Package ‘miniMeta’

Type Package

Title Web Application to Run Meta-Analyses

Version 0.2

Maintainer Theodore Lytras <thlytras@gmail.com>

Imports shiny, shinyjs, shinyWidgets, colourpicker, rhandsontable, metafor, markdown, WriteXLS, readxl, jsonlite, grDevices, methods, stats

Depends meta, R (>= 2.10.0)

Description Shiny web application to run meta-analyses. Essentially a graphical front-end to package ‘meta’ for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Theodore Lytras [aut, cre] (<https://orcid.org/0000-0002-4146-4122>)

Repository CRAN

Date/Publication 2020-03-01 13:10:02 UTC
analysisOptions

Description

This function returns the analytical options stored in a miniMeta object, as a named list of arguments, for further processing.

Usage

```r
analysisOptions(x, data = FALSE)
```

Arguments

- `x` An object of class miniMeta
- `data` If TRUE, the data associated with the meta-analysis are included in the return value. This allows you for example to run: `do.call(metabin, analysisOptions(x, data=TRUE))` or `do.call(metagen, analysisOptions(x, data=TRUE))` (depending on the contents of `x`), in order to re-run the meta-analysis.

Value

A named list of arguments corresponding to the arguments of `metagen` or `metabin`.

Examples

```r
analysisOptions(example_miniMeta_rct)
```
as.source

Return minMeta analysis as source code

Description

Returns an entire minMeta analysis in an R source code format. This provides a basis for further processing the results exported from minMeta, using R code, in order to perform more elaborate or more specific analyses.

Usage

as.source(x)

Arguments

x An object of class minMeta

Value

A character vector of length one, containing R code that loads the data, runs the meta-analysis, and plots a forest plot. You can save this in a text file using writeLines.

Examples

Writes the minMeta analysis to an R script named 'my_analysis.R'
writeLines(as.source(example_miniMeta_rct), "my_analysis.R")

eexample_analyses

Example minMeta analyses

Description

These are example minMeta meta-analyses, with study data taken from Lytras et al, 2014. Object example_miniMeta_rct contains a meta-analysis of Randomized Controlled Trials (RCTs), and example_miniMeta_obs a meta-analysis of observational studies.

Usage

example_miniMeta_obs
example_miniMeta_rct
Format

Objects of class miniMeta

References

forest.miniMeta

Forest plot for miniMeta objects

Description

Draws a forest plot for a miniMeta object using the options stored in the object

Usage

```r
## S3 method for class 'miniMeta'
forest(x, ...)
```

Arguments

- `x` An object of class miniMeta
- `...` Further arguments passed to or from other methods

Examples

```r
forest(example_miniMeta_obs)
```

is.miniMeta

Is this a miniMeta object?

Description

This function checks whether this is a valid miniMeta object

Usage

```r
is.miniMeta(x)
```

Arguments

- `x` An object of class miniMeta
is.miniMeta.obs

Value

TRUE if it is a valid miniMeta object, FALSE if it is not.

Examples

is.miniMeta(example_miniMeta_obs) # returns TRUE
is.miniMeta(example_miniMeta_rct) # returns TRUE

Description

This function checks whether this is a valid miniMeta object holding a meta-analysis of observational studies.

Usage

is.miniMeta.obs(x)

Arguments

x An object of class miniMeta

Value

TRUE if it is a valid miniMeta object holding a meta-analysis of observational studies, FALSE if it is not.

Examples

is.miniMeta.obs(example_miniMeta_obs) # returns TRUE
is.miniMeta.obs(example_miniMeta_rct) # returns FALSE
is.miniMeta.rct

Is this a miniMeta object for RCTs?

Description
This function checks whether this is a valid miniMeta object holding a meta-analysis of Randomized Controlled Trials (RCTs).

Usage

is.miniMeta.rct(x)

Arguments

x
An object of class miniMeta

Value

TRUE if it is a valid miniMeta object holding a meta-analysis of Randomized Controlled Trials (RCTs), FALSE if it is not.

Examples

is.miniMeta.rct(example_miniMeta_obs) # returns FALSE
is.miniMeta.rct(example_miniMeta_rct) # returns TRUE

miniMeta
Launch miniMeta in your browser

Description
This function launches miniMeta in your browser.

Usage

miniMeta()

Examples

miniMeta()
parseArguments

Parse arguments from a comma-separated list

Description

Read a comma-separated list of arguments (as a character string), parse them, and return as a named R list. This function is used in miniMeta to parse arguments for forest.meta() when given as a string.

Usage

parseArguments(x)

Arguments

x
A character vector (of length one) containing the arguments. All should be named.

Value

A named list of arguments, or an object of class "try-error" on failure.

Examples

parseArguments('col.diamond="red", sm="RR", comb.fixed=FALSE')

plotOptions

Get forest plot options from miniMeta object

Description

This function returns the forest plot options stored in a miniMeta object, as a named list of arguments, for further processing. This allows finer control than directly plotting using the forest.miniMeta method. See the example below.

Usage

plotOptions(x)

Arguments

x
An object of class miniMeta

Value

A named list of arguments corresponding to the arguments of forest.meta.
Examples

Extract the plot options from the miniMeta object
plot_opts <- plotOptions(example_miniMeta_obs)
Call directly the forest.meta method, with all plot options
do.call(forest, c(x=list(example_miniMeta_obs$meta), plot_opts))

Equivalently, call the forest.miniMeta method directly
forest(example_miniMeta_obs)

sampleSizeBin

Sample size calculator for binary outcomes

Description

Calculates sample size for a trial with a binomial outcome, for a given power and false positive rate.

Usage

sampleSizeBin(cer, RRR = 25, ier = NULL, a = 0.05, b = 0.2, K = 1)

Arguments

- cer: Control group event rate, a value between 0 and 1. All should be named.
- RRR: Relative Risk Reduction (%) in the intervention group.
- ier: Intervention group event rate, a value between 0 and 1. If NULL, it is calculated from RRR. If non-NULL, the value of this argument is used and RRR is ignored.
- a: False positive rate (alpha). Defaults to 0.05 (5%).
- b: False negative rate (beta). Defaults to 0.2. Power is one minus beta; thus the default is 80% power.
- K: Ratio of intervention group size to control group size. Defaults to 1, meaning both groups have the same size. Set to infinity (Inf) in order to calculate sample size for a single-group study, see details below.

Value

An integer vector of length 2, with the sample sizes for the control and intervention groups.

If K=Inf, then the sample size calculation is not for a study with two groups, but for a single-group study in which a fixed known population event rate is assumed. In that case, argument cer represents the population event rate, and ier the study event rate that we anticipate. And the return value is a single value, i.e. the sample size of the study.
Examples

Sample size for a trial with 40% control event rate and 1:1 randomization,
aiming to show a Relative Risk Reduction of 30% with 80% power.
sampleSizeBin(0.4, RRR=30)

Sample size for a single-group study aiming to show an event rate of 20%
against a population event rate of 10%, with 90% power.
sampleSizeBin(0.1, ier=0.2, b=0.1, K=Inf)

sampleSizeCont

Sample size calculator for continuous outcomes

Description

Calculates sample size for a trial with a continuous outcome, for a given power and false positive rate.

Usage

sampleSizeCont(Dm, SD, a = 0.05, b = 0.2, K = 1)

Arguments

- **Dm**: Anticipated absolute difference in means between the two groups (intervention and control).
- **SD**: Anticipated standard deviation for the outcome.
- **a**: False positive rate (alpha). Defaults to 0.05 (5%).
- **b**: False negative rate (beta). Defaults to 0.2. Power is one minus beta; thus the default is 80% power.
- **K**: Ratio of intervention group size to control group size. Defaults to 1, meaning both groups have the same size. Set to infinity (Inf) in order to calculate sample size for a single-group study, see details below.

Value

An integer vector of length 2, with the sample sizes for the control and intervention groups.

If K=Inf, then the sample size calculation is not for a study with two groups, but for a single-group study in which we try to show a difference from a fixed known population mean. In that case, argument Dm represents the absolute difference between the study mean and population mean, rather than the difference in means between two groups. And the return value is a single value, i.e. the sample size of the study.
Examples

Sample size for a trial with 2:1 randomization, aiming to show a mean
difference of 2 for a continuous outcome with a standard deviation of 3,
with 90\% power.
sampleSizeCont(2, 3, b=0.1, K=2)

Similar for a single-group study aiming to show a difference of 2 against
a known population mean.
sampleSizeCont(2, 3, b=0.1, K=Inf)
Index

*Topic datasets
 example_analyses, 3

analysisOptions, 2
as.source, 3

example_analyses, 3
example_miniMeta_obs
 (example_analyses), 3
example_miniMeta_rct
 (example_analyses), 3

forest.meta, 7
forest.miniMeta, 4, 7

is.miniMeta, 4
is.miniMeta.obs, 5
is.miniMeta.rct, 6

metabin, 2
metagen, 2
miniMeta, 6

parseArguments, 7
plotOptions, 7

sampleSizeBin, 8
sampleSizeCont, 9

writeLines, 3