Package ‘milorGWAS’

October 13, 2022

Type Package
Title Mixed Logistic Regression for Genome-Wide Analysis Studies
(GWAS)
Version 0.3
Date 2020-03-13
Encoding UTF-8
Author Hervé Perdry and Jacqueline Milet
Maintainer Hervé Perdry <herve.perdry@u-psud.fr>
Description Fast approximate methods for mixed logistic regression in genome-
License GPL-3
Imports Rcpp (>= 1.0.2)
Depends gaston (>= 1.5.6)
LinkingTo Rcpp, RcppEigen, gaston
Suggests knitr, rmarkdown, png
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 7.0.2
Repository CRAN
Date/Publication 2020-03-25 15:30:08 UTC

R topics documented:

<table>
<thead>
<tr>
<th>association.test.logistic</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>qqplot.pvalues</td>
<td>3</td>
</tr>
<tr>
<td>SNP.category</td>
<td>4</td>
</tr>
</tbody>
</table>

Index 6

association.test.logistic

Mixed logistic regression for GWAS

Description

Mixed logistic regression for GWAS

Usage

```r
association.test.logistic(
  x,
  Y = x@ped$pheno,
  X = matrix(1, nrow(x)),
  K,
  beg = 1,
  end = ncol(x),
  algorithm = c("offset", "amle"),
  eigenK,
  p = 0,
  ...
)
```

Arguments

- `x` a bedmatrix
- `Y` phenotype vector. Default is column pheno of x@ped
- `X` A matrix of covariates (defaults to a column of ones for the intercept)
- `K` A genetic relationship matrix (or a list of such matrices)
- `beg` Index of the first SNP tested for association
- `end` Index of the last SNP tested for association
- `algorithm` Algorithm to use
- `eigenK` eigen decomposition of K (only if p > 0)
- `p` Number of principal components to include in the model
- `...` Additional parameter for gaston::logistic.mm.aireml

Details

Tests the association between the phenotype and requested SNPs in x. The phenotype Y is a binary trait. A Wald test is performed using an approximate method defined by the parameter algorithm. All other arguments are as in gaston::association.test.

Value

A data frame giving for each SNP the association statistics.
qqplot.pvalues

See Also

association.test

Examples

data(TTN)
x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
Simulation data
set.seed(1)
some covariables
X <- cbind(1, runif(nrow(x)))
A random GRM
ran <- random.pm(nrow(x))
random effects (tau = 1)
omega <- lmm.simu(1, 0, eigenK=ran$eigen)$omega
linear term of the model
lin <- X %*% c(0.1, -0.2) + omega
vector of probabilites
pi <- 1/(1+exp(-lin))
vector of binary phenotypes
y <- rbinom(nrow(x), 1, pi)
testing association with 1) the score test, 2) the offset algorithm, 3) the 'amle' algorithm
a1 <- association.test(x, y, X, K = ran$K, method = "lmm", response = "bin")
a2 <- association.test.logistic(x, y, X, K = ran$K, algorithm = "offset")
a3 <- association.test.logistic(x, y, X, K = ran$K, algorithm = "amle")

qqplot.pvalues

Stratified QQ-plot of p-values

Description

Draws a QQ plot of p-values

Usage

qqplot.pvalues(
 p,
 snp.cat,
 col.cat,
 col.abline = "red",
 CB = TRUE,
 col.CB = "gray80",
 CB.level = 0.95,
 thinning = TRUE,
 ...
)
Arguments

- `p` vector of p-values, or a data.frame with a column named `p`
- `snp.cat` (optional) A factor giving the SNP categories.
- `col.cat` (optional) A vector of colors used to plot the SNP categories.
- `col.abline` Color of the line of slope 1. Set to `NA` to suppress.
- `CB` Logical. If `TRUE`, a confidence band is included in the plot.
- `col.CB` The color of the confidence band.
- `CB.level` The level of the confidence band.
- `thinning` Logical. If `TRUE`, not all points are displayed.
- `...` Graphical parameters to be passed to `plot` and `points`.

Details

This function draws a QQ plot of p-values, stratified by categories. If the parameter `snp.cat` is missing, the function falls back on `gaston::qqplot.pvalues`.

See Also

`SNP.category`, `qqplot.pvalues` (in gaston)

Examples

```r
# a random vector of categories
ca <- sample(c("A","B","C"), 1e6, TRUE, c(0.05, 0.9, 0.05))
# a vector of p-values, with different distribution depending on the strata
p <- runif(1e6)**ifelse(ca == "A", .8, ifelse(ca == "B", 1, 1.2))
qqplot.pvalues(p, ca)
```

SNP.category

Description

SNP.category

Usage

`SNP.category(bed, Z, threshold = 0.8)`

Arguments

- `bed` A bed matrix
- `Z` A vector of length `nrow(bed)`
- `threshold` Variance thresholds
Details

This function determines a SNP Category from a covariable \(Z \), which can be for example an indicator variable for a population strata, or the first genomic principal component.

See Also

qqplot.pvalues

Examples

```r
# a random vector of categories
ca <- sample(c("A", "B", "C"), 1e6, TRUE, c(0.05, 0.9, 0.05))
# a vector of p-values, with different distribution depending on the strata
p <- runif(1e6) * ifelse(ca == "A", .8, ifelse(ca == "B", 1, 1.2))
qqplot.pvalues(p, ca)
```
Index

association.test, 3
association.test.logistic, 2

qqplot.pvalues, 3, 4, 5

SNP.category, 4, 4