Package ‘misreport’

February 27, 2017

Title Statistical Analysis of Misreporting on Sensitive Survey Questions

Description Enables investigation of the predictors of misreporting on sensitive survey questions through a multivariate list experiment regression method. The method permits researchers to model whether a survey respondent's answer to the sensitive item in a list experiment is different from his or her answer to an analogous direct question.

Version 0.1.1

Depends R (>= 3.2.0)

Imports numDeriv (>= 2014.2-1), VGAM (>= 1.0-2), mvtnorm (>= 1.0-5)

Suggests knitr, rmarkdown

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

VignetteBuilder knitr

NeedsCompilation no

Author Gregory Eady [aut, cre]

Maintainer Gregory Eady <gregory.eady@gmail.com>

Repository CRAN

Date/Publication 2017-02-27 08:15:34

R topics documented:

 bootListExperiment .. 2
 gender ... 7
 listExperiment ... 8
 predict.listExperiment .. 13
 print.listExperiment ... 14
 summary.listExperiment ... 15

Index 16
bootListExperiment

List experiment regression with bootstrapped standard errors

Description

A wrapper function that makes repeated calls to listExperiment to calculate parameter estimates and standard errors through non-parametric boot-strapping.

Usage

```r
bootListExperiment(formula, data, treatment, J, direct = NULL,
    sensitive.response = NULL, outcome = NULL, outcome.trials = NULL,
    outcome.model = "logistic", outcome.constrained = TRUE,
    control.constraint = "partial", misreport.treatment = TRUE,
    weights = NULL, se = TRUE, tolerance = 1e-08, max.iter = 5000,
    n.runs = 1, verbose = TRUE, get.data = FALSE, par.control = NULL,
    par.sensitive = NULL, par.misreport = NULL, par.outcome = NULL,
    par.outcome.aux = NULL, formula.control = NULL,
    formula.sensitive = NULL, formula.misreport = NULL,
    formula.outcome = NULL, boot.iter = 1000, parallel = FALSE,
    n.cores = 2, cluster = NULL)
```

Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted.
- **data**: A data frame containing the variables to be used in the model.
- **treatment**: A string indicating the name of the treatment indicator in the data. This variable must be coded as a binary, where 1 indicates assignment to treatment and 0 indicates assignment to control.
- **J**: An integer indicating the number of control items in the list experiment.
- **direct**: A string indicating the name of the direct question response in the data. The direct question must be coded as a binary variable. If NULL (default), a misreport sub-model is not fit.
- **sensitive.response**: A value 0 or 1 indicating whether the response that is considered sensitive in the list experiment/direct question is 0 or 1.
- **outcome**: A string indicating the variable name in the data to use as the outcome in an outcome sub-model. If NULL (default), no outcome sub-model is fit. [experimental]
- **outcome.trials**: An integer indicating the number of trials in a binomial/betabinomial model if both an outcome sub-model is used and if the argument outcome.model is set to "binomial" or "betabinomial". [experimental]
- **outcome.model**: A string indicating the model type to fit for the outcome sub-model ("logistic", "binomial", "betabinomial"). [experimental]
outcome.constrained
A logical value indicating whether to constrain $U^* = 0$ in the outcome sub-model. Defaults to TRUE. [experimental]

control.constraint
A string indicating the constraint to place on Z^* and U^* in the control-items sub-model:

"none" (default) Estimate separate parameters for Z^* and U^*.
"partial" Constrain $U^* = 0$.
"full" Constrain $U^* = Z^* = 0$.

misreport.treatment
A logical value indicating whether to include a parameter for the treatment indicator in the misreport sub-model. Defaults to TRUE.

weights
A string indicating the variable name of survey weights in the data (note: standard errors are not currently output when survey weights are used).

se
A logical value indicating whether to calculate standard errors. Defaults to TRUE.

tolerance
The desired accuracy for EM convergence. The EM loop breaks after the change in the log-likelihood is less than the value of tolerance. Defaults to 1e-08.

max.iter
The maximum number of iterations for the EM algorithm. Defaults to 10000.

n.runs
The total number of times that the EM algorithm is run (can potentially help avoid local maxima). Defaults to 1.

verbose
A logical value indicating whether to print information during model fitting. Defaults to TRUE.

get.data
For internal use. Used by wrapper function `bootListExperiment`.

par.control
A vector of starting parameters for the control-items sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.sensitive
A vector of starting parameters for the sensitive-item sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.misreport
A vector of starting parameters for the misreport sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.outcome
A vector of starting parameters for the outcome sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2). [experimental]

par.outcome.aux
A vector of starting parameters for the outcome sub-model in which outcome.model is "betabinomial". i.e. c(alpha, beta). If NULL (default), randomly generated starting points are used, drawn from uniform(0, 1). [experimental]

formula.control
An object of class "formula" used to specify a control-items sub-model that is different from that given in formula. (e.g. ~ x1 + x2)
An object of class "formula" used to specify a sensitive-item sub-model that is different from that given in \texttt{formula}. (e.g. \(\sim x_1 + x_2 \))

An object of class "formula" used to specify a misreport sub-model that is different from that given in \texttt{formula}. (e.g. \(\sim x_1 + x_2 \))

An object of class "formula" used to specify an outcome sub-model that is different from that given in \texttt{formula}. (e.g. \(\sim x_1 + x_2 \))

The number of bootstrap samples to generate.

A logical value indicating whether to run bootstrapping in parallel on a multi-core computer.

The number of cores/threads on which to generate bootstrap samples (when \texttt{parallel} = \texttt{TRUE}). Defaults to 2.

An optional cluster object using \texttt{makeCluster()} from the \texttt{parallel} package (useful if running on an MPI server).

\texttt{bootListExperiment} is a wrapper for the function \texttt{listExperiment} that allows researchers to fit a bootstrapped model. The arguments for this function include those for the \texttt{listExperiment} function, in addition to a small number of arguments specific to the bootstrap.

\texttt{listExperiment} returns an object of class "listExperiment". A summary of this object is given using the \texttt{summary.listExperiment} function. All components in the "listExperiment" class are listed below.

\texttt{par.control} A named vector of coefficients from the control-items sub-model.

\texttt{par.sensitive} A named vector of coefficients from the sensitive-item sub-model.

\texttt{par.misreport} A named vector of coefficients from the misreport sub-model.

\texttt{par.outcome} A named vector of coefficients from the outcome sub-model.

\texttt{par.outcome.aux} A named vector of (auxiliary) coefficients from the outcome sub-model (if \texttt{outcome.model} = "betabinomial").

\texttt{df} Degrees of freedom.

\texttt{se.sensitive} Standard errors for parameters in the sensitive-item sub-model.

\texttt{se.control} Standard errors for parameters in the control-items sub-model.

\texttt{se.misreport} Standard errors for parameters in the misreport sub-model.

\texttt{se.outcome} Standard errors for parameters in the outcome sub-model.

\texttt{se.outcome.aux} Standard errors for the auxiliary parameters in the outcome sub-model (if \texttt{outcome.model} = "betabinomial").
vcov.mle Variance-covariance matrix.

w The matrix of posterior predicted probabilities for each observation in the data used for model fitting.

data The data frame used for model fitting.
direct The string indicating the variable name of the direct question.
treatment The string indicating the variable name of the treatment indicator.
model.misreport A logical value indicating whether a misreport sub-model was fit.
outcome.model The type of model used as the outcome sub-model.
outcome.constrained A logical value indicating whether the parameter U* was constrained to 0 in the outcome sub-model.
control.constraint A string indicating the constraints placed on the parameters Z* and U* in the control-items sub-model.
misreport.treatment A logical value indicating whether a treatment indicator was included in the misreport sub-model.
weights A string indicating the variable name of the survey weights.
formula The model formula.
formula.control The model specification of the control-items sub-model.
formula.sensitive The model specification of the sensitive-item sub-model.
formula.misreport The model specification of the misreport sub-model.
formula.outcome The model specification of the outcome sub-model.
sensitive.response The value 0 or 1 indicating the response to the list experiment/direct question that is considered sensitive.
xlevels The factor levels of the variables used in the model.
llik The model log-likelihood.
n The sample size of the data used for model fitting (this value excludes rows removed through listwise deletion).
J The number of control items in the list experiment.
se A logical value indicating whether standard errors were calculated.
runs The parameter estimates from each run of the EM algorithm (note: the parameters that result in the highest log-likelihood are used as the model solution).
call The method call.
boot A logical value indicating whether non-parametric bootstrapping was used to calculate model parameters and standard errors.

References

Examples

```r
## Simulated list experiment and direct question
n <- 10000
J <- 4

# Covariates
x <- cbind(intercept = rep(1, n), continuous1 = rnorm(n),
          continuous2 = rnorm(n), binary1 = rbinom(n, 1, 0.5))
treatment <- rbinom(n, 1, 0.5)

# Simulate Z*
param_sensitive <- c(0.25, -0.25, 0.5, 0.25)
prob_sensitive <- plogis(x %*% param_sensitive)
true_belief <- rbinom(n, 1, prob = prob_sensitive)

# Simulate whether respondent misreports (U*)
param_misreport <- c(-0.25, 0.25, -0.5, 0.5)
prob_misreport <- plogis(x %*% param_misreport) %*% true_belief
misreport <- rbinom(n, 1, prob = prob_misreport)

# Simulate control items Y*
param_control <- c(0.25, 0.25, -0.25, 0.25, U = -0.5, Z = 0.25)
prob.control <- plogis(cbind(x, misreport, true_belief) %*% param_control)
control_items <- rbinom(n, J, prob.control)

# List experiment and direct question responses
direct <- true_belief
direct[misreport == 1] <- 0
y <- control_items + true_belief * treatment

A <- data.frame(y, direct, treatment,
                 continuous1 = x[, "continuous1"],
                 continuous2 = x[, "continuous2"],
                 binary1 = x[, "binary1"])

## Not run:
## Note: substantial computation time
model.sim <- bootListExperiment(y ~ continuous1 + continuous2 + binary1,
data = A, treatment = "treatment",
direct = "direct",
J = 4, control.constraint = "none",
sensitive.response = 1,
boot.iter = 500, parallel = TRUE, n.cores = 2)

summary(model.sim, digits = 3)

## End(Not run)
```
List experiment regarding gender and politics

Description

A dataset containing responses to a list experiment and direct question regarding the statement “women are as competent as men in politics.” Data also contain socio-demographics for gender, age, education, region, and political ideology.

Usage

gender

Format

A data frame with 5000 rows and 7 variables:

- y: response to the list experiment
- treatment: treatment assignment
- direct: response to the direct question
- gender: gender of respondent {Woman, Man}
- age: age of respondent {18, 19, ..., 94}
- ageGroup: age group of respondent {18-29, 30-39, 40-49, 50-64, 65+}
- education: education of respondent {High school or below, College, University degree}
- motherTongue: mother tongue of respondent {English, French, Other language}
- region: region of respondent {Ontario, Atlantic, Quebec, West}
- selfPlacement: political ideology of respondent (0 = right-wing, 10 = left wing) {0, 1, ..., 10}
- weight: survey weight

Source

Eady, Gregory. 2016 "The Statistical Analysis of Misreporting on Sensitive Survey Questions."
listExperiment
List experiment regression

Description
Regression analysis for sensitive survey questions using a list experiment and direct question.

Usage
```
listExperiment(formula, data, treatment, J, direct = NULL,
               sensitive.response = NULL, outcome = NULL, outcome.trials = NULL,
               outcome.model = "logistic", outcome.constrained = TRUE,
               control.constraint = "none", misreport.treatment = TRUE, weights = NULL,
               se = TRUE, tolerance = 1e-08, max.iter = 10000, n.runs = 3,
               verbose = TRUE, get.data = FALSE, par.control = NULL,
               par.sensitive = NULL, par.misreport = NULL, par.outcome = NULL,
               par.outcome.aux = NULL, formula.control = NULL,
               formula.sensitive = NULL, formula.misreport = NULL,
               formula.outcome = NULL, get.boot = 0, ...)```

**Arguments**
- `formula`: An object of class "formula": a symbolic description of the model to be fitted.
- `data`: A data frame containing the variables to be used in the model.
- `treatment`: A string indicating the name of the treatment indicator in the data. This variable must be coded as a binary, where 1 indicates assignment to treatment and 0 indicates assignment to control.
- `J`: An integer indicating the number of control items in the list experiment.
- `direct`: A string indicating the name of the direct question response in the data. The direct question must be coded as a binary variable. If NULL (default), a misreport sub-model is not fit.
- `sensitive.response`: A value 0 or 1 indicating whether the response that is considered sensitive in the list experiment/direct question is 0 or 1.
- `outcome`: A string indicating the variable name in the data to use as the outcome in an outcome sub-model. If NULL (default), no outcome sub-model is fit. [experimental]
- `outcome.trials`: An integer indicating the number of trials in a binomial/betabinomial model if both an outcome sub-model is used and if the argument `outcome.model` is set to "binomial" or "betabinomial". [experimental]
- `outcome.model`: A string indicating the model type to fit for the outcome sub-model ("logistic", "binomial", "betabinomial"). [experimental]
- `outcome.constrained`: A logical value indicating whether to constrain U* = 0 in the outcome sub-model. Defaults to TRUE. [experimental]
control.constraint
A string indicating the constraint to place on Z* and U* in the control-items sub-model:

"none" (default) Estimate separate parameters for Z* and U*.
"partial" Constrain U* = 0.
"full" Constrain U* = Z* = 0.

misreport.treatment
A logical value indicating whether to include a parameter for the treatment indicator in the misreport sub-model. Defaults to TRUE.

weights
A string indicating the variable name of survey weights in the data (note: standard errors are not currently output when survey weights are used).

se
A logical value indicating whether to calculate standard errors. Defaults to TRUE.

tolerance
The desired accuracy for EM convergence. The EM loop breaks after the change in the log-likelihood is less than the value of tolerance. Defaults to 1e-08.

max.iter
The maximum number of iterations for the EM algorithm. Defaults to 10000.

n.runs
The total number of times that the EM algorithm is run (can potentially help avoid local maxima). Defaults to 1.

verbose
A logical value indicating whether to print information during model fitting. Defaults to TRUE.

get.data
For internal use. Used by wrapper function bootListExperiment.

par.control
A vector of starting parameters for the control-items sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.sensitive
A vector of starting parameters for the sensitive-item sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.misreport
A vector of starting parameters for the misreport sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2).

par.outcome
A vector of starting parameters for the outcome sub-model. Must be in the order of the parameters in the resulting regression output. If NULL (default), randomly generated starting points are used, drawn from uniform(-2, 2). [experimental]

par.outcome.aux
A vector of starting parameters for the outcome sub-model in which outcome.model is "betabinomial". i.e. c(alpha, beta). If NULL (default), randomly generated starting points are used, drawn from uniform(0, 1). [experimental]

formula.control
An object of class "formula" used to specify a control-items sub-model that is different from that given in formula. (e.g. ~ x1 + x2)

formula.sensitive
An object of class "formula" used to specify a sensitive-item sub-model that is different from that given in formula. (e.g. ~ x1 + x2)
formula.misreport
An object of class "formula" used to specify a misreport sub-model that is different from that given in formula. (e.g. ~ x1 + x2)

formula.outcome
An object of class "formula" used to specify an outcome sub-model that is different from that given in formula. (e.g. ~ x1 + x2) [experimental]

get.boot
For internal use. An integer, which if greater than 0 requests that listExperiment() generate a non-parametric bootstrap sample and fit a model to that sample. Used by the function bootListExperiment.

Details
The listExperiment function allows researchers to fit a model for a list experiment and direct question simultaneously, as described in Eady (2017). The primary aim of the function is to allow researchers to model the probability that respondents provides one response to the sensitive item in a list experiment but respond otherwise when asked about the same sensitive item on a direct question. When a direct question response is excluded from the function, the model is functionally equivalent to that proposed by Imai (2011), as implemented as the ictreg function in the list package (https://CRAN.R-project.org/package=list).

Value
listExperiment returns an object of class "listExperiment". A summary of this object is given using the summary.listExperiment function. All components in the "listExperiment" class are listed below.

Slots
par.control A named vector of coefficients from the control-items sub-model.
par.sensitive A named vector of coefficients from the sensitive-item sub-model.
par.misreport A named vector of coefficients from the misreport sub-model.
par.outcome A named vector of coefficients from the outcome sub-model.
par.outcome.aux A named vector of (auxiliary) coefficients from the outcome sub-model (if outcome.model = "betabinomial").
df Degrees of freedom.
se.sensitive Standard errors for parameters in the sensitive-item sub-model.
se.control Standard errors for parameters in the control-items sub-model.
se.misreport Standard errors for parameters in the misreport sub-model.
se.outcome Standard errors for parameters in the outcome sub-model.
se.outcome.aux Standard errors for the auxiliary parameters in the outcome sub-model (if outcome.model = "betabinomial").
vcov.mle Variance-covariance matrix.
w The matrix of posterior predicted probabilities for each observation in the data used for model fitting.
data  The data frame used for model fitting.
direct  The string indicating the variable name of the direct question.
treatment  The string indicating the variable name of the treatment indicator.
model.misreport  A logical value indicating whether a misreport sub-model was fit.
outcome.model  The type of model used as the outcome sub-model.
outcome.constrained  A logical value indicating whether the parameter U* was constrained to 0 in the outcome sub-model.
control.constraint  A string indicating the constraints placed on the parameters Z* and U* in the control-items sub-model.
misreport.treatment  A logical value indicating whether a treatment indicator was included in the misreport sub-model.
weights  A string indicating the variable name of the survey weights.
formula  The model formula.
formula.control  The model specification of the control-items sub-model.
formula.sensitive  The model specification of the sensitive-item sub-model.
formula.misreport  The model specification of the misreport sub-model.
formula.outcome  The model specification of the outcome sub-model.
sensitive.response  The value 0 or 1 indicating the response to the list experiment/direct question that is considered sensitive.
xlevels  The factor levels of the variables used in the model.
llik  The model log-likelihood.
n  The sample size of the data used for model fitting (this value excludes rows removed through listwise deletion).
J  The number of control items in the list experiment.
se  A logical value indicating whether standard errors were calculated.
runs  The parameter estimates from each run of the EM algorithm (note: the parameters that result in the highest log-likelihood are used as the model solution).
call  The method call.
boot  A logical value indicating whether non-parametric bootstrapping was used to calculate model parameters and standard errors.

References

Eady, Gregory. 2017 "The Statistical Analysis of Misreporting on Sensitive Survey Questions."  
Examples

```r
EXAMPLE 1: Simulated list experiment and direct question
n <- 10000
J <- 4

Covariates
x <- cbind(intercept = rep(1, n),
 continuous1 = rnorm(n),
 continuous2 = rnorm(n),
 binary1 = rbinom(n, 1, 0.5))

treatment <- rbinom(n, 1, 0.5)

Simulate Z*
param_sensitive <- c(0.25, -0.25, 0.5, 0.25)
prob_sensitive <- plogis(x %*% param_sensitive)
true_belief <- rbinom(n, 1, prob = prob_sensitive)

Simulate whether respondent misreports (U*)
param_misreport <- c(-0.25, 0.25, -0.5, 0.5)
prob_misreport <- plogis(x %*% param_misreport) * true_belief
misreport <- rbinom(n, 1, prob = prob_misreport)

Simulate control items Y*
param_control <- c(0.25, 0.25, -0.25, 0.25, U = -0.5, Z = 0.25)
prob_control <- plogis(cbind(x, misreport, true_belief) %*% param_control)
control_items <- rbinom(n, J, prob_control)

List experiment and direct question responses
direct <- true_belief
direct[~misreport == 1] <- 0
y <- control_items + true_belief * treatment

A <- data.frame(y, direct, treatment,
 continuous1 = x[, "continuous1"],
 continuous2 = x[, "continuous2"],
 binary1 = x[, "binary1"])

Not run:
model.sim <- listExperiment(y ~ continuous1 + continuous2 + binary1,
 data = A,
 treatment = "treatment",
 direct = "direct",
 J = 4,
 control.constraint = "none",
 sensitive.response = 1)
summary(model.sim, digits = 3)

End(Not run)

EXAMPLE 2: Data from Eady (2017)
data(gender)

Not run:
Note: substantial computation time
```
predict.listExperiment

Predict method for the list experiment

Description

Obtains predictions from a fitted list experiment model of the class listExperiment.

Usage

## S3 method for class 'listExperiment'
predict(object, newdata = NULL,
         treatment.misreport = 0, par.control = NULL, par.sensitive = NULL,
         par.misreport = NULL, ...)

Arguments

- **object**: Object of class "listExperiment"
- **newdata**: An optional data frame from which to calculate predictions.
- **treatment.misreport**: Value of the treatment variable covariate in the misreport sub-model (if included in the model).
  - 0: Treatment indicator in the misreport sub-model is set to 0 for all individuals (default).
  - 1: Treatment indicator in the misreport sub-model is set to 1 for all individuals.
  - "observed": Treatment indicator in the misreport sub-model is set to the observed treatment value.
- **par.control**: An optional set of control-items sub-model parameters to use in place of those from the fitted model.
- **par.sensitive**: An optional set of sensitive-item sub-model parameters to use in place of those from the fitted model.
- **par.misreport**: An optional set of misreport sub-model parameters to use in place of those from the fitted model.
- **...**: Additional arguments
print.listExperiment

Details

If newdata is omitted, predictions will be made with the data used for model fitting.

Slots

z.hat Predicted probability of answering affirmatively to the sensitive item in the list experiment.
u.hat Predicted probability of misreporting (assuming respondent holds the sensitive belief).

References

Eady, Gregory. 2017 "The Statistical Analysis of Misreporting on Sensitive Survey Questions."

Examples

data(gender)

## Not run:
# Note: substantial computation time
model.gender <- listExperiment(y ~ gender + ageGroup + education +
    motherTongue + region + selfPlacement,
    data = gender, J = 4,
    treatment = "treatment", direct = "direct",
    control.constraint = "none",
    sensitive.response = 0,
    misreport.treatment = TRUE)
predict(model.gender, treatment.misreport = 0)

## End(Not run)
summary.listExperiment

Object summary of the listExperiment class

Details

Prints the object summary of the listExperiment class by calling the `summary.listExperiment` function.

Description

Summarizes results from a list experiment regression fit using `listExperiment` or `bootListExperiment`.

Usage

```r
S3 method for class 'listExperiment'
summary(object, digits = 4, ...) # Not run
```

Arguments

- `object`: Object of class "listExperiment".
- `digits`: Number of significant digits to print.
- `...`: Additional arguments.

Details

`summary.listExperiment` summarizes the information contained in a listExperiment object for each list experiment regression sub-model.

References

Eady, Gregory. 2017 "The Statistical Analysis of Misreporting on Sensitive Survey Questions."

Examples

```r
data(gender)

Not run:
Note: substantial computation time
model.gender <- listExperiment(y ~ gender + ageGroup + education +
 motherTongue + region + selfPlacement,
 data = gender, J = 4,
 treatment = "treatment", direct = "direct",
 control.constraint = "none",
 sensitive.response = 0,
 misreport.treatment = TRUE)

summary(model.gender)

End(Not run)
```
Index

*Topic datasets
  gender, 7

bootListExperiment, 2, 3, 9, 10, 15
formula, 2–4, 8–10
gender, 7
ictreg, 10
listExperiment, 2, 4, 8, 15
predict.listExperiment, 13
print.listExperiment, 14
summary.listExperiment, 4, 10, 14, 15, 15