

Author(s)

Courtney R Armour, <armourc@umich.edu>

Examples

```r
df <- dplyr::tibble(
  model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
  AUC = c(.2, 0.3, 0.8, 0.9, 0.85, 0.95)
)
set.seed(123)
compare_models(df, "AUC", "model", nperm = 10)
```
Define cross-validation scheme and training parameters

Usage

```r
define_cv(
  train_data,
  outcome_colname,
  hyperparams_list,
  perf_metric_function,
  class_probs,
  kfold = 5,
  cv_times = 100,
  groups = NULL,
  group_partitions = NULL
)
```

Arguments

- **train_data**: Dataframe for training model.
- **outcome_colname**: Column name as a string of the outcome variable (default `NULL`; the first column will be chosen automatically).
- **hyperparams_list**: Named list of lists of hyperparameters.
- **perf_metric_function**: Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.
- **class_probs**: Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).
- **kfold**: Fold number for k-fold cross-validation (default: 5).
- **cv_times**: Number of cross-validation partitions to create (default: 100).
- **groups**: Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than `kfold`, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: `NULL`).
- **group_partitions**: Specify how to assign groups to the training and testing partitions (default: `NULL`). If `groups` specifies that some samples belong to group "A" and some
belong to group "B", then setting `group_partitions = list(train = c("A", "B"), test = c("B"))` will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to `training_frac` as possible. If the number of groups in the training set is larger than `kfold`, the groups will also be kept together for cross-validation.

Value

Caret object for trainControl that controls cross-validation

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
training_inds <- get_partition_indices(otu_small %>% dplyr::pull("dx"),
  training_frac = 0.8,
  groups = NULL
)
train_data <- otu_small[training_inds, ]
test_data <- otu_small[-training_inds, ]
```

get_caret_processed_df

Get preprocessed dataframe for continuous variables

Description

Get preprocessed dataframe for continuous variables

Usage

`get_caret_processed_df(features, method)`

Arguments

- **features**: Dataframe of features for machine learning
- **method**: Methods to preprocess the data, described in `caret::preProcess()` (default: `c("center","scale"), use NULL for no normalization).
get_feature_importance

Value

Named list:

- processed: Dataframe of processed features.
- removed: Names of any features removed during preprocessing.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

get_caret_processed_df(mikropml::otu_small[, 2:ncol(otu_small)], c("center", "scale"))

Description

Calculates feature importance using a trained model and test data. Requires the future.apply package.

Usage

get_feature_importance(
 trained_model,
 train_data,
 test_data,
 outcome_colname,
 perf_metric_function,
 perf_metric_name,
 class_probs,
 method,
 seed = NA,
 corr_thresh = 1,
 groups = NULL,
 nperms = 100,
 corr_method = "spearman"
)

Arguments

trained_model Trained model from caret::train.
train_data Training data: dataframe of outcome and features.
test_data Held out test data: dataframe of outcome and features.
outcome_colname

Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

perf_metric_function

Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.

perf_metric_name

The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

class_probs

Whether to use class probabilities (TRUE for categorical outcomes, FALSE for numeric outcomes).

method

ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").

- glmnet: linear, logistic, or multiclass regression
- rf: random forest
- rpart2: decision tree
- svmRadial: support vector machine
- xgbTree: xgboost

seed

Random seed (default: NA). Your results will only be reproducible if you set a seed.

corr_thresh

For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).

groups

Vector of feature names to group together during permutation. Each element should be a string with feature names separated by a pipe character (`|`). If this is NULL (default), correlated features will be grouped together based on `corr_thresh`.

nperms

Number of permutations to perform (default: 100).

corr_method

Correlation method. Options or the same as those supported by `stats::cor`: spearman, pearson, kendall (default: spearman)

Details

For permutation tests, the p-value is the number of permutation statistics that are greater than the test statistic, divided by the number of permutations. In our case, the permutation statistic is the model performance (e.g. AUROC) after randomizing the order of observations for one feature, and the test statistic is the actual performance on the test data. By default we perform 100 permutations per feature; increasing this will increase the precision of estimating the null distribution, but also increases runtime. The p-value represents the probability of obtaining the actual performance in the event that the null hypothesis is true, where the null hypothesis is that the feature is not important for model performance.

We strongly recommend providing multiple cores to speed up computation time. See our vignette on parallel processing for more details.
Value

Data frame with performance metrics for when each feature (or group of correlated features; names) is permuted (perf_metric), differences between the actual test performance metric on and the permuted performance metric (perf_metric_diff; test minus permuted performance), and the p-value (pvalue: the probability of obtaining the actual performance value under the null hypothesis). Features with a larger perf_metric_diff are more important. The performance metric name (perf_metric_name) and seed (seed) are also returned.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacoool@umich.edu>

Examples

```r
## Not run:
# If you called `run_ml()` with `feature_importance = FALSE` (the default),
# you can use `get_feature_importance()` later as long as you have the
# trained model and test data.
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
feat_imp <- get_feature_importance(results$trained_model,
                                   results$trained_model$trainingData,
                                   results$test_data,
                                   "dx",
                                   multiClassSummary,
                                   "AUC",
                                   class_probs = TRUE,
                                   method = "glmnet"
)

# We strongly recommend providing multiple cores to speed up computation time.
# Do this before calling `get_feature_importance()`.
doFuture::registerDoFuture()
future::plan(future::multicore, workers = 2)

# Optionally, you can group features together with a custom grouping
feat_imp <- get_feature_importance(results$trained_model,
                                   results$trained_model$trainingData,
                                   results$test_data,
                                   "dx",
                                   multiClassSummary,
                                   "AUC",
                                   class_probs = TRUE,
                                   method = "glmnet",
                                   groups = c("Otu00007", "Otu00008", "Otu00009", "Otu00011", "Otu00012",
                                   "Otu00015", "Otu00016", "Otu00018", "Otu00019", "Otu00020", "Otu00022",
                                   "Otu00023", "Otu00025", "Otu00028", "Otu00029", "Otu00030", "Otu00035",
                                   "Otu00036", "Otu00037", "Otu00038", "Otu00039", "Otu00040", "Otu00047",
```
get_hp_performance

"Otu00050", "Otu00052", "Otu00054", "Otu00055", "Otu00056", "Otu00060",

the function can show a progress bar if you have the `progressr` package installed.
optionally, specify the progress bar format:
```r
progressr::handlers(progressr::handler_progress(
  format = "message :bar :percent | elapsed: :elapsed | eta: :eta",
  clear = FALSE,
  show_after = 0)
))
```
tell progressr to always report progress
```r
progressr::handlers(global = TRUE)
```
run the function and watch the live progress updates
```r
feat_imp <- get_feature_importance(results$trained_model, results$trained_model$trainingData, results$test_data, "dx", multiClassSummary, "AUC", class_probs = TRUE, method = "glmnet"
)
```
You can specify any correlation method supported by `stats::cor`:
```r
feat_imp <- get_feature_importance(results$trained_model, results$trained_model$trainingData, results$test_data, "dx", multiClassSummary, "AUC", class_probs = TRUE, method = "glmnet", corr_method = "pearson"
)
```
```r
## End(Not run)
```

get_hp_performance

Get hyperparameter performance metrics

Description

Get hyperparameter performance metrics
Usage
get_hp_performance(trained_model)

Arguments
trained_model trained model (e.g. from run_ml())

Value
Named list:
- dat: Dataframe of performance metric for each group of hyperparameters.
- params: Hyperparameters tuned.
- metric: Performance metric used.

Author(s)
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool <sovacool@umich.edu>

Examples
get_hp_performance(otu_mini_bin_results_glmnet$trained_model)

get_hyperparams_list
Set hyperparameters based on ML method and dataset characteristics

Description
For more details see the vignette on hyperparameter tuning.

Usage
get_hyperparams_list(dataset, method)

Arguments
dataset Dataframe with an outcome variable and other columns as features.
method ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
- glmnet: linear, logistic, or multiclass regression
- rf: random forest
- rpart2: decision tree
- svmRadial: support vector machine
- xgbTree: xgboost
get_outcome_type

Value

Named list of hyperparameters.

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

get_hyperparams_list(otu_mini_bin, "rf")
get_hyperparams_list(otu_small, "rf")
get_hyperparams_list(otu_mini_bin, "rpart2")
get_hyperparams_list(otu_small, "rpart2")

get_outcome_type

Get outcome type.

Description

If the outcome is numeric, the type is continuous. Otherwise, the outcome type is binary if there are only two outcomes or multiclass if there are more than two outcomes.

Usage

get_outcome_type(outcomes_vec)

Arguments

outcomes_vec Vector of outcomes.

Value

Outcome type (continuous, binary, or multiclass).

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

get_outcome_type(c(1, 2, 1))
get_outcome_type(c("a", "b", "b"))
get_outcome_type(c("a", "b", "c"))
get_partition_indices
Select indices to partition the data into training & testing sets.

Description

Use this function to get the row indices for the training set.

Usage

```r
get_partition_indices(
  outcomes,
  training_frac = 0.8,
  groups = NULL,
  group_partitions = NULL
)
```

Arguments

- `outcomes`: vector of outcomes
- `training_frac`: Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.
- `groups`: Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).
- `group_partitions`: Specify how to assign groups to the training and testing partitions (default: NULL). If groups specifies that some samples belong to group "A" and some belong to group "B", then setting group_partitions = list(train = c("A", "B"), test = c("B")) will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to training_frac as possible. If the number of groups in the training set is larger than kfold, the groups will also be kept together for cross-validation.

Details

If groups is NULL, uses createDataPartition. Otherwise, uses create_grouped_data_partition().
Set the seed prior to calling this function if you would like your data partitions to be reproducible (recommended).

Value

Vector of row indices for the training set.
get_performance_tbl

Author(s)
Kelly Sovacool, sovacool@umich.edu

Examples

```r
training_inds <- get_partition_indices(otu_mini_bin$dx)
train_data <- otu_mini_bin[training_inds, ]
test_data <- otu_mini_bin[-training_inds, ]
```

get_performance_tbl Get model performance metrics as a one-row tibble

Description
Get model performance metrics as a one-row tibble

Usage

```r
get_performance_tbl(
  trained_model,
  test_data,
  outcome_colname,
  perf_metric_function,
  perf_metric_name,
  class_probs,
  method,
  seed = NA
)
```

Arguments

- `trained_model`: Trained model from `caret::train()`.
- `test_data`: Held out test data: dataframe of outcome and features.
- `outcome_colname`: Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).
- `perf_metric_function`: Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see `caret::defaultSummary()`). Defaults: binary classification = `twoClassSummary`, multi-class classification = `multiClassSummary`, regression = `defaultSummary`.
- `perf_metric_name`: The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

Description

Get default performance metric function

Usage

```r
get_perf_metric_fn(outcome_type)
```

Examples

```r
## Not run:
results <- run_ml(otu_small, "glmnet", kfold = 2, cv_times = 2)
names(results$trained_model$trainingData)[1] <- "dx"
get_performance_tbl(results$trained_model, results$test_data,  
           "dx",  
           multiClassSummary, "AUC",  
           class_probs = TRUE,  
           method = "glmnet"
)
## End(Not run)
```
Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric function.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```
get_perf_metric_fn("continuous")
get_perf_metric_fn("binary")
get_perf_metric_fn("multiclass")
```

get_perf_metric_name Get default performance metric name

Description

Get default performance metric name for cross-validation.

Usage

```
get_perf_metric_name(outcome_type)
```

Arguments

outcome_type Type of outcome (one of: "continuous","binary","multiclass").

Value

Performance metric name.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```
get_perf_metric_name("continuous")
get_perf_metric_name("binary")
get_perf_metric_name("multiclass")
```
get_tuning_grid

Generate the tuning grid for tuning hyperparameters

Description

Generate the tuning grid for tuning hyperparameters

Usage

get_tuning_grid(hyperparams_list, method)

Arguments

hyperparams_list
Named list of lists of hyperparameters.

method
ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
 • glmnet: linear, logistic, or multiclass regression
 • rf: random forest
 • rpart2: decision tree
 • svmRadial: support vector machine
 • xgbTree: xgboost

Value

The tuning grid.

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

ml_method <- "glmnet"
hparsms_list <- get_hyperparams_list(otu_small, ml_method)
get_tuning_grid(hparams_list, ml_method)
Description

Group correlated features

Usage

```r
group_correlated_features(
  features,
  corr_thresh = 1,
  group_neg_corr = TRUE,
  corr_method = "spearman"
)
```

Arguments

- `features`: a dataframe with each column as a feature for ML.
- `corr_thresh`: For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).
- `group_neg_corr`: Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
- `corr_method`: correlation method. options or the same as those supported by `stats::cor`: spearman, pearson, kendall. (default: spearman)

Value

vector where each element is a group of correlated features separated by pipes (|)

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
features <- data.frame(
  a = 1:3, b = 2:4, c = c(1, 0, 1),
  d = (5:7), e = c(5, 1, 4), f = c(-1, 0, -1)
)
group_correlated_features(features)
```
mikropml: User-Friendly R Package for Robust Machine Learning Pipelines

Description

mikropml implements supervised machine learning pipelines using regression, support vector machines, decision trees, random forest, or gradient-boosted trees. The main functions are `preprocess_data()` to process your data prior to running machine learning, and `run_ml()` to run machine learning.

Authors

- Begüm D. Topçuoğlu (ORCID)
- Zena Lapp (ORCID)
- Kelly L. Sovacool (ORCID)
- Evan Snitkin (ORCID)
- Jenna Wiens (ORCID)
- Patrick D. Schloss (ORCID)

See vignettes

- Introduction
- Preprocessing data
- Hyperparameter tuning
- Parallel processing
- The mikropml paper

otu_mini_bin: Mini OTU abundance dataset

Description

A dataset containing relatives abundances of OTUs for human stool samples with a binary outcome, dx. This is a subset of otu_small.

Usage

otu_mini_bin

Format

A data frame The dx column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.
otu_mini_bin_results_glmnet

Results from running the pipeline with L2 logistic regression on otu_mini_bin with feature importance and grouping

Description

Results from running the pipeline with L2 logistic regression on otu_mini_bin with feature importance and grouping

Usage

otu_mini_bin_results_glmnet

Format

An object of class list of length 4.

otu_mini_bin_results_rf

Results from running the pipeline with random forest on otu_mini_bin

Description

Results from running the pipeline with random forest on otu_mini_bin

Usage

otu_mini_bin_results_rf

Format

An object of class list of length 4.
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
<th>Usage</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>otu_mini_bin_results_rpart2</code></td>
<td>Results from running the pipeline with rpart2 on <code>otu_mini_bin</code></td>
<td><code>otu_mini_bin_results_rpart2</code></td>
<td>An object of class <code>list</code> of length 4.</td>
</tr>
<tr>
<td><code>otu_mini_bin_results_svmRadial</code></td>
<td>Results from running the pipeline with svmRadial on <code>otu_mini_bin</code></td>
<td><code>otu_mini_bin_results_svmRadial</code></td>
<td>An object of class <code>list</code> of length 4.</td>
</tr>
<tr>
<td><code>otu_mini_bin_results_xgbTree</code></td>
<td>Results from running the pipeline with xgbTree on <code>otu_mini_bin</code></td>
<td><code>otu_mini_bin_results_xgbTree</code></td>
<td>An object of class <code>list</code> of length 4.</td>
</tr>
</tbody>
</table>
Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome

Description

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome

Usage

otu_mini_cont_results_glmnet

Format

An object of class list of length 4.

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation

Description

Results from running the pipeline with glmnet on otu_mini_bin with Otu00001 as the outcome column, using a custom train control scheme that does not perform cross-validation

Usage

otu_mini_cont_results_nocv

Format

An object of class list of length 4.
otu_mini_cv

Cross validation on train_data_mini with grouped features.

Description

Cross validation on train_data_mini with grouped features.

Usage

```r
otu_mini_cv
```

Format

An object of class `list` of length 27.

otu_mini_multi

Mini OTU abundance dataset with 3 categorical variables

Description

A dataset containing relatives abundances of OTUs for human stool samples

Usage

```r
otu_mini_multi
```

Format

A data frame The `dx` column is the colorectal cancer diagnosis: adenoma, carcinoma, normal. All other columns are OTU relative abundances.

otu_mini_multi_group

Groups for otu_mini_multi

Description

Groups for otu_mini_multi

Usage

```r
otu_mini_multi_group
```

Format

An object of class `character` of length 490.
Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Description

Results from running the pipeline with glmnet on otu_mini_multi for multiclass outcomes

Usage

```r
otu_mini_multi_results_glmnet
```

Format

An object of class `list` of length 4.

otu_small

Small OTU abundance dataset

Description

A dataset containing relatives abundances of 60 OTUs for 60 human stool samples. This is a subset of the data provided in extdata/otu_large.csv, which was used in Topçuoğlu et al. 2020.

Usage

```r
otu_small
```

Format

A data frame with 60 rows and 61 variables. The `dx` column is the diagnosis: healthy or cancerous (colorectal). All other columns are OTU relative abundances.
permute_p_value

Calculated a permuted p-value comparing two models

Description

Calculated a permuted p-value comparing two models

Usage

permute_p_value(
 merged_data,
 metric,
 group_name,
 group_1,
 group_2,
 nperm = 10000
)

Arguments

merged_data the concatenated performance data from run_ml
metric metric to compare, must be numeric
group_name column with group variables to compare
group_1 name of one group to compare
group_2 name of other group to compare
nperm number of permutations, default=10000

Value

numeric p-value comparing two models

Author(s)

Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Courtney R Armour, <armourc@umich.edu>

Examples

df <- dplyr::tibble(
 model = c("rf", "rf", "glmnet", "glmnet", "svmRadial", "svmRadial"),
 AUC = c(.2,.3,.8,.9,.85,.95)
)
set.seed(123)
permute_p_value(df, "AUC", "model", "rf", "glmnet", nperm = 100)
plot_hp_performance

Plot hyperparameter performance metrics

Description

Plot hyperparameter performance metrics

Usage

plot_hp_performance(dat, param_col, metric_col)

Arguments

dat dataframe of hyperparameters and performance metric (e.g. from get_hp_performance() or combine_hp_performance())
param_col hyperparameter to be plotted. must be a column in dat.
metric_col performance metric. must be a column in dat.

Value

ggplot of hyperparameter performance.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool <sovacool@umich.edu>

Examples

plot for a single `run_ml()` call
hp_metrics <- get_hp_performance(otu_mini_bin_results_glmnet$trained_model)
plot_hp_performance(hp_metrics$dat, lambda, AUC)
Not run:
plot for multiple `run_ml()` calls
results <- lapply(seq(100, 102), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed)
})
models <- lapply(results, function(x) x$trained_model)
hp_metrics <- combine_hp_performance(models)
plot_hp_performance(hp_metrics$dat, lambda, AUC)
End(Not run)
plot_model_performance

Plot performance metrics for multiple ML runs with different parameters

Description

ggplot2 is required to use this function.

Usage

plot_model_performance(performance_df)

Arguments

performance_df dataframe of performance results from multiple calls to run_ml()

Value

A ggplot2 plot of performance.

Author(s)

Begüm Topçuoglu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacool@umich.edu>

Examples

Not run:
call `run_ml()` multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
 run_ml(otu_small, "glmnet", seed = seed)
})
extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
 result[["performance"]]
}) %>%
dplyr::bind_rows()
plot the performance results
p <- plot_model_performance(perf_df)

call `run_ml()` with different ML methods
param_grid <- expand.grid(
 seeds = seq(100, 104),
 methods = c("glmnet", "rf")
)
results_mtx <- mapply(
 function(seed, method) {
 run_ml(otu_small, method, seed = seed)
 },
 param_grid$seeds, param_grid$methods)
extract and combine the performance results
perf_mtx <- lapply(results_mtx, function(result) {
 result[["performance"]]
}) %>%
dplyr::bind_rows()
run_ml(otu_mini_bin, method, seed = seed, kfold = 2)
),
param_grid$seeds, param_grid$methods
)
extract and combine the performance results
perf_df2 <- dplyr::bind_rows(results_mtx["performance",])
plot the performance results
p <- plot_model_performance(perf_df2)

you can continue adding layers to customize the plot
p +
 theme_classic() +
 scale_color_brewer(palette = "Dark2") +
 coord_flip()

End(Not run)

preprocess_data
Preprocess data prior to running machine learning

Description

Function to preprocess your data for input into `run_ml()`.

Usage

```r
preprocess_data(  
  dataset,  
  outcome_colname,  
  method = c("center", "scale"),  
  remove_var = "nzv",  
  collapse_corr_feats = TRUE,  
  to_numeric = TRUE,  
  group_neg_corr = TRUE,  
  prefilter_threshold = 1
)
```

Arguments

- **dataset**
 Dataframe with an outcome variable and other columns as features.

- **outcome_colname**
 Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

- **method**
 Methods to preprocess the data, described in `caret::preProcess()` (default: c("center", "scale"), use NULL for no normalization).

- **remove_var**
 Whether to remove variables with near-zero variance ('nzv'; default), zero variance ('zv'), or none (NULL).
preprocess_data

collapse_corr_feats Whether to keep only one of perfectly correlated features.
to_numeric Whether to change features to numeric where possible.
group_neg_corr Whether to group negatively correlated features together (e.g. c(0,1) and c(1,0)).
prefilter_threshold Remove features which only have non-zero & non-NA values \(N \) rows or fewer (default: 1). Set this to -1 to keep all columns at this step. This step will also be skipped if `to_numeric` is set to `FALSE`.

Value

Named list including:

- **dat_transformed**: Preprocessed data.
- **grp_feats**: If features were grouped together, a named list of the features corresponding to each group.
- **removed_feats**: Any features that were removed during preprocessing (e.g. because there was zero variance or near-zero variance for those features).

If the `progressr` package is installed, a progress bar with time elapsed and estimated time to completion can be displayed.

More details

See the [preprocessing vignette](#) for more details.

Note that if any values in `outcome_colname` contain spaces, they will be converted to underscores for compatibility with `caret`.

Author(s)

Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
preprocess_data(mikropml::otu_small, "dx")
# the function can show a progress bar if you have the progressr package installed
## optionally, specify the progress bar format
progressr::handlers(progressr::handler_progress(
  format = "message :bar :percent | elapsed: :elapsed | eta: :eta",
  clear = FALSE,
  show_after = 0
))
## tell progressor to always report progress
## Not run:
progressr::handlers(global = TRUE)
## run the function and watch the live progress updates
dat_preproc <- preprocess_data(mikropml::otu_small, "dx")
```
randomize_feature_order

Randomize feature order to eliminate any position-dependent effects

Description
Randomize feature order to eliminate any position-dependent effects

Usage
randomize_feature_order(dataset, outcome_colname)

Arguments

- **dataset**
 - Dataframe with an outcome variable and other columns as features.

- **outcome_colname**
 - Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

Value
Dataset with feature order randomized.

Author(s)
Nick Lesniak, <nlesniak@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples
```
dat <- data.frame(
  outcome = c("1", "2", "3"),
  a = 4:6, b = 7:9, c = 10:12, d = 13:15
)
randomize_feature_order(dat, "outcome")
```
remove_singleton_columns

Remove columns appearing in only threshold row(s) or fewer.

Description

Removes columns which only have non-zero & non-NA values in threshold row(s) or fewer.

Usage

```r
remove_singleton_columns(dat, threshold = 1)
```

Arguments

- `dat`: dataframe
- `threshold`: Number of rows. If a column only has non-zero & non-NA values in threshold row(s) or fewer, it will be removed.

Value

dataframe without singleton columns

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Courtney Armour

Examples

```r
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, 0), c = 4:6), threshold = 0)
remove_singleton_columns(data.frame(a = 1:3, b = c(0, 1, NA), c = 4:6))
remove_singleton_columns(data.frame(a = 1:3, b = c(1, 1, 1), c = 4:6))
```

replace_spaces

Replace spaces in all elements of a character vector with underscores

Description

Replace spaces in all elements of a character vector with underscores

Usage

```r
replace_spaces(x, new_char = "_")
```
run_ml

Arguments

x a character vector
new_char the character to replace spaces (default: _)

Value

character vector with all spaces replaced with new_char

Author(s)

Kelly Sovacool, <sovacool@umich.edu>

Examples

dat <- data.frame(
 dx = c("outcome 1", "outcome 2", "outcome 1"),
 a = 1:3, b = c(5, 7, 1)
)
dat$dx <- replace_spaces(dat$dx)
dat

run_ml

Run the machine learning pipeline

Description

This function runs machine learning (ML), evaluates the best model, and optionally calculates feature importance using the framework outlined in Topçuoğlu et al. 2020 (doi:10.1128/mBio.00434-20). Required inputs are a dataframe with an outcome variable and other columns as features, as well as the ML method. See vignette("introduction") for more details.

Usage

run_ml(
 dataset,
 method,
 outcome_colname = NULL,
 hyperparameters = NULL,
 find_feature_importance = FALSE,
 calculate_performance = TRUE,
 kfold = 5,
 cv_times = 100,
 cross_val = NULL,
 training_frac = 0.8,
 perf_metric_function = NULL,
 perf_metric_name = NULL,
 groups = NULL,
Arguments

dataset Dataframe with an outcome variable and other columns as features.

method ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
 - glmnet: linear, logistic, or multiclass regression
 - rf: random forest
 - rpart2: decision tree
 - svmRadial: support vector machine
 - xgbTree: xgboost

outcome_colname Column name as a string of the outcome variable (default NULL; the first column will be chosen automatically).

hyperparameters Dataframe of hyperparameters (default NULL; sensible defaults will be chosen automatically).

find_feature_importance Run permutation importance (default: FALSE). TRUE is recommended if you would like to identify features important for predicting your outcome, but it is resource-intensive.

calculate_performance Whether to calculate performance metrics (default: TRUE). You might choose to skip this if you do not perform cross-validation during model training.

kfold Fold number for k-fold cross-validation (default: 5).

cv_times Number of cross-validation partitions to create (default: 100).

cross_val a custom cross-validation scheme from caret::trainControl() (default: NULL, uses kfold cross validation repeated cv_times). kfold and cv_times are ignored if the user provides a custom cross-validation scheme. See the caret::trainControl() docs for information on how to use it.

training_frac Fraction of data for training set (default: 0.8). Rows from the dataset will be randomly selected for the training set, and all remaining rows will be used in the testing set. Alternatively, if you provide a vector of integers, these will be used as the row indices for the training set. All remaining rows will be used in the testing set.

perf_metric_function Function to calculate the performance metric to be used for cross-validation and test performance. Some functions are provided by caret (see caret::defaultSummary()). Defaults: binary classification = twoClassSummary, multi-class classification = multiClassSummary, regression = defaultSummary.
run_ml

perf_metric_name
The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".

groups
Vector of groups to keep together when splitting the data into train and test sets. If the number of groups in the training set is larger than `kfold`, the groups will also be kept together for cross-validation. Length matches the number of rows in the dataset (default: NULL).

group_partitions
Specify how to assign groups to the training and testing partitions (default: NULL). If `groups` specifies that some samples belong to group "A" and some belong to group "B", then setting `group_partitions = list(train = c("A", "B"), test = c("B"))` will result in all samples from group "A" being placed in the training set, some samples from "B" also in the training set, and the remaining samples from "B" in the testing set. The partition sizes will be as close to `training_frac` as possible. If the number of groups in the training set is larger than `kfold`, the groups will also be kept together for cross-validation.

corr_thresh
For feature importance, group correlations above or equal to `corr_thresh` (range 0 to 1; default: 1).

ntree
For random forest, how many trees to use (default: 1000). Note that caret doesn’t allow this parameter to be tuned.

seed
Random seed (default: NA). Your results will only be reproducible if you set a seed.

Value
Named list with results:

- **trained_model**: Output of `caret::train()`, including the best model.
- **test_data**: Part of the data that was used for testing.
- **performance**: Dataframe of performance metrics. The first column is the cross-validation performance metric, and the last two columns are the ML method used and the seed (if one was set), respectively. All other columns are performance metrics calculated on the test data. This contains only one row, so you can easily combine performance dataframes from multiple calls to `run_ml()` (see vignette("parallel")).
- **feature_importance**: If feature importances were calculated, a dataframe where each row is a feature or correlated group. The columns are the performance metric of the permuted data, the difference between the true performance metric and the performance metric of the permuted data (true - permuted), the feature name, the ML method, the performance metric name, and the seed (if provided). For AUC and RMSE, the higher `perf_metric_diff` is, the more important that feature is for predicting the outcome. For log loss, the lower `perf_metric_diff` is, the more important that feature is for predicting the outcome.

More details
For more details, please see the vignettes.
Author(s)
Begüm Topçuoğlu, <topcuoglu.begum@gmail.com>
Zena Lapp, <zenalapp@umich.edu>
Kelly Sovacool, <sovacool@umich.edu>

Examples

```r
## Not run:

# regression
run_ml(otu_small, "glmnet",
seed = 2019
)

# random forest w/ feature importance
run_ml(otu_small, "rf",
outcome_colname = "dx",
find_feature_importance = TRUE
)

# custom cross validation & hyperparameters
run_ml(otu_mini_bin[, 2:11],
"glmnet",
outcome_colname = "Otu00001",
seed = 2019,
hyperparameters = list(lambda = c(1e-04), alpha = 0),
cross_val = caret::trainControl(method = "none"),
calculate_performance = FALSE
)

## End(Not run)
```

== tidy_perf_data

Tidy the performance dataframe

Description

Used by plot_model_performance().

Usage

```r
tidy_perf_data(performance_df)
```

Arguments

- `performance_df` dataframe of performance results from multiple calls to `run_ml()`
train_model

Value

Tidy dataframe with model performance metrics.

Author(s)

Begüm Topçuoglu, <topcuoglu.begum@gmail.com>
Kelly Sovacool, <sovacoool@umich.edu>

Examples

```r
## Not run:
# call `run_ml()` multiple times with different seeds
results_lst <- lapply(seq(100, 104), function(seed) {
  run_ml(otu_small, "glmnet", seed = seed)
})
# extract and combine the performance results
perf_df <- lapply(results_lst, function(result) {
  result["performance"]
}) %>%
  dplyr::bind_rows()
# make it pretty!
tidy_perf_data(perf_df)

## End(Not run)
```

train_model
Train model using caret::train().

Description

Train model using caret::train().

Usage

```r
train_model(
  model_formula,
  train_data,
  method,
  cv,
  perf_metric_name,
  tune_grid,
  ntree
)
```
Arguments

- **model_formula**: Model formula, typically created with `stats::as.formula()`.
- **train_data**: Training data. Expected to be a subset of the full dataset.
- **method**: ML method. Options: c("glmnet", "rf", "rpart2", "svmRadial", "xgbTree").
 - glmnet: linear, logistic, or multiclass regression
 - rf: random forest
 - rpart2: decision tree
 - svmRadial: support vector machine
 - xgbTree: xgboost
- **cv**: Cross-validation caret scheme from `define_cv()`.
- **perf_metric_name**: The column name from the output of the function provided to `perf_metric_function` that is to be used as the performance metric. Defaults: binary classification = "ROC", multi-class classification = "logLoss", regression = "RMSE".
- **tune_grid**: Tuning grid from `get_tuning_grid()`.
- **ntree**: For random forest, how many trees to use (default: 1000). Note that caret doesn’t allow this parameter to be tuned.

Value

Trained model from `caret::train()`.

Author(s)

Zena Lapp, <zenalapp@umich.edu>

Examples

```r
## Not run:
training_data <- otu_mini_bin_results_glmnet$trained_model$trainingData %>%
  dplyr::rename(dx = .outcome)
method <- "rf"
hyperparameters <- get_hyperparams_list(otu_mini_bin, method)
cross_val <- define_cv(training_data, "dx", hyperparameters,
  perf_metric_function = caret::multiClassSummary,
  class_probs = TRUE,
  cv_times = 2)
tune_grid <- get_tuning_grid(hyperparameters, method)

rf_model <- train_model(
  stats::as.formula(paste("dx", "~ .")),
  training_data,
  method, cross_val, "AUC",
```
train_model

 tune_grid,
 1000
)

rf_model$results %>% dplyr::select(mtry, AUC, prAUC)

End(Not run)
Index

* datasets
 - otu_mini_bin, 20
 - otu_mini_bin_results_glmnet, 21
 - otu_mini_bin_results_rf, 21
 - otu_mini_bin_results_rpart2, 22
 - otu_mini_bin_results_svmRadial, 22
 - otu_mini_bin_results_xgbTree, 22
 - otu_mini_cont_results_glmnet, 23
 - otu_mini_cont_results_nocv, 23
 - otu_mini_cv, 24
 - otu_mini_multi, 24
 - otu_mini_multi_group, 24
 - otu_mini_multi_results_glmnet, 25
 - otu_small, 25

calc_perf_metrics, 3
caret::defaultSummary(), 3, 6, 9, 15, 34
caret::preProcess(), 7, 29
caret::train(), 3, 8, 15, 35, 37, 38
combine_hp_performance, 4
compare_models, 5
createDataPartition, 14

define_cv, 6

getcaret_processed_df, 7
get_feature_importance, 8
get_hp_performance, 11
get_hyperparams_list, 12
get_outcome_type, 13
get_partition_indices, 14
get_perf_metric_fn, 16
get_perf_metric_name, 17
get_performance_tbl, 15
get_tuning_grid, 18
group_correlated_features, 19

mikropml, 20

otu_mini_bin, 20
otu_mini_bin_results_glmnet, 21

otu_mini_bin_results_rf, 21
otu_mini_bin_results_rpart2, 22
otu_mini_bin_results_svmRadial, 22
otu_mini_bin_results_xgbTree, 22
otu_mini_cont_results_glmnet, 23
otu_mini_cont_results_nocv, 23
otu_mini_cv, 24
otu_mini_multi, 24
otu_mini_multi_group, 24
otu_mini_multi_results_glmnet, 25
otu_small, 25

permute_p_value, 26
plot_hp_performance, 27
plot_model_performance, 28
preprocess_data, 29
randomize_feature_order, 31
remove_singleton_columns, 32
replace_spaces, 32
run_ml, 33
run_ml(), 29

tidy_perf_data, 36
train_model, 37