Package ‘mispitools’

September 5, 2023

Title Missing Person Identification Tools
Version 1.0.0
Description A set of decision making tools to conduct missing person searches. Particularly, it allows computing optimal LR threshold for declaring potential matches in DNA-based database search. More recently 'mispitools' incorporates preliminary investigation data based LRs. Statistical weight of different traces of evidence such as biological sex, age and hair color are presented. For citing mispitools please use the following references: Marsico and Caridi, 2023 <doi:10.1016/j.fsigen.2023.102891> and Marsico, Vigel et al. 2021 <doi:10.1016/j.fsigen.2021.102519>.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Imports forrel, pedtools, plotly, dplyr, highcharter, tidyr, tidyverse, DirichletReg, stats, purrr, patchwork, reshape2, graphics, ggplot2, shiny
RoxygenNote 7.2.3
URL https://github.com/MarsicoFL/mispitools
BugReports https://github.com/MarsicoFL/mispitools/issues
Depends R (>= 2.10)
NeedsCompilation no
Author Franco Marsico [aut, cre] (<https://orcid.org/0000-0002-0740-5516>)
Maintainer Franco Marsico <franco.lmarsico@gmail.com>
Repository CRAN
Date/Publication 2023-09-05 07:20:02 UTC

R topics documented:

Argentina ... 2
Asia ... 3
Austria ... 3
Argentina

STRs allelic frequencies from specified country.

Description

STRs allelic frequencies from specified country.

Usage

Argentina

Format

A data frame allele frequencies
<table>
<thead>
<tr>
<th>Country</th>
<th>STRs allelic frequencies from specified country.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>A dataset of allele frequencies.</td>
</tr>
<tr>
<td>Usage</td>
<td>Asia</td>
</tr>
<tr>
<td>Format</td>
<td>A data frame allele frequencies</td>
</tr>
<tr>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>STRs allelic frequencies from specified country.</td>
</tr>
<tr>
<td>Usage</td>
<td>Austria</td>
</tr>
<tr>
<td>Format</td>
<td>A data frame allele frequencies</td>
</tr>
<tr>
<td>BosniaHerz</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>STRs allelic frequencies from specified country.</td>
</tr>
<tr>
<td>Usage</td>
<td>BosniaHerz</td>
</tr>
<tr>
<td>Format</td>
<td>A data frame allele frequencies</td>
</tr>
</tbody>
</table>
Cmodel

Description

STRs allelic frequencies from specified country.

Usage

```r
China
```

Format

A data frame allele frequencies

Cmodel

Description

Epsilon hair color matrix

Usage

```r
Cmodel(
  errorModel = c("custom", "uniform")[1],
  ep = 0.01,
  ep12 = 0.01,
  ep13 = 0.005,
  ep14 = 0.01,
  ep15 = 0.003,
  ep23 = 0.01,
  ep24 = 0.003,
  ep25 = 0.01,
  ep34 = 0.003,
  ep35 = 0.003,
  ep45 = 0.01
)
```

Arguments

- `errorModel` custom allows selecting a specific epsilon for each MP-UHR pair, uniform use ep for all.
- `ep` epsilon
- `ep12` epsilon
combLR

ep13 epsilon
ep14 epsilon
ep15 epsilon
ep23 epsilon
ep24 epsilon
ep25 epsilon
ep34 epsilon
ep35 epsilon
ep45 epsilon

Value

A value of Likelihood ratio based on preliminary investigation data. In this case, sex.

Examples

Cmodel()

combLR

Combine LRs: a function for combining LRs obtained from simulations.

Description

Combine LRs: a function for combining LRs obtained from simulations.

Usage

`combLR(LRdatasim1, LRdatasim2)`

Arguments

- **LRdatasim1**: A data frame object with the results of simulations. Outputs from `simLRgen` or `simLRprelim` functions.
- **LRdatasim2**: A second data frame object with the results of simulations. Outputs from `simLRgen` or `simLRprelim` functions.

Value

An object of class `data.frame` combining the LRs obtained from simulations (the function multiplies the LRs).
Examples

```r
library(mispitools)
library(forrel)
x = linearPed(2)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
LRdatasim1 = simLRgen(x, missing = 5, 10, 123)
LRdatasim2 = simLRprelim("sex")
combLR(LRdatasim1, LRdatasim2)
```

<table>
<thead>
<tr>
<th>CPT_MP</th>
<th>Missing person based conditioned probability</th>
</tr>
</thead>
</table>

Description

Missing person based conditioned probability

Usage

```r
CPT_MP(MPs = "F", MPc = 1, eps = 0.05, epa = 0.05, epc = Cmodel())
```
Arguments

MPs Missing person sex
MPc Missing person hair color
eps sex epsilon
epa age epsilon - Age is not specified in this first version, because it assumes uniformity.
epc color model

Value

A value of Likelihood ratio based on preliminary investigation data. In this case, sex.

Examples

CPT_MP()
deplot

Description

Decision making plot: a function for plotting false positive and false negative rates for each LR threshold.

Usage

deplot(datasim)

Arguments

datasim Input dataframe containing expected LRs for related and unrelated POIs. It should be the output from makeLRsims function.

Value

A plot showing false positive and false negative rates for each likelihood ratio threshold.

Examples

library(forrel)
library(plotly)
x = linearPed(2)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
datasim = simLRgen(x, missing = 5, 10, 123)
deplot(datasim)

DeT

Description

Decision Threshold: a function for computing likelihood ratio decision threshold.

Usage

DeT(datasim, weight)
Arguments

datasim: Input dataframe containing expected LRs for related and unrelated POIs. It should be the output from makeLRsims function.

weight: The differential weight between false positives and false negatives. A value of 10 is suggested.

Value

A value of Likelihood ratio suggested as threshold based on false positive-false negative trade-off.

Examples

library(forrel)
x = linearPed(2)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
datasim = simLRgen(x, missing = 5, 10, 123)
DeT(datasim, 10)

Europe

STRs allelic frequencies from specified country.

Description

STRs allelic frequencies from specified country.

Usage

Europe

Format

A data frame allele frequencies

getfreqs

Function for getting STR allele frequencies from different world populations.

Description

Function for getting STR allele frequencies from different world populations.

Usage

getfreqs(region)
Arguments

region select the place of the allele frequency database. Possible values are listed: "Argentina", "Asia", "Europe", "USA", "Austria", "BosniaHerz", "China" and "Japan".

Value

An allele frequency database adapted compatible with pedtools format.

Source

| Japan | STRs allelic frequencies from specified country. |

Description

STRs allelic frequencies from specified country.

Usage

Japan

Format

A data frame allele frequencies

| LRage | Likelihood ratio for age variable |

Description

Likelihood ratio for age variable

Usage

LRage(
 MPa = 40,
 MPr = 6,
 UHRr = 1,
 gam = 0.07,
 nsims = 1000,
 epa = 0.05,
 erRa = epa,
\begin{verbatim}
H = 1,
modelA = c("uniform", "custom")[1],
LR = FALSE
)

Arguments

MPa Missing person age
MPr Missing person age range.
UHRr Unidentified person range
gam Simulation parameter for UHR ages.
nsims number of simulations.
epa epsilon age
erRa error rate in the database.
H hypothesis tested, H1: UHR is MP, H2: UHR is not MP.
modelA reference database probabilities, uniform assumes equally probable ages. Custom needs a vector with ages frequencies.
LR compute LR values

Value

A value of Likelihood ratio based on preliminary investigation data. In this case, Age.

LRcol

\textit{Likelihood ratio for age variable}

Description

Likelihood ratio for age variable

Usage

LRcol(
 MPc = 1,
 epc = Cmodel(),
 erRc = epc,
 nsims = 1000,
 Pc = c(0.3, 0.2, 0.25, 0.15, 0.1),
 H = 1,
 Qprop = MPc,
 LR = FALSE
)
Arguments

- **MPc**: MP hair color
- **epc**: epsilon parameter.
- **erRc**: error rate in the database.
- **nsims**: number of simulations performed.
- **Pc**: hair color probabilities.
- **H**: hypothesis tested, H1: UHR is MP, H2: UHR is no MP
- **Qprop**: Query color tested.
- **LR**: compute LR values

Value

A value of Likelihood ratio based on preliminary investigation data. In this case, hair color.

Examples

```r
LRcol()
```

LRdate

Likelihood ratio for birth date in missing person searches

Description

Likelihood ratio for birth date in missing person searches

Usage

```r
LRdate(
  ABD = "1976-05-31",
  DBD = "1976-07-15",
  PrelimData,
  alpha = c(1, 4, 60, 11, 6, 4, 4),
  cuts = c(-120, -30, 30, 120, 240, 360),
  draw = 500,
  type = 1,
  seed = 123
)
```

Arguments

- **ABD**: Actual birth date of the missing person.
- **DBD**: Declared birth date of the person of interest.
- **PrelimData**: Used when type = 2, is the dataframe with the DBD of the persons of interest in the database.
alpha
A vector containing the alpha values for the dirichlet. It should contain the number of categories of differences between DBD and ABD.

cuts
Value of differences between DBD and ABD used for category definition.
draw
Number of simulations for Dirichlet distribution computation.
type
Type of scenario, type 1 is an "open search", where it is unknown if the missing person is in the database. Type 2 refers to a scenario where the missing person is in the database.

seed
Seed for simulations.

Value
A value of Likelihood ratio based on preliminary investigation data. In this case, birth date.

Examples

library(DirichletReg)
PrelimData, alpha = c(1, 4, 60, 11, 6, 4, 4),
cuts = c(-120, -30, 30, 120, 240, 360),
type = 1, seed = 123)

LRdist
Likelihood ratio distribution: a function for plotting expected log10(LR) distributions under relatedness and unrelatedness.

Description
Likelihood ratio distribution: a function for plotting expected log10(LR) distributions under relatedness and unrelatedness.

Usage

LRdist(datasim, type = 1)

Arguments

datasim
Input dataframe containing expected LRs for related and unrelated POIs. It should be the output from makeLRsims function.
type
Select between a density plot (type = 1, default) or a violin plot (type = 2).

Value
A plot showing likelihood ratio distributions under relatedness and unrelatedness hypothesis.
Examples

```r
library(forrel)
x = linearPed(2)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
datasim = simLRgen(x, missing = 5, 10, 123)
LRdist(datasim)
```

LRsex

Likelihood ratio for age variable

Description

Likelihood ratio for age variable

Usage

```r
LRsex(
  MPs = "F",
  eps = 0.05,
  erRs = eps,
  nsims = 1000,
  Ps = c(0.5, 0.5),
  H = 1,
  LR = FALSE
)
```

Arguments

- **MPs** :: MP sex
- **eps** :: epsilon parameter.
- **erRs** :: error rate in the database.
- **nsims** :: number of simulations performed.
- **Ps** :: Sex probabilities in the population.
- **H** :: hypothesis tested, H1: UHR is MP, H2: UHR is no MP
- **LR** :: compute LR values

Value

A value of Likelihood ratio based on preliminary investigation data. In this case, sex.

Examples

```r
LRsex()
```
Description

Make preliminary investigation MP data simulations: a function for obtaining a database of preliminary investigation data for a missing person search.

Usage

```r
makeMPprelim(
  casetype = "children",
  dateinit = "1975/01/01",
  scenario = 1,
  femaleprop = 0.5,
  ext = 100,
  numsims = 10000,
  seed = 123,
  region = c("North America", "South America", "Africa", "Asia", "Europe", "Oceania"),
  regionprob = c(0.2, 0.2, 0.2, 0.1, 0.2, 0.1)
)
```

Arguments

- **casetype**
 Type of missing person search case. Two options are available: "migrants" or "children".

- **dateinit**
 Minimum birth date of simulated missing person. Casetype: Children.

- **scenario**
 Birth date distribution scenarios: (1) non-uniform, (2) uniform. Casetype: Children.

- **femaleprop**
 Proportion of females. Casetype: All.

- **ext**
 Time extension for minimum birth date, range in scenario 1 and days in scenario 2. Casetype: Children.

- **numsims**
 Number of simulated MPs. Casetype: All.

- **seed**
 Select a seed for simulations. If it is defined, results will be reproducible. Casetype: All.

- **region**
 Birth region or place in missing children case or place of place of the last seen in missing migrant case. Casetype: All.

- **regionprob**
 Region proportions. Casetype: All.

Value

An object of class data.frame with preliminary investigation data.
makePOIgen

Examples

```r
makeMPprelim()
```

<table>
<thead>
<tr>
<th>makePOIgen</th>
<th>Make POIs gen: a function for obtaining a database with genetic information from simulated POIs or UHRs.</th>
</tr>
</thead>
</table>

Description

Make POIs gen: a function for obtaining a database with genetic information from simulated POIs or UHRs.

Usage

```r
makePOIgen(numsims = 100, reference, seed = 123)
```

Arguments

- `numsims`: Number of simulations performed (num of POIs or UHRs).
- `reference`: Indicate the reference STRs/SNPs frequency database used for simulations.
- `seed`: Select a seed for simulations. If it is defined, results will be reproducible. Suggested, `seed = 123`

Value

An object of class `data.frame` with genetic information from POIs (randomly sampled from the frequency database).

Examples

```r
library(forrel)
freqdata <- getfreqs(Argentina)
makePOIgen(numsims = 100, reference = freqdata, seed = 123)
```
Description

Make preliminary investigation POI/UHR data simulations: a function for obtaining a database of preliminary investigation data for a missing person search.

Usage

```r
makePOIprelim(
    casetype = "children",
    dateinit = "1975/01/01",
    scenario = 1,
    femaleprop = 0.5,
    ext = 100,
    numsims = 10000,
    seed = 123,
    birthprob = c(0.09, 0.9, 0.01),
    region = c("North America", "South America", "Africa", "Asia", "Europe", "Oceania"),
    regionprob = c(0.2, 0.2, 0.2, 0.1, 0.2, 0.1)
)
```

Arguments

casetype
Type of missing person search case. Two options are available: "migrants" or "children".
dateinit
Minimum birth date of simulated persons of interest. Casetype: Children.
scenario
Birth date distribution scenarios: (1) non-uniform, (2) uniform. Casetype: Children.
femaleprop
Proportion of females. Casetype: All.
numsim
Number of simulated POIs/UHRs. Casetype: All.
seed
Select a seed for simulations. If it is defined, results will be reproducible. Casetype: All.
birthprob
region
Birth region or place in missing children case or place of discovery of the human remain in missing migrant case. Casetype: All.
regionprob
Region proportions. Casetype: All.
postSim

Value

An object of class data.frame with preliminary investigation data.

Examples

```r
makePOIprelim(
  dateinit = "1975/01/01",
  scenario = 1,
  femaleprop = 0.5,
  ext = 100,
  numsims = 10000,
  seed = 123,
  birthprob = c(0.09, 0.9, 0.01),
  region = c("North America", "South America", "Africa", "Asia", "Europe", "Oceania"),
  regionprob = c(0.2, 0.2, 0.2, 0.1, 0.2, 0.1))
```

mispiApp

Description

Missing person shiny app

Usage

```r
mispiApp()
```

Value

An user interface for computing non-genetic LRs and conditioned probability tables.

Examples

```r
CPT_MP()
```

postSim

Description

postSim: A function for simulating posterior odds
Usage

```r
defaultSim(
  datasim, 
  Prior = 0.01, 
  PriorModel = c("prelim", "uniform")[1], 
  eps = 0.05, 
  erRs = 0.01, 
  epc = Cmodel(),
  erRc = Cmodel(),
  MPc = 1, 
  epa = 0.05, 
  erRa = 0.01, 
  MPa = 10, 
  MPr = 2
)
```

Arguments

- **datasim**: Output from `simLRgen` function.
- **Prior**: Prior probability for H1.
- **PriorModel**: Prior odds model: "prelim" is based on preliminary data, and "uniform" uses only the prior probability of H1.
- **eps**: Epsilon parameter sex.
- **erRs**: Error parameter sex.
- **epc**: Epsilon parameter hair color.
- **erRc**: Error parameter hair color.
- **MPc**: Missing person hair color.
- **epa**: Epsilon parameter age.
- **erRa**: Error parameter age.
- **MPa**: Missing person age.
- **MPr**: Missing person age error range.

Value

A value of posterior odds.

Examples

```r
library(forrel)
x = linearPed(2)
plot(x)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
datasim = simLRgen(x, missing = 5, 10, 123)
postSim(datasim)
```
simLRgen

Simulate likelihoods ratio (LRs) based on genetic data: a function for obtaining expected LRs under relatedness and unrelatedness kinship hypothesis.

Description

Simulate likelihoods ratio (LRs) based on genetic data: a function for obtaining expected LRs under relatedness and unrelatedness kinship hypothesis.

Usage

\texttt{simLRgen(reference, missing, numsims, seed, numCores = 1)}

Arguments

- \texttt{reference} Reference pedigree. It could be an input from read_fam() function or a pedigree built with pedtools.
- \texttt{missing} Missing person ID/label indicated in the pedigree.
- \texttt{numsims} Number of simulations performed.
- \texttt{seed} Select a seed for simulations. If it is defined, results will be reproducible. Suggested, seed = 123
- \texttt{numCores} Enables parallelization

Value

An object of class data.frame with LRs obtained for both hypothesis, Unrelated where POI is not MP or Related where POI is MP.

Examples

\begin{verbatim}
library(forrel)
x = linearPed(2)
plot(x)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
dataSim = simLRgen(x, missing = 5, 10, 123)
\end{verbatim}
Simulate likelihoods ratio (LRs) based on preliminary investigation data: a function for obtaining expected LRs under relatedness and unrelatedness kinship hypothesis.

Usage

```r
simLRprelim(
  vartype,
  numsims = 1000,
  seed = 123,
  int = 5,
  ErrorRate = 0.05,
  alphaBdate = c(1, 4, 60, 11, 6, 4, 4),
  numReg = 6,
  MP = NULL,
  database,
  cuts = c(-120, -30, 30, 120, 240, 360)
)
```

Arguments

- **vartype**
 Indicates type of preliminary investigation variable. Options are: sex, region, age, birthDate and height.

- **numsims**
 Number of simulations performed.

- **seed**
 Seed for simulations.

- **int**
 Interval parameter, used for height and age vartypes. It defines the estimation range, for example, if MP age is 55, and int is 10, the estimated age range will be between 45 and 65.

- **ErrorRate**
 Error rate for sex, region, age and Height LR calculations.

- **alphaBdate**
 Vector containing alpha parameters for Dirichlet distribution. Usually they are the frequencies of the solved cases in each category.

- **numReg**
 Number of regions present in the case.

- **MP**
 Introduce the preliminary data of the selected variable (vartype) of the MP. If it is null, open search is carried out. If it is not NULL, close search LR is computed. Variables values must be named as those presented in makePOIprelim function.

- **database**
 It is used when the close search (MP not NULL), is carried out. It could be the output from makePOIprelim or a database with the same structure.

- **cuts**
 Value of differences between DBD and ABD used for category definition. They must be the same as the ones selected for alphaBdate vector.
An object of class data.frame with LRs obtained for both hypothesis, Unrelated where POI/UHR is not MP or Related where POI/UHR is MP.

Examples

```r
library(mispitools)
simLrprelim("sex")
```

Trates

Threshold rates: a function for computing error rates and Matthews correlation coefficient of a specific LR threshold.

Description

Threshold rates: a function for computing error rates and Matthews correlation coefficient of a specific LR threshold.

Usage

```r
Trates(datasim, threshold)
```

Arguments

- **datasim**: Input dataframe containing expected LRs for related and unrelated POIs. It should be the output from makeLRsims function.
- **threshold**: Likelihood ratio threshold selected for error rates calculation.

Value

Values of false positive and false negative rates and MCC for a specific LR threshold.

Examples

```r
library(forrel)
x = linearPed(2)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)
datasim = simLRgen(x, missing = 5, 10, 123)
Trates(datasim, 10)
```
USA

Description

STRs allelic frequencies from specified country.

Usage

USA

Format

A data frame allele frequencies
Index

* datasets
 Argentina, 2
 Asia, 3
 Austria, 3
 BosniaHerz, 3
 China, 4
 Europe, 9
 Japan, 10
 USA, 23
 Argentina, 2
 Asia, 3
 Austria, 3
 BosniaHerz, 3
 China, 4
 Cmodel, 4
 combLR, 5
 CondPlot, 6
 CPT_MP, 6
 CPT_POP, 7
 deplot, 8
 DeT, 8
 Europe, 9
 getfreqs, 9
 Japan, 10
 LRage, 10
 LRcol, 11
 LRDate, 12
 LRDist, 13
 LRsex, 14
 makeMPprelim, 15
 makePOIgen, 16
 makePOIprelim, 17
 mispiApp, 18
 postSim, 18
 simLRgen, 20
 simLRprelim, 21
 Trates, 22
 USA, 23