Package ‘miniMeta’

October 13, 2022

Type Package

Title Web Application to Run Meta-Analyses

Version 0.2

Maintainer Theodore Lytras <thlytras@gmail.com>

Imports shiny, shinyjs, shinyWidgets, colourpicker, rhandsontable, metafor, markdown, WriteXLS, readxl, jsonlite, grDevices, methods, stats

Depends meta, R (>= 2.10.0)

Description Shiny web application to run meta-analyses. Essentially a graphical front-end to package 'meta' for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Theodore Lytras [aut, cre] (<https://orcid.org/0000-0002-4146-4122>)

Repository CRAN

Date/Publication 2020-03-01 13:10:02 UTC
analysisOptions

R topics documented:

- analysisOptions 2
- as.source 3
- example_analyses 3
- forest.miniMeta 4
- is.miniMeta 4
- is.miniMeta.obs 5
- is.miniMeta.rct 6
- miniMeta 6
- parseArguments 7
- plotOptions 7
- sampleSizeBin 8
- sampleSizeCont 9

Index

- analysisOptions Get analytical options from miniMeta object

Description

This function returns the analytical options stored in a miniMeta object, as a named list of arguments, for further processing.

Usage

```r
analysisOptions(x, data = FALSE)
```

Arguments

- `x`
 An object of class miniMeta
- `data`
 If TRUE, the data associated with the meta-analysis are included in the return value. This allows you for example to run: do.call(metabin, analysisOptions(x, data=TRUE)) or do.call(metagen, analysisOptions(x, data=TRUE)) (depending on the contents of x), in order to re-run the meta-analysis.

Value

A named list of arguments corresponding to the arguments of metagen or metabin.

Examples

```r
analysisOptions(example_miniMeta_rct)
```
as.source

Return miniMeta analysis as source code

Description

Returns an entire miniMeta analysis in an R source code format. This provides a basis for further processing the results exported from miniMeta, using R code, in order to perform more elaborate or more specific analyses.

Usage

as.source(x)

Arguments

x
An object of class miniMeta

Value

A character vector of length one, containing R code that loads the data, runs the meta-analysis, and plots a forest plot. You can save this in a text file using writeLines.

Examples

Writes the miniMeta analysis to an R script named 'my_analysis.R'
writeLines(as.source(example_miniMeta_rct), "my_analysis.R")

element_analyses

Example miniMeta analyses

Description

These are example miniMeta meta-analyses, with study data taken from Lytras et al, 2014. Object example_miniMeta_rct contains a meta-analysis of Randomized Controlled Trials (RCTs), and example_miniMeta_obs a meta-analysis of observational studies.

Usage

example_miniMeta_obs

example_miniMeta_rct
is.miniMeta

Format

Objects of class miniMeta

References

forest.miniMeta

Forest plot for miniMeta objects

Description

Draws a forest plot for a miniMeta object using the options stored in the object

Usage

```r
## S3 method for class 'miniMeta'
forest(x, ...)
```

Arguments

- `x`
 An object of class miniMeta

- `...`
 Further arguments passed to or from other methods

Examples

```r
forest(example_miniMeta_obs)
```

is.miniMeta

Is this a miniMeta object?

Description

This function checks whether this is a valid miniMeta object

Usage

```r
is.miniMeta(x)
```

Arguments

- `x`
 An object of class miniMeta
is.miniMeta.obs

Value

TRUE if it is a valid miniMeta object, FALSE if it is not.

Examples

is.miniMeta(example_minMeta_obs) # returns TRUE
is.miniMeta(example_minMeta_rct) # returns TRUE

is.miniMeta.obs Is this a miniMeta object for observational studies?

Description

This function checks whether this is a valid miniMeta object holding a meta-analysis of observational studies.

Usage

is.miniMeta.obs(x)

Arguments

x An object of class miniMeta

Value

TRUE if it is a valid miniMeta object holding a meta-analysis of observational studies, FALSE if it is not.

Examples

is.miniMeta.obs(example_minMeta_obs) # returns TRUE
is.miniMeta.obs(example_minMeta_rct) # returns FALSE
is.miniMeta.rct

Is this a miniMeta object for RCTs?

Description

This function checks whether this is a valid miniMeta object holding a meta-analysis of Randomized Controlled Trials (RCTs).

Usage

`is.miniMeta.rct(x)`

Arguments

- `x` An object of class `miniMeta`

Value

TRUE if it is a valid miniMeta object holding a meta-analysis of Randomized Controlled Trials (RCTs), FALSE if it is not.

Examples

```r
is.miniMeta.rct(example_miniMeta_obs) # returns FALSE
is.miniMeta.rct(example_miniMeta_rct) # returns TRUE
```

miniMeta

Launch miniMeta in your browser

Description

This function launches miniMeta in your browser.

Usage

`miniMeta()`

Examples

```r
miniMeta()
```
parseArguments

Parse arguments from a comma-separated list

Description

Read a comma-separated list of arguments (as a character string), parse them, and return as a named R list. This function is used in miniMeta to parse arguments for forest.meta() when given as a string.

Usage

```r
parseArguments(x)
```

Arguments

- `x` A character vector (of length one) containing the arguments. All should be named.

Value

A named list of arguments, or an object of class "try-error" on failure.

Examples

```r
parseArguments('col.diamond="red", sm="RR", comb.fixed=FALSE')
```

plotOptions

Get forest plot options from miniMeta object

Description

This function returns the forest plot options stored in a miniMeta object, as a named list of arguments, for further processing. This allows finer control than directly plotting using the `forest.miniMeta` method. See the example below.

Usage

```r
plotOptions(x)
```

Arguments

- `x` An object of class `miniMeta`

Value

A named list of arguments corresponding to the arguments of `forest.meta`.
Examples

```
# Extract the plot options from the miniMeta object
plot_opts <- plotOptions(example_miniMeta_obs)
# Call directly the forest.meta method, with all plot options
do.call(forest, c(x=list(example_miniMeta_obs$meta), plot_opts))

# Equivalently, call the forest.miniMeta method directly
forest(example_miniMeta_obs)
```

`sampleSizeBin`

Sample size calculator for binary outcomes

Description

Calculates sample size for a trial with a binomial outcome, for a given power and false positive rate.

Usage

`sampleSizeBin(cer, RRR = 25, ier = NULL, a = 0.05, b = 0.2, K = 1)`

Arguments

- `cer`
 Control group event rate, a value between 0 and 1. All should be named.
- `RRR`
 Relative Risk Reduction (%) in the intervention group.
- `ier`
 Intervention group event rate, a value between 0 and 1. If `NULL`, it is calculated from `RRR`. If non-`NULL`, the value of this argument is used and `RRR` is ignored.
- `a`
 False positive rate (alpha). Defaults to 0.05 (5%).
- `b`
 False negative rate (beta). Defaults to 0.2. Power is one minus beta; thus the default is 80% power.
- `K`
 Ratio of intervention group size to control group size. Defaults to 1, meaning both groups have the same size. Set to infinity (`Inf`) in order to calculate sample size for a single-group study, see details below.

Value

An integer vector of length 2, with the sample sizes for the control and intervention groups.

If `K=Inf`, then the sample size calculation is not for a study with two groups, but for a single-group study in which a fixed known population event rate is assumed. In that case, argument `cer` represents the population event rate, and `ier` the study event rate that it we anticipate. And the return value is a single value, i.e. the sample size of the study.
sampleSizeCont

Examples

Sample size for a trial with 40\% control event rate and 1:1 randomization,
aiming to show a Relative Risk Reduction of 30\% with 80\% power.
sampleSizeBin(0.4, RRR=30)

Sample size for a single-group study aiming to show an event rate of 20\%
against a population event rate of 10\%, with 90\% power.
sampleSizeBin(0.1, ier=0.2, b=0.1, K=Inf)

description

Sample size calculator for continuous outcomes

Description

Calculates sample size for a trial with a continuous outcome, for a given power and false positive rate.

Usage

sampleSizeCont(Dm, SD, a = 0.05, b = 0.2, K = 1)

Arguments

\begin{itemize}
 \item \textbf{Dm} \hspace{1cm} Anticipated absolute difference in means between the two groups (intervention and control).
 \item \textbf{SD} \hspace{1cm} Anticipated standard deviation for the outcome.
 \item \textbf{a} \hspace{1cm} False positive rate (alpha). Defaults to 0.05 (5\%).
 \item \textbf{b} \hspace{1cm} False negative rate (beta). Defaults to 0.2. Power is one minus beta; thus the default is 80\% power.
 \item \textbf{K} \hspace{1cm} Ratio of intervention group size to control group size. Defaults to 1, meaning both groups have the same size. Set to infinity (Inf) in order to calculate sample size for a single-group study, see details below.
\end{itemize}

Value

An integer vector of length 2, with the sample sizes for the control and intervention groups.

If \textit{K=Inf}, then the sample size calculation is not for a study with two groups, but for a single-group study in which we try to show a difference from a fixed known population mean. In that case, argument \textit{Dm} represents the absolute difference between the study mean and population mean, rather than the difference in means between two groups. And the return value is a single value, i.e. the sample size of the study.
Examples

Sample size for a trial with 2:1 randomization, aiming to show a mean
difference of 2 for a continuous outcome with a standard deviation of 3,
with 90\% power.
sampleSizeCont(2, 3, b=0.1, K=2)

Similar for a single-group study aiming to show a difference of 2 against
a known population mean.
sampleSizeCont(2, 3, b=0.1, K=Inf)
Index

* datasets
 example_analyses, 3
analysisOptions, 2
as.source, 3
example_analyses, 3
example_miniMeta_obs
 (example_analyses), 3
example_miniMeta_rct
 (example_analyses), 3
forest.meta, 7
forest.miniMeta, 4, 7
is.miniMeta, 4
is.miniMeta.obs, 5
is.miniMeta.rct, 6
metabin, 2
metagen, 2
miniMeta, 6
parseArguments, 7
plotOptions, 7
sampleSizeBin, 8
sampleSizeCont, 9
writeLines, 3