Package ‘misaem’

December 19, 2019

Title Logistic Regression with Missing Covariates
Version 0.9.2
Date 2019-12-18
Description Estimate parameters of logistic regression with missing data and perform model selection, using algorithm Stochastic Approximation EM.
Depends R (>= 3.4.0)
Encoding UTF-8
License GPL-3
URL https://github.com/wjiang94/misaem.git
Imports mvtnorm, stats, MASS, methods
Suggests knitr, rmarkdown
LazyData true
VignetteBuilder knitr
RoxygenNote 6.1.1
NeedsCompilation no
Author Wei Jiang [aut, cre]
Maintainer Wei Jiang <wei.jiang@polytechnique.edu>
Repository CRAN
Date/Publication 2019-12-19 13:50:02 UTC

R topics documented:

 combinations .. 2
 likelihood_saem ... 2
 log_reg ... 3
 louis_lr_saem .. 4
 miss.saem .. 5
 model_selection .. 7
 pred_saem .. 8

Index 10
Description
Given all the possible patterns of missingness.

Usage
```
combinations(p)
```

Arguments
- `p`: Dimension of covariates.

Value
A matrix containing all the possible missing patterns. Each row indicates a pattern of missingness. "1" means "observed", 0 means "missing".

Examples
```
comb = combinations(5)
```

Description
Used in main function miss.saem. Calculate the observed log-likelihood for logistic regression model with missing data, using Monte Carlo version of Louis formula.

Usage
```
likelihood_saem(beta, mu, Sigma, Y, X.obs, 
    rindic = as.matrix(is.na(X.obs)), 
    whichcolXmissing = (1:ncol(rindic))[apply(rindic, 2, sum) > 0], 
    mc.size = 2)
```
Arguments

- **beta**: Estimated parameter of logistic regression model.
- **mu**: Estimated parameter μ.
- **Sigma**: Estimated parameter Σ.
- **Y**: Response vector $N \times 1$.
- **X.obs**: Design matrix with missingness $N \times p$.
- **rindic**: Missing pattern of X.obs. If a component in X.obs is missing, the corresponding position in rindic is 1; else 0.
- **whichcolXmissing**: The column index in covariate containing at least one missing observation.
- **mc.size**: Monte Carlo sampling size.

Value

Observed log-likelihood.

Examples

```r
# Generate dataset
N <- 50 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta_true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
  matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-(X.complete%*%beta.star-beta0.star)))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA

# Observed log-likelihood
ll_obs = likelihood_saem(beta_true,mu.star,Sigma.star,y,X.obs)
```

Description

Calculate the likelihood or log-likelihood for one observation of logistic regression model.
Usage

log_reg(y, x, beta, iflog = TRUE)

Arguments

y Response value (0 or 1).

x Covariate vector of dimension $p \times 1$.

beta Estimated parameter of logistic regression model.

iflog If TRUE, log_reg calculate the log-likelihood; else likelihood.

Value

Likelihood or log-likelihood.

Examples

res = log_reg(1,c(1,2,3),c(1,-1,1))

Description

Used in main function miss.saem. Calculate the variance of estimated parameters for logistic regression model with missing data, using Monte Carlo version of Louis formula.

Usage

louis_lr_saem(beta, mu, Sigma, Y, X.obs, pos_var = 1:ncol(X.obs),
 rindic = as.matrix(is.na(X.obs)),
 whichcolXmissing = (1:ncol(rindic))[apply(rindic, 2, sum) > 0],
 mc.size = 2)

Arguments

beta Estimated parameter of logistic regression model.

mu Estimated parameter μ.

Sigma Estimated parameter Σ.

Y Response vector $N \times 1$

X.obs Design matrix with missingness $N \times p$

pos_var Index of selected covariates.

rindic Missing pattern of X.obs. If a component in X.obs is missing, the corresponding position in rindic is 1; else 0.

whichcolXmissing The column index in covariate containing at least one missing observation.

mc.size Monte Carlo sampling size.
Value

Variance of estimated β.

Examples

Generate dataset
N <- 50 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
 matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA

Louis formula to obtain variance of estimates
V_obs = louis_lr_saem(beta.true,mu.star,Sigma.star,y,X.obs)

Description

This function uses algorithm SAEM to fit the logistic regression model with missing data.

Usage

miss.saem(X.obs, y, pos_var = 1:ncol(X.obs), maxruns = 500,
 tol_em = 1e-07, nmcmc = 2, tau = 1, k1 = 50, seed = 200,
 print_iter = TRUE, var_cal = FALSE, ll_obs_cal = FALSE)

Arguments

X.obs Design matrix with missingness $N \times p$
y Response vector $N \times 1$
pos_var Index of selected covariates. The default is pos_var = 1:ncol(X.obs).
maxruns Maximum number of iterations. The default is maxruns = 500.
tol_em The tolerance to stop SAEM. The default is tol_em = 1e-7.
nmcmc The MCMC length. The default is nmcmc = 2.
tau Rate \(\tau \) in the step size \((k - k_1)^{-\tau}\). The default is \(\tau = 1\).

k1 Number of first iterations \(k_1\) in the step size \((k - k_1)^{-\tau}\). The default is \(k_1 = 50\).

seed An integer as a seed set for the random generator. The default value is 200.

print_iter If TRUE, miss.saem will print the estimated parameters in each iteration of SAEM.

var_cal If TRUE, miss.saem will calculate the variance of estimated parameters.

ll_obs_cal If TRUE, miss.saem will calculate the observed log-likelihood.

Value

A list with components

- **mu** Estimated \(\mu\).
- **sig2** Estimated \(\Sigma\).
- **beta** Estimated \(\beta\).
- **time_run** Execution time.
- **seqbeta** Sequence of \(\beta\) estimated in each iteration.
- **seqbeta_avg** Sequence of \(\beta\) with averaging in each iteration.
- **ll** Observed log-likelihood.
- **var_obs** Estimated variance for estimated parameters.
- **std_obs** Estimated standard error for estimated parameters.

Examples

```r
# Generate dataset
N <- 100  # number of subjects
p <- 3    # number of explanatory variables
mu.star <- rep(0, p)  # mean of the explanatory variables
Sigma.star <- diag(rep(1, p))  # covariance
beta.star <- c(1, 1, 0)  # coefficients
beta0.star <- 0  # intercept
beta.true <- c(beta0.star, beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
              matrix(rep(mu.star, N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss  # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
# SAEM
list.saem = miss.saem(X.obs,y)
print(list.saem$beta)
```
Description

Model selection for the logistic regression model with missing data.

Usage

model_selection(X.obs, y, seed = 200)

Arguments

X.obs Design matrix with missingness $N \times p$
y Response vector $N \times 1$
seed An integer as a seed set for the random generator. The default value is 200.

Value

A list with components

- subset_choose The index of variates included in the best model selected.
- beta Estimated β for the best model.
- sig2 Estimated Σ for the best model.
- mu Estimated μ for the best model.

Examples

Generate dataset
N <- 40 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
 matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
model selection for SAEM
list.saem.select = model_selection(X.obs,y)
print(list.saem.select$subset_choose)
print(list.saem.select$beta)
Description

Prediction on test with missing values for the logistic regression model.

Usage

```r
pred_saem(X.test, beta.saem, mu.saem, sig2.saem, seed = 200,
method = "map")
```

Arguments

- `X.test`: Design matrix in test set.
- `beta.saem`: Estimated β by SAEM.
- `mu.saem`: Estimated μ by SAEM.
- `sig2.saem`: Estimated Σ by SAEM.
- `seed`: An integer as a seed set for the random generator. The default value is 200.
- `method`: The name of method to deal with missing values in test set. It can be 'map' (maximum a posteriori) or 'impute' (imputation by conditional expectation). Default is 'map'.

Value

- `pr.saem`: The prediction result for logistic regression: the probability of response $y=1$.

Examples

```r
# Generate dataset
N <- 100 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true <- c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss # missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA`
```
SAEM
list.saem = miss.saem(X.obs, y)

Generate test set with missingness
Nt = 50
X.test <- matrix(rnorm(Nt*p), nrow=Nt)%*%chol(Sigma.star) +
 matrix(rep(mu.star, Nt), nrow=Nt, byrow = TRUE)
p1 <- 1/(1+exp(-X.test%*%beta.star-beta0.star))
y.test <- as.numeric(runif(Nt)<p1)

Prediction on test set
pr.saem <- pred_saem(X.test, list.saem$beta, list.saem$mu, list.saem$sig2)
pred.saem <- (pr.saem>0.5)*1
table(y.test, pred.saem)
Index

combinations, 2
likelihood_saem, 2
log_reg, 3
louis_lr_saem, 4
miss.saem, 5
model_selection, 7
pred_saem, 8