Package ‘milorGWAS’

March 25, 2020

Type Package

Title Mixed Logistic Regression for Genome-Wide Analysis Studies (GWAS)

Version 0.3

Date 2020-03-13

Encoding UTF-8

Author Hervé Perdry and Jacqueline Milet

Maintainer Hervé Perdry <herve.perdry@u-psud.fr>

License GPL-3

Imports Rcpp (>= 1.0.2)

Depends gaston (>= 1.5.6)

LinkingTo Rcpp, RcppEigen, gaston

Suggests knitr, rmarkdown, png

VignetteBuilder knitr

NeedsCompilation yes

RoxygenNote 7.0.2

Repository CRAN

Date/Publication 2020-03-25 15:30:08 UTC

R topics documented:

 association.test.logistic .. 2
 qqplot.pvalues ... 3
 SNP.category ... 4

Index 6
association.test.logistic

Mixed logistic regression for GWAS

Description

Mixed logistic regression for GWAS

Usage

association.test.logistic(
 x,
 Y = x@ped$pheno,
 X = matrix(1, nrow(x)),
 K,
 beg = 1,
 end = ncol(x),
 algorithm = c("offset", "amle"),
 eigenK,
 p = 0,
 ...
)

Arguments

 x a bedmatrix
 Y phenotype vector. Default is column pheno of x@ped
 X A matrix of covariates (defaults to a column of ones for the intercept)
 K A genetic relationship matrix (or a list of such matrices)
 beg Index of the first SNP tested for association
 end Index of the last SNP tested for association
 algorithm Algorithm to use
 eigenK eigen decomposition of K (only if p > 0)
 p Number of principal components to include in the model
 ... Additional parameter for gaston::logistic.mm.aireml

Details

Tests the association between the phenotype and requested SNPs in x. The phenotype Y is a binary trait. A Wald test is performed using an approximate method defined by the parameter algorithm. All other arguments are as in gaston::association.test.

Value

A data frame giving for each SNP the association statistics.
qqplot.pvalues

See Also

association.test

Examples

data(TTN)
x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
Simulation data
set.seed(1)
some covariables
X <- cbind(1, runif(nrow(x)))
A random GRM
ran <- random.pm(nrow(x))
random effects (tau = 1)
omega <- lmm.simu(1, 0, eigenK=ran$eigen)$omega
linear term of the model
lin <- X %*% c(0.1,-0.2) + omega
vector of probabilities
pi <- 1/(1+exp(-lin))
vector of binary phenotypes
y <- rbinom(nrow(x), 1, pi)
testing association with 1) the score test, 2) the offset algorithm, 3) the 'amle' algorithm
a1 <- association.test(x, y, X, K = ran$K, method = "lmm", response = "bin")
a2 <- association.test.logistic(x, y, X, K = ran$K, algorithm = "offset")
a3 <- association.test.logistic(x, y, X, K = ran$K, algorithm = "amle")

qqplot.pvalues

Stratified QQ-plot of p-values

Description

Draws a QQ plot of p-values

Usage

qqplot.pvalues(
p, snp.cat, col.cat, col.abline = "red", CB = TRUE, col.CB = "gray80", CB.level = 0.95, thinning = TRUE, ...)
)
SNP.category

Description

SNP.category

Usage

`SNP.category(bed, Z, threshold = 0.8)`

Arguments

- **bed**: A bed matrix
- **Z**: A vector of length `nrow(bed)`
- **threshold**: Variance thresholds

Examples

```r
# a random vector of categories
ca <- sample(c("A", "B", "C"), 1e6, TRUE, c(0.05, 0.9, 0.05))
# a vector of p-values, with different distribution depending on the strata
p <- runif(1e6) * ifelse(ca == "A", .8, ifelse(ca == "B", 1, 1.2))
qqplot.pvalues(p, ca)
```
Details

This function determines a SNP Category from a covariable \(Z \), which can be for example an indicator variable for a population strata, or the first genomic principal component.

See Also

qqplot.pvalues

Examples

a random vector of categories
ca <- sample(c("A","B","C"), 1e6, TRUE, c(0.05, 0.9, 0.05))
a vector of p-values, with different distribution depending on the strata
p <- runif(1e6)**ifelse(ca == "A", .8, ifelse(ca == "B", 1, 1.2))
qqplot.pvalues(p, ca)
Index

association.test, 3
association.test.logistic, 2

qqplot.pvalues, 3, 4, 5

SNP.category, 4, 4