Package ‘missingHE’

June 25, 2020

Type Package

Title Missing Outcome Data in Health Economic Evaluation

Version 1.4.1

Description Contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software 'JAGS' (which should be installed locally and which is loaded in 'missingHE' via the 'R' package 'R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, 'missingHE' provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown

VignetteBuilder knitr

License GPL-2

Encoding UTF-8

LazyData true

Imports mcmcplots, ggpur, ggmcmc, ggthemes, BCEA, ggplot2, grid, gridExtra, bayesplot, methods, R2jags, loo, coda, mcmcr

ROxygenNote 7.1.0

NeedsCompilation no

Author Andrea Gabrio [aut, cre]

Maintainer Andrea Gabrio <ucakgab@ucl.ac.uk>

Repository CRAN

Date/Publication 2020-06-25 21:40:02 UTC
Any internal function to detect the random effects component from an object of class formula.

Usage

```r
anyBars(term)
```

Arguments

term formula to be processed
Examples

#Internal function only
#no examples
#
#

coef.missingHE Extract regression coefficient estimates from objects in the class missingHE

Description

Produces a table printout with summary statistics for the regression coefficients of the health economic evaluation probabilistic model run using the function selection, pattern or hurdle.

Usage

S3 method for class 'missingHE'
coef(object, prob = c(0.025, 0.975), random = FALSE, digits = 3, ...)

Arguments

object A missingHE object containing the results of the Bayesian modelling and the economic evaluation
prob A numeric vector of probabilities within the range (0,1), representing the upper and lower CI sample quantiles to be calculated and returned for the estimates.
random Logical. If random is TRUE, the estimates of the random effects parameters are printed, when available.
digits Number of digits to be displayed for each estimate.
... Additional arguments affecting the summary produced.

Value

Prints a table with some summary statistics, including posterior mean, standard deviation and lower and upper quantiles based on the values specified in prob, for the posterior distributions of the regression coefficients of the effects and costs models run using the function selection, pattern or hurdle.

Author(s)

Andrea Gabrio

See Also

selection pattern hurdle diagnostic plot.missingHE
data_read_hurdle

Description

This internal function imports the data and outputs only those variables that are needed to run the hurdle model according to the information provided by the user.

Usage

```r
data_read_hurdle(
  data,
  model.eff, model.cost,
  model.se, model.sc,
  se, sc,
  type,
  center
)
```

Arguments

- `data` A data frame in which to find variables supplied in `model.eff`, `model.cost` (model formulas for effects and costs) and `model.se`, `model.sc` (model formulas for the structural effect and cost models). Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't' respectively.
- `model.eff` A formula expression in conventional R linear modelling syntax. The response must be a health economics effectiveness outcome ('e') whose name must correspond to that used in `data`, and any covariates are given on the right-hand side. If there are no covariates, specify `1` on the right hand side. Random effects can also be specified for each model parameter.
- `model.cost` A formula expression in conventional R linear modelling syntax. The response must be a health economics cost outcome ('c') whose name must correspond to that used in `data`, and any covariates are given on the right-hand side. If there are no covariates, specify `1` on the right hand side. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.
model.se
A formula expression in conventional R linear modelling syntax. The response must be a health economics effectiveness outcome ('e') whose name must correspond to that used in data, and any covariates used to estimate the probability of structural effects are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "probability" parameter for the structural effects through a logistic-linear model. Random effects can also be specified for each model parameter.

model.sc
A formula expression in conventional R linear modelling syntax. The response must be a health economics cost outcome ('c') whose name must correspond to that used in data, and any covariates used to estimate the probability of structural costs are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "probability" parameter for the structural costs through a logistic-linear model. Random effects can also be specified for each model parameter.

se
Structural value to be found in the effect data defined in data. If set to NULL, no structural value is chosen and a standard model for the effects is run.

sc
Structural value to be found in the cost data defined in data. If set to NULL, no structural value is chosen and a standard model for the costs is run.

type
Type of structural value mechanism assumed, either 'SCAR' (Structural Completely At Random) or 'SAR' (Structural At Random).

center
Logical. If center is TRUE all the covariates in the model are centered.

Examples

```r
#Internal function only
#no examples
#
```

Description

This internal function imports the data and outputs only those variables that are needed to run the model according to the information provided by the user.

Usage

```r
data_read_pattern(data, model.eff, model.cost, type, center)
```

Arguments

data
A data frame in which to find variables supplied in model.eff and model.cost. Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't' respectively.
data_read_selection

model.eff A formula expression in conventional R linear modelling syntax. The response must be a health economics effectiveness outcome ('e') whose name must correspond to that used in data, and any covariates are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.

model.cost A formula expression in conventional R linear modelling syntax. The response must be a health economics cost outcome ('c') whose name must correspond to that used in data, and any covariates are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.

type Type of missingness mechanism assumed. Choices are Missing At Random (MAR) and Missing Not At Random (MNAR).

center Logical. If center is TRUE all the covariates in the model are centered.

Examples

#Internal function only
#no examples
#
#

data_read_selection A function to read and re-arrange the data in different ways

Description

This internal function imports the data and outputs only those variables that are needed to run the model according to the information provided by the user.

Usage

data_read_selection(
 data,
 model.eff,
 model.cost,
 model.me,
 model.mc,
 type,
 center
)
Arguments

data A data frame in which to find variables supplied in model.eff and model.cost. Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't' respectively.

model.eff A formula expression in conventional R linear modelling syntax. The response must be a health economics effectiveness outcome ('e') whose name must correspond to that used in data, and any covariates are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.

model.cost A formula expression in conventional R linear modelling syntax. The response must be a health economics cost outcome ('c') whose name must correspond to that used in data, and any covariates are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.

model.me A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'me'(missing effects) and any covariates used to estimate the probability of missing effects are given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "probability" parameter for the missing effects through a logistic-linear model. Random effects can also be specified for each model parameter.

model.mc A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'mc'(missing costs) and any covariates used to estimate the probability of missing costs should be given on the right-hand side. If there are no covariates, specify 1 on the right hand side. By default, covariates are placed on the "probability" parameter for the missing costs through a logistic-linear model. Random effects can also be specified for each model parameter.

type Type of missingness mechanism assumed. Choices are Missing At Random (MAR) and Missing Not At Random (MNAR).

center Logical. If center is TRUE all the covariates in the model are centered.

Examples

#Internal function only
#no examples
#
#

diagnostic Diagnostic checks for assessing MCMC convergence of Bayesian models fitted in JAGS using the function selection, pattern or hurdle
Description
The focus is restricted to full Bayesian models in cost-effectiveness analyses based on the function selection, pattern and hurdle, with convergence of the MCMC chains that is assessed through graphical checks of the posterior distribution of the parameters of interest. Examples are density plots, trace plots, autocorrelation plots, etc. Other types of posterior checks are related to some summary MCMC statistics that are able to detect possible issues in the convergence of the algorithm, such as the potential scale reduction factor or the effective sample size. Different types of diagnostic tools and statistics are used to assess model convergence using functions contained in the package ggmcmc and mcmcplots. Graphics and plots are managed using functions contained in the package ggplot2 and ggthemes.

Usage

diagnostic(x, type = "denplot", param = "all", theme = NULL, ...)

Arguments

x
An object of class "missingHE" containing the posterior results of a full Bayesian model implemented using the function selection, pattern or hurdle.

type
Type of diagnostic check to be plotted for the model parameter selected. Available choices include: 'histogram' for histogram plots, 'denplot' for density plots, 'traceplot' for trace plots, 'acf' for autocorrelation plots, 'running' for running mean plots, 'compare' for comparing the distribution of the whole chain with only its last part, 'cross' for crosscorrelation plots, 'Rhat' for the potential scale reduction factor, 'geweke' for the geweke diagnostic, 'pairs' for posterior correlation among the parameters, 'caterpillar' for caterpillar plots. In addition the class 'summary' provides an overview of some of the most popular diagnostic checks for each parameter selected.

param
Name of the family of parameters to process, as given by a regular expression. For example the mean parameters for the effect and cost variables can be specified using 'mu.e' and 'mu.c' respectively. Different types of models may have different parameters depending on the assumed distributions and missing data assumptions. To see a complete list of all possible parameters by types of models assumed see details.

theme
Type of ggplot theme among some pre-defined themes. For a full list of available themes see details.

...
Additional parameters that can be provided to manage the graphical output of diagnostic.

Details
Depending on the types of plots specified in the argument type, the output of diagnostic can produce different combinations of MCMC visual posterior checks for the family of parameters indicated in the argument param. For a full list of the available plots see the description of the argument type or see the corresponding plots in the package ggmcmc.

The parameters that can be assessed through diagnostic are only those included in the object x (see Arguments). Specific character names must be specified in the argument param according to the specific model implemented. The available names and the parameters associated with them are:
• "mu.e" the mean parameters of the effect variables in the two treatment arms.
• "mu.c" the mean parameters of the cost variables in the two treatment arms.
• "mu.e.p" the pattern-specific mean parameters of the effect variables in the two treatment arms (only with the function pattern).
• "mu.c.p" the pattern-specific mean parameters of the cost variables in the two treatment arms (only with the function pattern).
• "sd.e" the standard deviation parameters of the effect variables in the two treatment arms.
• "sd.c" the standard deviation parameters of the cost variables in the two treatment arms.
• "alpha" the regression intercept and covariate coefficient parameters for the effect variables in the two treatment arms.
• "beta" the regression intercept and covariate coefficient parameters for the cost variables in the two treatment arms.
• "random.alpha" the regression random effects intercept and covariate coefficient parameters for the effect variables in the two treatment arms.
• "random.beta" the regression random effects intercept and covariate coefficient parameters for the cost variables in the two treatment arms.
• "p.e" the probability parameters of the missingness or structural values mechanism for the effect variables in the two treatment arms (only with the function selection or hurdle).
• "p.c" the probability parameters of the missingness or structural values mechanism for the cost variables in the two treatment arms (only with the function selection or hurdle).
• "gamma.e" the regression intercept and covariate coefficient parameters of the missingness or structural values mechanism for the effect variables in the two treatment arms (only with the function selection or hurdle).
• "gamma.c" the regression intercept and covariate coefficient parameters of the missingness or structural values mechanism for the cost variables in the two treatment arms (only with the function selection or hurdle).
• "random.gamma.e" the random effects regression intercept and covariate coefficient parameters of the missingness or structural values mechanism for the effect variables in the two treatment arms (only with the function selection or hurdle).
• "random.gamma.c" the random effects regression intercept and covariate coefficient parameters of the missingness or structural values mechanism for the cost variables in the two treatment arms (only with the function selection or hurdle).
• "pattern" the probabilities associated with the missingness patterns in the data (only with the function pattern).
• "delta.e" the mnar parameters of the missingness mechanism for the effect variables in the two treatment arms (only with the function selection or pattern).
• "delta.c" the mnar parameters of the missingness mechanism for the cost variables in the two treatment arms (only with the function selection or pattern).
• "random.delta.e" the random effects mnar parameters of the missingness mechanism for the effect variables in the two treatment arms (only with the function selection).
• "random.delta.c" the random effects mnar parameters of the missingness mechanism for the cost variables in the two treatment arms (only with the function selection).
• "all" all available parameters stored in the object x.

When the object x is created using the function `pattern`, pattern-specific standard deviation ("sd.e", "sd.c") and regression coefficient parameters ("alpha", "beta") for both outcomes can be visualised. The parameters associated with a missingness mechanism can be accessed only when x is created using the function `selection` or `pattern`, while the parameters associated with the model for the structural values mechanism can be accessed only when x is created using the function `hurdle`.

The argument `theme` allows to customise the graphical output of the plots generated by `diagnostic` and allows to choose among a set of possible pre-defined themes taken form the package `ggtheme`. For a complete list of the available character names for each theme, see `ggthemes`.

Value

A `ggplot` object containing the plots specified in the argument `type`

Author(s)

Andrea Gabrio

References

See Also

`ggs selection selection hurdle`.

Examples

```r
#For examples see the function selection, pattern or hurdle
# #
```
Arguments

- term: formula to be processed

Examples

Internal function only
no examples
#
#

hurdle

Full Bayesian Models to handle missingness in Economic Evaluations
(Hurdle Models)

Description

Full Bayesian cost-effectiveness models to handle missing data in the outcomes using Hurdle models under a variety of alternative parametric distributions for the effect and cost variables. Alternative assumptions about the mechanisms of the structural values are implemented using a hurdle approach. The analysis is performed using the BUGS language, which is implemented in the software JAGS using the function jags. The output is stored in an object of class ’missingHE’.

Usage

hurdle(
 data,
 model.eff,
 model.cost,
 model.se = se ~ 1,
 model.sc = sc ~ 1,
 se = 1,
 sc = 0,
 dist_e,
 dist_c,
 type,
 prob = c(0.025, 0.975),
 n.chains = 2,
 n.iter = 20000,
 n.burnin = floor(n.iter/2),
 inits = NULL,
 n.thin = 1,
 ppc = FALSE,
 save_model = FALSE,
 prior = "default",
 ...
)
Arguments

data
A data frame in which to find the variables supplied in `model.eff`, `model.cost` (model formulas for effects and costs) and `model.se`, `model.sc` (model formulas for the structural effect and cost models). Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't', respectively.

model.eff
A formula expression in conventional R linear modelling syntax. The response must be a health economic effectiveness outcome ('e') whose name must correspond to that used in `data`. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.cost
A formula expression in conventional R linear modelling syntax. The response must be a health economic cost outcome ('c') whose name must correspond to that used in `data`. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "location" parameter of the distribution through a linear model. A joint bivariate distribution for effects and costs can be specified by including 'e' on the right-hand side of the formula for the costs model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.se
A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'se'(structural effects). Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "probability" parameter for the structural effects through a logistic-linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.sc
A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'sc'(structural costs). Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "probability" parameter for the structural costs through a logistic-linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

se
Structural value to be found in the effect variables defined in `data`. If set to `NULL`, no structural value is chosen and a standard model for the effects is run.

sc
Structural value to be found in the cost variables defined in `data`. If set to `NULL`, no structural value is chosen and a standard model for the costs is run.

dist_e
Distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern').
distribution assumed for the costs. Current available choices are: Normal ('norm'),
Gamma ('gamma') or LogNormal ('lnorm').

Type of structural value mechanism assumed. Choices are Structural Completely
At Random (SCAR), and Structural At Random (SAR).

A numeric vector of probabilities within the range (0,1), representing the upper
and lower CI sample quantiles to be calculated and returned for the imputed
values.

Number of chains.

Number of iterations.

Number of warmup iterations.

A list with elements equal to the number of chains selected; each element of the
list is itself a list of starting values for the JAGS model, or a function creating
(possibly random) initial values. If inits is NULL, JAGS will generate initial
values for all the model parameters.

Thinning interval.

Logical. If ppc is TRUE, the estimates of the parameters that can be used to
generate replications from the model are saved.

Logical. If save_model is TRUE a txt file containing the model code is printed
in the current working directory.

A list containing the hyperprior values provided by the user. Each element of this
list must be a vector of length two containing the user-provided hyperprior val-
ues and must be named with the name of the corresponding parameter. For ex-
ample, the hyperprior values for the standard deviation parameter for the effects
can be provided using the list prior = list('sigma.prior.e' = c(0,100)).
For more information about how to provide prior hypervalues for different types
of parameters and models see details. If prior is set to 'default', the default
values will be used.

... Additional arguments that can be provided by the user. Examples are d_e and
d_c, which should correspond to two binary indicator vectors with length equal
to the number of rows of data. By default these variables are constructed within
the function based on the observed data but it is possible for the user to directly
provide them as a means to explore some Structural Not At Random (SNAR)
mechanism assumptions about one or both outcomes. Individuals whose cor-
responding indicator value is set to 1 or 0 will be respectively associated with
the structural or non-structural component in the model. Other optional argu-
ments are center = TRUE, which centers all the covariates in the model or the
additional arguments that can be provided to the function bcea to summarise
the health economic evaluation results.

Details

Depending on the distributions specified for the outcome variables in the arguments dist_e and
dist_c and the type of structural value mechanism specified in the argument type, different hurdle
models are built and run in the background by the function hurdle. These are mixture models
defined by two components: the first one is a mass distribution at the spike, while the second is a
parametric model applied to the natural range of the relevant variable. Usually, a logistic regression is used to estimate the probability of incurring a "structural" value (e.g. 0 for the costs, or 1 for the effects); this is then used to weigh the mean of the "non-structural" values estimated in the second component. A simple example can be used to show how hurdle models are specified. Consider a data set comprising a response variable y and a set of centered covariate X_j. Specifically, for each subject in the trial $i = 1, ..., n$ we define an indicator variable d_i taking value 1 if the i-th individual is associated with a structural value and 0 otherwise. This is modelled as:

$$d_i \sim \text{Bernoulli}(\pi_i)$$

$$\text{logit}(\pi_i) = \gamma_0 + \sum \gamma_j X_j$$

where

- π_i is the individual probability of a structural value in y.
- γ_0 represents the marginal probability of a structural value in y on the logit scale.
- γ_j represents the impact on the probability of a structural value in y of the centered covariates X_j.

When $\gamma_j = 0$, the model assumes a 'SCAR' mechanism, while when $\gamma_j \neq 0$ the mechanism is 'SAR'. For the parameters indexing the structural value model, the default prior distributions assumed are the following:

- $\gamma_0 \sim \text{Logistic}(0, 1)$
- $\gamma_j \sim \text{Normal}(0, 0.01)$

When user-defined hyperprior values are supplied via the argument `prior` in the function `hurdle`, the elements of this list (see Arguments) must be vectors of length 2 containing the user-provided hyperprior values and must take specific names according to the parameters they are associated with. Specifically, the names accepted by `missingHIE` are the following:

- location parameters α_0, β_0: "mean.prior.e"(effects) and/or "mean.prior.c"(costs)
- auxiliary parameters σ: "sigma.prior.e"(effects) and/or "sigma.prior.c"(costs)
- covariate parameters α_j, β_j: "alpha.prior"(effects) and/or "beta.prior"(costs)
- marginal probability of structural values γ_0: "p.prior.e"(effects) and/or "p.prior.c"(costs)
- covariate parameters in the model of the structural values γ_j (if covariate data provided): "gamma.prior.e"(effects) and/or "gamma.prior.c"(costs)

For simplicity, here we have assumed that the set of covariates X_j used in the models for the effects/costs and in the model of the structural effect/cost values is the same. However, it is possible to specify different sets of covariates for each model using the arguments in the function `hurdle` (see Arguments).

For each model, random effects can also be specified for each parameter by adding the term $+ (x \mid z)$ to each model formula, where x is the fixed regression coefficient for which also the random effects are desired and z is the clustering variable across which the random effects are specified (must be the name of a factor variable in the dataset). Multiple random effects can be specified using the notation $+ (x_1 + x_2 \mid \text{site})$ for each covariate that was included in the fixed effects formula. Random intercepts are included by default in the models if a random effects are specified but they can be removed by adding the term 0 within the random effects formula, e.g. $+ (0 + x \mid z)$.
Value

An object of the class ‘missingHE’ containing the following elements

- **data_set**: A list containing the original data set provided in `data` (see Arguments), the number of observed and missing individuals, the total number of individuals by treatment arm and the indicator vectors for the structural values
- **model_output**: A list containing the output of a JAGS model generated from the functions `jags` and the posterior samples for the main parameters of the model and the imputed values
- **cea**: A list containing the output of the economic evaluation performed using the function `bcea`
- **type**: A character variable that indicate which type of structural value mechanism has been used to run the model, either SCAR or SAR (see details)

Author(s)

Andrea Gabrio

References

See Also

- `jags`, `bcea`

Examples

```r
# Quick example to run using subset of MenSS dataset
MenSS.subset <- MenSS[50:100, ]

# Run the model using the hurdle function assuming a SCAR mechanism
# Use only 100 iterations to run a quick check
model.hurdle <- hurdle(data = MenSS.subset, model.eff = e ~ 1, model.cost = c ~ 1,
                       model.se = se ~ 1, model.sc = sc ~ 1, se = 1, sc = 0, dist.e = "norm", dist.c = "norm",
                       type = "SCAR", n.chains = 2, n.iter = 100, ppc = FALSE)

# Print the results of the JAGS model
print(model.hurdle)
#
# Use dic information criterion to assess model fit
pic.dic <- pic(model.hurdle, criterion = "dic", module = "total")
```
isAnyArgBar

An internal function to detect the random effects component from an object of class formula
isBar

Description

An internal function to detect the random effects component from an object of class formula

Usage

isAnyArgBar(term)

Arguments

term formula to be processed

Examples

#Internal function only
#no examples
#
#

An internal function to detect the random effects component from an object of class formula
jagsresults

An internal function to summarise results from BUGS model

Description

This function hides missing data distribution from summary results of BUGS models.

Usage

jagsresults(
 x,
 params,
 regex = FALSE,
 invert = FALSE,
 probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
 signif,
 ...
)

Arguments

x The rjags, rjags.parallel, or mcmc.list object for which results will be printed.
params Character vector or a regular expression pattern. The parameters for which results will be printed (unless invert is FALSE, in which case results for all parameters other than those given in params will be returned). If regex is FALSE, only those parameters that match params exactly will be returned. If regex is TRUE, params should be a character string giving the regular expression pattern to be matched.
regex If regex is TRUE, then params is expected to be a single string giving a text pattern to be matched. Parameters with names matching the pattern will be returned (unless invert is TRUE, which results in all parameters that do not match the pattern being returned). Text pattern matching uses regular expressions (regex).
invert Logical. If invert is TRUE, only those parameters that do not match elements of params will be returned.
probs A numeric vector of probabilities within range [0, 1], representing the sample quantiles to be calculated and returned.
signif If supplied, all columns other than n.eff will have their values rounded such that the most extreme value has the specified number of significant digits.
... Additional arguments accepted by grep, e.g. perl=TRUE, to allow look-around pattern matching.
Examples

```r
## Not run:
## Data
N <- 100
temp <- runif(N)
rain <- runif(N)
wind <- runif(N)
a <- 0.13
beta.temp <- 1.3
beta.rain <- 0.86
beta.wind <- -0.44
sd <- 0.16
y <- rnorm(N, a + beta.temp*temp + beta.rain*rain + beta.wind*wind, sd)
dat <- list(N=N, temp=temp, rain=rain, wind=wind, y=y)

### bugs example
library(R2jags)
## Model
M <- function() {
  for (i in 1:N) {
    y[i] ~ dnorm(y.hat[i], sd^-2)
    y.hat[i] <- a + beta.temp*temp[i] + beta.rain*rain[i] + beta.wind*wind[i]
    resid[i] <- y[i] - y.hat[i]
  }
  sd ~ dunif(0, 100)
  a ~ dnorm(0, 0.0001)
  beta.temp ~ dnorm(0, 0.0001)
  beta.rain ~ dnorm(0, 0.0001)
  beta.wind ~ dnorm(0, 0.0001)
}

## Fit model
jagsfit <- jags(dat, inits=NULL,
  parameters.to.save=c('a', 'beta.temp', 'beta.rain',
                       'beta.wind', 'sd', 'resid'),
  model.file=M, n.iter=10000)

## Output
# model summary
jagsfit

# Results for beta.rain only
jagsresults(x=jagsfit, param='beta.rain')

# Results for 'a' and 'sd' only
jagsresults(x=jagsfit, param=c('a', 'sd'))
jagsresults(x=jagsfit, param=c('a', 'sd'),
            probs=c(0.01, 0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975))

# Results for all parameters including the string 'beta'
jagsresults(x=jagsfit, param='beta', regex=TRUE)
```
MenSS economic data on STIs

Description
Data from a pilot RCT trial (The MenSS trial) on young men at risk of Sexually Trasmitted Infections (STIs). A total of 159 individuals were enrolled in trial: 75 in the control (t=1) and 84 in the active intervention (t=2). Clinical and health economic outcome data were collected via self-reported questionnaires at four time points throughout the study: baseline, 3 months, 6 months and 12 months follow-up. Health economic data include utility scores related to quality of life and costs, from which QALYs and total costs were then computed using the area under the curve method and by summing up the cost components at each time point. Clinical data include the total number of instances of unprotected sex and whether the individual was associated with an STI diagnosis or not. Baseline data are available for the utilities (no baseline costs collected), instances of unprotected sex, sti diagnosis, age, ethnicity and employment variables.

Usage
data(MenSS)

Format
A data frame with 159 rows and 12 variables

Details
- id id number
- e Quality Adjusted Life Years (QALYs)
- c Total costs in pounds
baseline utilities
age Age in years
ethnicity binary: white (1) and other (0)
employment binary: working (1) and other (0)
t Treatment arm indicator for the control (t=1) and the active intervention (t=2)
sex_inst.0 baseline number of instances of unprotected sex
sex_inst number of instances of unprotected sex at 12 months follow-up
sti.0 binary : baseline sti diagnosis (1) and no baseline sti diagnosis (0)
sti binary : sti diagnosis (1) and no sti diagnosis (0) at 12 months follow-up
site site number

References
Bailey et al. (2016) Health Technology Assessment 20 (PubMed)

Examples
MenSS <- data(MenSS)
summary(MenSS)
str(MenSS)

nobars_ An internal function to separate the fixed and random effects components from an object of class formula

Description
An internal function to separate the fixed and random effects components from an object of class formula

Usage
nobars_(term)

Arguments
term formula to be processed

Examples
#Internal function only
#no examples
#
Full Bayesian Models to handle missingness in Economic Evaluations
(Pattern Mixture Models)

Description

Full Bayesian cost-effectiveness models to handle missing data in the outcomes under different missingness mechanism assumptions, using alternative parametric distributions for the effect and cost variables and a pattern mixture approach to identify the model. The analysis is performed using the BUGS language, which is implemented in the software JAGS using the function jags. The output is stored in an object of class ‘missingHE’.

Usage

```r
pattern(
  data,
  model.eff,
  model.cost,
  dist_e,
  dist_c,
  Delta_e,
  Delta_c,
  type,
  restriction = "CC",
  prob = c(0.025, 0.975),
  n.chains = 2,
  n.iter = 20000,
  n.burnin = floor(n.iter/2),
  inits = NULL,
  n.thin = 1,
  ppc = FALSE,
  save_model = FALSE,
  prior = "default",
  ...
)
```

Arguments

data A data frame in which to find the variables supplied in model.eff, model.cost (model formulas for effects and costs). Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named ‘e’, ‘c’ and ‘t’, respectively.

model.eff A formula expression in conventional R linear modelling syntax. The response must be a health economic effectiveness outcome (‘e’) whose name must correspond to that used in data. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the
"location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.cost

A formula expression in conventional R linear modelling syntax. The response must be a health economic cost outcome ('c') whose name must correspond to that used in data. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "location" parameter of the distribution through a linear model. A joint bivariate distribution for effects and costs can be specified by including 'e' on the right-hand side of the formula for the costs model. Random effects can also be specified for each model parameter. See details for how these can be specified.

dist_e

Distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern').

dist_c

Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm').

Delta_e

Range of values for the prior on the sensitivity parameters used to identify the mean of the effects under MNAR. The value must be set to 0 under MAR.

Delta_c

Range of values for the prior on the sensitivity parameters used to identify the mean of the costs under MNAR. The value must be set to 0 under MAR.

type

Type of missingness mechanism assumed. Choices are Missing At Random (MAR) and Missing Not At Random (MNAR).

restriction

type of identifying restriction to be imposed to identify the distributions of the missing data in each pattern. Available choices are: complete case restriction ('CC') - default - or available case restriction ('AC').

prob

A numeric vector of probabilities within the range (0,1), representing the upper and lower CI sample quantiles to be calculated and returned for the imputed values.

n.chains

Number of chains.

n.iter

Number of iterations.

n.burnin

Number of warmup iterations.

inits

A list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the JAGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for all the model parameters.

n.thin

Thinning interval.

ppc

Logical. If ppc is TRUE, the estimates of the parameters that can be used to generate replications from the model are saved.

save_model

Logical. If save_model is TRUE a txt file containing the model code is printed in the current working directory.
prior

A list containing the hyperprior values provided by the user. Each element of this list must be a vector of length two containing the user-provided hyperprior values and must be named with the name of the corresponding parameter. For example, the hyperprior values for the standard deviation effect parameters can be provided using the list `prior = list('sigma.prior.e' = c(0,100))`. For more information about how to provide prior hypervalues for different types of parameters and models see details. If `prior` is set to 'default', the default values will be used.

Additional arguments that can be provided by the user. Examples are `center = TRUE` to center all the covariates in the model or the additional arguments that can be provided to the function `bcea` to summarise the health economic evaluation results.

Details

Depending on the distributions specified for the outcome variables in the arguments `dist_e` and `dist_c` and the type of missingness mechanism specified in the argument `type`, different pattern mixture models are built and run in the background by the function `pattern`. The model for the outcomes is fitted in each missingness pattern and the parameters indexing the missing data distributions are identified using: the corresponding parameters identified from the observed data in other patterns (under 'MAR'); or a combination of the parameters identified by the observed data and some sensitivity parameters (under 'MNAR'). A simple example can be used to show how pattern mixture models are specified. Consider a data set comprising a response variable y and a set of centered covariate X_j. We denote with d_i the patterns’ indicator variable for each subject in the trial $i = 1, ..., n$ such that: $d_i = 1$ indicates the completers (both e and c observed), $d_i = 2$ and $d_i = 3$ indicate that only the costs or effects are observed, respectively, while $d_i = 4$ indicates that neither of the two outcomes is observed. In general, a different number of patterns can be observed between the treatment groups and `missingHE` accounts for this possibility by modelling a different patterns’ indicator variables for each arm. For simplicity, in this example, we assume that the same number of patterns is observed in both groups. d_i is assigned a multinomial distribution, which probabilities are modelled using a Dirichlet prior (by default giving to each pattern the same weight). Next, the model specified in `dist_e` and `dist_c` is fitted in each pattern. The parameters that cannot be identified by the observed data in each pattern ($d = 2, 3, 4$), e.g. the means. $m_{ue}[d]$ and $m_{uc}[d]$, can be identified using the parameters estimated from other patterns. Two choices are currently available: the complete cases ('CC') or available cases ('AC'). For example, using the 'CC' restriction, the parameters indexing the distributions of the missing data are identified as:

$$m_{ue}[2] = \mu_{e}[4] = \mu_{e}[1] + \Delta_e$$

$$m_{uc}[3] = \mu_{c}[4] = \mu_{c}[1] + \Delta_c$$

where

- $\mu_{e}[1]$ is the effects mean for the completers.
- $\mu_{c}[1]$ is the costs mean for the completers.
- Δ_e is the sensitivity parameters associated with the marginal effects mean.
- Δ_c is the sensitivity parameters associated with the marginal costs mean.
If the 'AC' restriction is chosen, only the parameters estimated from the observed data in pattern 2 (costs) and pattern 3 (effects) are used to identify those in the other patterns. When $\Delta_e = 0$ and $\Delta_c = 0$ the model assumes a 'MAR' mechanism. When $\Delta_e \neq 0$ and/or $\Delta_c \neq 0$ 'MNAR' departures for the effects and/or costs are explored assuming a Uniform prior distributions for the sensitivity parameters. The range of values for these priors is defined based on the boundaries specified in Delta_e and Delta_c (see Arguments), which must be provided by the user. When user-defined hyperprior values are supplied via the argument prior in the function pattern, the elements of this list (see Arguments) must be vectors of length two containing the user-provided hyperprior values and must take specific names according to the parameters they are associated with. Specifically, the names for the parameters indexing the model which are accepted by missingHE are the following:

- location parameters α_0 and β_0: "mean.prior.e"(effects) and/or "mean.prior.c"(costs)
- auxiliary parameters σ: "sigma.prior.e"(effects) and/or "sigma.prior.c"(costs)
- covariate parameters α_j and β_j: "alpha.prior"(effects) and/or "beta.prior"(costs)

The only exception is the missingness patterns’ probability π, denoted with "patterns.prior", whose hyperprior values must be provided as a list formed by two elements. These must be vectors of the same length equal to the number of patterns in the control (first element) and intervention (second element) group.

For each model, random effects can also be specified for each parameter by adding the term + (x | z) to each model formula, where x is the fixed regression coefficient for which also the random effects are desired and z is the clustering variable across which the random effects are specified (must be the name of a factor variable in the dataset). Multiple random effects can be specified using the notation + (x1 + x2 | site) for each covariate that was included in the fixed effects formula. Random intercepts are included by default in the models if a random effects are specified but they can be removed by adding the term 0 within the random effects formula, e.g. + (0 + x | z).

Value

An object of the class 'missingHE' containing the following elements

- **data_set** A list containing the original data set provided in data (see Arguments), the number of observed and missing individuals, the total number of individuals by treatment arm and the indicator vectors for the missing values
- **model_output** A list containing the output of a JAGS model generated from the functions jags, and the posterior samples for the main parameters of the model and the imputed values
- **cea** A list containing the output of the economic evaluation performed using the function bcea
- **type** A character variable that indicate which type of missingness assumption has been used to run the model, either MAR or MNAR (see details)

Author(s)

Andrea Gabrio
References

Daniels, MJ. Hogan, JW. Missing Data in Longitudinal Studies: strategies for Bayesian modelling and sensitivity analysis, CRC/Chapman Hall.

See Also

jags, bcea

Examples

Quick example to run using subset of MenSS dataset
MenSS.subset <- MenSS[50:100,]

Run the model using the pattern function assuming a SCAR mechanism
Use only 100 iterations to run a quick check
model.pattern <- pattern(data = MenSS.subset,model.eff = e~1,model.cost = c~1,
 dist_e = "norm", dist_c = "norm", type = "MAR", Delta_e = 0, Delta_c = 0,
 n.chains = 2, n.iter = 100, ppc = FALSE)

Print the results of the JAGS model
print(model.pattern)

Use dic information criterion to assess model fit
pic.dic <- pic(model.pattern, criterion = "dic", module = "total")

Extract regression coefficient estimates
coef(model.pattern)

Assess model convergence using graphical tools
Produce histograms of the posterior samples for the mean effects
diag.hist <- diagnostic(model.pattern, type = "histogram", param = "mu.e")

Compare observed effect data with imputations from the model
using plots (posterior means and credible intervals)
p1 <- plot(model.pattern, class = "scatter", outcome = "effects")

Summarise the CEA information from the model
Further examples which take longer to run:

```r
model.pattern <- pattern(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e,
                          Delta_e = 0, Delta_c = 0, dist_e = "norm", dist_c = "norm",
                          type = "MAR", n.chains = 2, n.iter = 500, ppc = FALSE)
```

Print results for all imputed values
print(model.pattern, value.mis = TRUE)

Use looic to assess model fit
pic.looic <- pic(model.pattern, criterion = "looic", module = "total")

Show density plots for all parameters
diag.hist <- diagnostic(model.pattern, type = "denplot", param = "all")

Plots of imputations for all data
p1 <- plot(model.pattern, class = "scatter", outcome = "all")

Summarise the CEA results
summary(model.pattern)
```

---

**pic**

*Predictive information criteria for Bayesian models fitted in JAGS using the function selection, pattern or hurdle*

**Description**

Efficient approximate leave-one-out cross validation (LOO), deviance information criterion (DIC) and widely applicable information criterion (WAIC) for Bayesian models, calculated on the observed data.

**Usage**

```r
pic(x, criterion = "dic", module = "total")
```

**Arguments**

- `x` A `missingHE` object containing the results of a Bayesian model fitted in cost-effectiveness analysis using the function `selection`, `pattern` or `hurdle`.
- `criterion` type of information criteria to be produced. Available choices are 'dic' for the Deviance Information Criterion, 'waic' for the Widely Applicable Information Criterion, and 'looic' for the Leave-One-Out Information Criterion.
module

The modules with respect to which the information criteria should be computed. Available choices are 'total' for the whole model, 'e' for the effectiveness variables only, 'c' for the cost variables only, and 'both' for both outcome variables.

Details

The Deviance Information Criterion (DIC), Leave-One-Out Information Criterion (LOOIC) and the Widely Applicable Information Criterion (WAIC) are methods for estimating out-of-sample predictive accuracy from a Bayesian model using the log-likelihood evaluated at the posterior simulations of the parameters. DIC is computationally simple to calculate but it is known to have some problems, arising in part from it not being fully Bayesian in that it is based on a point estimate. LOOIC can be computationally expensive but can be easily approximated using importance weights that are smoothed by fitting a generalised Pareto distribution to the upper tail of the distribution of the importance weights. For more details about the methods used to compute LOOIC see the PSIS-LOO section in loo-package. WAIC is fully Bayesian and closely approximates Bayesian cross-validation. Unlike DIC, WAIC is invariant to parameterisation and also works for singular models. In finite cases, WAIC and LOO give similar estimates, but for influential observations WAIC underestimates the effect of leaving out one observation.

Value

A named list containing different predictive information criteria results and quantities according to the value of criterion. In all cases, the measures are computed on the observed data for the specific modules of the model selected in module.

- **d_bar**: Posterior mean deviance (only if criterion is 'dic').
- **pD**: Effective number of parameters calculated with the formula used by JAGS (only if criterion is 'dic').
- **dic**: Deviance Information Criterion calculated with the formula used by JAGS (only if criterion is 'dic').
- **d_hat**: Deviance evaluated at the posterior mean of the parameters and calculated with the formula used by JAGS (only if criterion is 'dic').
- **elpd, elpd_se**: Expected log pointwise predictive density and standard error calculated on the observed data for the model nodes indicated in module (only if criterion is 'waic' or 'loo').
- **p, p_se**: Effective number of parameters and standard error calculated on the observed data for the model nodes indicated in module (only if criterion is 'waic' or 'loo').
- **looic, looic_se**: The leave-one-out information criterion and standard error calculated on the observed data for the model nodes indicated in module (only if criterion is 'loo').
- **waic, waic_se**: The widely applicable information criterion and standard error calculated on the observed data for the model nodes indicated in module (only if criterion is 'waic').
- **pointwise**: A matrix containing the pointwise contributions of each of the above measures calculated on the observed data for the model nodes indicated in module (only if criterion is 'waic' or 'loo').
- **pareto_k**: A vector containing the estimates of the shape parameter $k$ for the generalised Pareto fit to the importance ratios for each leave-one-out distribution calculated on the observed data for the model nodes indicated in module (only if criterion is 'loo'). See loo for details about interpreting $k$. 


Author(s)
Andrea Gabrio

References

See Also
jags, loo, waic

Examples

```r
#For examples see the function selection, pattern or hurdle
#
#
plot.missingHE
```

Description
Produces a plot of the observed and imputed values (with credible intervals) for the effect and cost outcomes from a Bayesian cost-effectiveness analysis model with two treatment arms, implemented using the function selection, pattern or hurdle. The graphical layout is obtained from the functions contained in the package ggplot2 and ggthemes.

Usage
```r
S3 method for class 'missingHE'
plot(
 x,
 prob = c(0.025, 0.975),
 class = "scatter",
 outcome = "all",
)```
theme = NULL,
...
)

Arguments

x
A `missingHE` object containing the results of the Bayesian model for cost-effectiveness analysis.

prob
A numeric vector of probabilities representing the upper and lower CI sample quantiles to be calculated and returned for the imputed values.

class
Type of the plot comparing the observed and imputed outcome data. Available choices are 'histogram' and 'scatter' for a histogram or a scatter plot of the observed and imputed outcome data, respectively.

outcome
The outcome variables that should be displayed. Options are: 'all' (default) which shows the plots for both treatment arms and types of outcome variables; 'effects' and 'costs' which show the plots for the corresponding outcome variables in both arms; 'arm1' and 'arm2' which show the plots by the selected treatment arm. To select the plots for a specific outcome in a specific treatment arm the options that can be used are 'effects_arm1', 'effects_arm2', 'costs_arm1' or 'costs_arm2'.

theme
Type of ggplot theme among some pre-defined themes, mostly taken from the package ggthemes. For a full list of available themes see details.

Details

The function produces a plot of the observed and imputed effect and cost data in a two-arm based cost-effectiveness model implemented using the function `selection`, `pattern` or `hurdle`. The purpose of this graph is to visually compare the outcome values for the fully-observed individuals with those imputed by the model for the missing individuals. For the scatter plot, imputed values are also associated with the credible intervals specified in the argument `prob`. The argument theme allows to customise the graphical aspect of the plots generated by `plot.missingHE` and allows to choose among a set of possible pre-defined themes taken form the package ggtheme. For a complete list of the available character names for each theme and scheme set, see ggthemes and bayesplot.

Value

A ggplot object containing the plots specified in the argument class.

Author(s)

Andrea Gabrio

References

See Also

selection pattern hurdle diagnostic

Examples

#For examples see the function selection, pattern or hurdle
#
#

ppc

Posterior predictive checks for assessing the fit to the observed data of Bayesian models implemented in JAGS using the function selection, pattern or hurdle

Description

The focus is restricted to full Bayesian models in cost-effectiveness analyses based on the function selection, pattern and hurdle, with the fit to the observed data being assessed through graphical checks based on the posterior replications generated from the model. Examples include the comparison of histograms, density plots, intervals, test statistics, evaluated using both the observed and replicated data. Different types of posterior predictive checks are implemented to assess model fit using functions contained in the package bayesplot. Graphics and plots are managed using functions contained in the package ggplot2 and gghthemes.

Usage

ppc(
 x,
 type = "histogram",
 outcome = "all",
 ndisplay = 15,
 theme = NULL,
 scheme_set = NULL,
 legend = "top",
 ...
)

Arguments

x
 An object of class "missingHE" containing the posterior results of a full Bayesian model implemented using the function selection, pattern or hurdle.

type
 Type of posterior predictive check to be plotted for assessing model fit. Available choices include: 'histogram', 'boxplot', 'freqpoly', 'dens', 'dens_overlay' and ecdf_overlay', which compare the empirical and replicated distributions of the data; 'stat' and 'stat_2d', which compare the value of some statistics evaluated on the observed data with the replicated values for those statistics from the
posterior predictions; 'error_hist', 'error_scatter', 'error_scatter_avg' and 'error_binned', which display the predictive errors of the model; 'intervals' and 'ribbon', which compare medians and central interval estimates of the replications with the observed data overlaid; 'scatter' and 'scatter_avg', which display scatterplots of the observed and replicated data.

outcome The outcome variables that should be displayed. Use the names 'effects_arm1' and 'effects_arm2' for the effectiveness in the control and intervention arm; use 'costs_arm1' or 'costs_arm2' for the costs; use "effects" or "costs" for the respective outcome in both arms; use "all" for all outcomes.

ndisplay Number of posterior replications to be displayed in the plots.

theme Type of ggplot theme among some pre-defined themes, mostly taken from the package ggthemes. For a full list of available themes see details.

scheme_set Type of scheme sets among some pre-defined schemes, mostly taken from the package bayesplot. For a full list of available themes see details.

legend Position of the legend: available choices are: "top", "left", "right", "bottom" and "none".

... Additional parameters that can be provided to manage the output of ppc. For more details see bayesplot.

Details

The function produces different types of graphical posterior predictive checks using the estimates from a Bayesian cost-effectiveness model implemented with the function selection, pattern or hurdle. The purpose of these checks is to visually compare the distribution (or some relevant quantity) of the observed data with respect to that from the replicated data for both effectiveness and cost outcomes in each treatment arm. Since predictive checks are meaningful only with respect to the observed data, only the observed outcome values are used to assess the fit of the model. The arguments theme and scheme_set allow to customise the graphical aspect of the plots generated by ppc and allow to choose among a set of possible pre-defined themes and scheme sets taken form the package ggthemes and bayesplot. For a complete list of the available character names for each theme and scheme set, see ggthemes and bayesplot.

Value

A ggplot object containing the plots specified in the argument type.

Author(s)

Andrea Gabrio

References

See Also

selection pattern hurdle diagnostic
Examples

For examples see the function \code{\link{selection}},
\code{\link{pattern}} or \code{\link{hurdle}}
#

print.missingHE

Print method for the posterior results contained in the objects of class
missingHE

Description

Prints the summary table for the model fitted, with the estimate of the parameters and/or missing
values.

Usage

S3 method for class 'missingHE'
print(x, value.mis = FALSE, only.means = TRUE, ...)

Arguments

x
A missingHE object containing the results of the Bayesian model run using the
function \code{selection}, \code{pattern} or \code{hurdle}.

value.mis
Logical. If \code{value.mis} is \code{TRUE}, the model results displayed contain also the
imputed values, else if \code{value.mis} is \code{FALSE} the missing values are hidden.

only.means
Logical. If \code{only.means} is \code{TRUE}, then the print function only shows the sum-
mmary statistics for the mean effectiveness and costs. Defaults at \code{FALSE} (in which
case, shows the summary statistics for all parameters in the model).

...
additional arguments affecting the printed output produced. For example: \code{digits=}
number of significant digits to be shown in the printed table (default=3). Not
available if \code{value.mis=TRUE}.

Author(s)

Andrea Gabrio

Examples

For examples see the function \code{\link{selection}},
\code{\link{pattern}} or \code{\link{hurdle}}
#
prior_hurdle

An internal function to change the hyperprior parameters in the hurdle model provided by the user depending on the type of structural value mechanism and outcome distributions assumed.

Description

This function modifies default hyper prior parameter values in the type of hurdle model selected according to the type of structural value mechanism and distributions for the outcomes assumed.

Usage

prior_hurdle(
 type,
 dist_e,
 dist_c,
 pe_fixed,
 pc_fixed,
 ze_fixed,
 zc_fixed,
 model_e_random,
 model_c_random,
 model_se_random,
 model_sc_random,
 pe_random,
 pc_random,
 ze_random,
 zc_random,
 se,
 sc
)

Arguments

type

dist_e

dist_c

pe_fixed

pc_fixed

ze_fixed

Number of fixed effects for the effectiveness model.

Number of fixed effects for the cost model.

Number of fixed effects or the structural indicators model for the effectiveness.
prior_pattern

zc_fixed Number of fixed effects or the structural indicators model for the costs
model_e_random Random effects formula for the effectiveness model
model_c_random Random effects formula for the costs model
model_se_random Random effects formula for the structural indicators model for the effectiveness
model_sc_random Random effects formula for the structural indicators model for the costs
pe_random Number of random effects for the effectiveness model
pc_random Number of random effects for the cost model
ze_random Number of random effects or the structural indicators model for the effectiveness
zc_random Number of random effects or the structural indicators model for the costs
se Structural value for the effectiveness
sc Structural value for the costs

Examples

#Internal function only
#no examples
#
#

prior_pattern An internal function to change the hyperprior parameters in the selection model provided by the user depending on the type of missingness mechanism and outcome distributions assumed

Description

This function modifies default hyper prior parameter values in the type of selection model selected according to the type of missingness mechanism and distributions for the outcomes assumed.

Usage

prior_pattern(
 type,
 dist_e,
 dist_c,
 pe_fixed,
 pc_fixed,
 model_e_random,
 model_c_random,
 pe_random,
 pc_random,
 d_list,
 restriction
)
prior_selection

Arguments

type

Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR). For a complete list of all available hyper parameters and types of models see the manual.

dist_e

distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern')

dist_c

Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm')

pe_fixed

Number of fixed effects for the effectiveness model

pc_fixed

Number of fixed effects for the cost model

model_e_random

Random effects formula for the effectiveness model

model_c_random

Random effects formula for the costs model

pe_random

Number of random effects for the effectiveness model

pc_random

Number of random effects for the cost model

d_list

a list of the number and types of patterns in the data

restriction

type of identifying restriction to be imposed

Examples

#Internal function only
#no examples
#
#

prior_selection

An internal function to change the hyperprior parameters in the selection model provided by the user depending on the type of missingness mechanism and outcome distributions assumed

Description

This function modifies default hyper prior parameter values in the type of selection model selected according to the type of missingness mechanism and distributions for the outcomes assumed.
prior_selection

Usage

prior_selection(
 type,
 dist_e,
 dist_c,
 pe_fixed,
 pc_fixed,
 ze_fixed,
 zc_fixed,
 model_e_random,
 model_c_random,
 model_me_random,
 model_mc_random,
 pe_random,
 pc_random,
 ze_random,
 zc_random
)

Arguments

type Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR). For a complete list of all available hyper parameters and types of models see the manual.

dist_e Distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern')

dist_c Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm')

pe_fixed Number of fixed effects for the effectiveness model

pc_fixed Number of fixed effects for the cost model

ze_fixed Number of fixed effects or the missingness indicators model for the effectiveness

zc_fixed Number of fixed effects or the missingness indicators model for the costs

model_e_random Random effects formula for the effectiveness model

model_c_random Random effects formula for the costs model

model_me_random Random effects formula for the missingness indicators model for the effectiveness

model_mc_random Random effects formula for the missingness indicators model for the costs

pe_random Number of random effects for the effectiveness model

pc_random Number of random effects for the cost model
run_hurdle

An internal function to execute a JAGS hurdle model and get posterior results

Description

This function fits a JAGS using the jags function and obtain posterior inferences.

Usage

```r
run_hurdle(type, dist_e, dist_c, inits, se, sc, sde, sdc, ppc)
```

Arguments

- **type**
 Type of structural value mechanism assumed. Choices are Structural Completely At Random (SCAR), and Structural At Random (SAR).

- **dist_e**
 Distribution assumed for the effects. Current available choices are: Normal (`'norm'`), Beta (`'beta'`), Gamma (`'gamma'`), Exponential (`'exp'`), Weibull (`'weibull'`), Logistic (`'logis'`), Poisson (`'pois'`), Negative Binomial (`'nbinom'`) or Bernoulli (`'bern'`).

- **dist_c**
 Distribution assumed for the costs. Current available choices are: Normal (`'norm'`), Gamma (`'gamma'`) or LogNormal (`'lnorm'`).

- **inits**
 A list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the BUGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for parameters.

- **se**
 Structural value to be found in the effect data. If set to NULL, no structural value is chosen and a standard model for the effects is run.

- **sc**
 Structural value to be found in the cost data. If set to NULL, no structural value is chosen and a standard model for the costs is run.

- **sde**
 Hyper-prior value for the standard deviation of the distribution of the structural effects. The default value is \(1 \times 10^{-6}\) to approximate a point mass at the structural value provided by the user.
run_pattern

sdc hyper-prior value for the standard deviation of the distribution of the structural costs. The default value is 1.0×10^{-6} to approximate a point mass at the structural value provided by the user.

ppc Logical. If ppc is TRUE, the estimates of the parameters that can be used to generate replications from the model are saved.

Examples

```r
# Internal function only
# No examples
#
```

run_pattern An internal function to execute a JAGS pattern mixture model and get posterior results

Description

This function fits a JAGS using the `jags` function and obtain posterior inferences.

Usage

```r
run_pattern(type, dist_e, dist_c, inits, d_list, d1, d2, restriction, ppc)
```

Arguments

type Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR).

dist_e distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern')

dist_c Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm'),

inits a list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the BUGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for parameters.

d_list a list of the number and types of patterns in the data.

d1, d2 Patterns in the control.

restriction type of identifying restriction to be imposed.

ppc Logical. If ppc is TRUE, the estimates of the parameters that can be used to generate replications from the model are saved.
run_selection

An internal function to execute a JAGS selection model and get posterior results

Description

This function fits a JAGS using the jags function and obtain posterior inferences.

Usage

run_selection(type, dist_e, dist_c, inits, ppc)

Arguments

type Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR).

dist_e distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern').

dist_c Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm').

inits a list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the BUGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for parameters.

ppc Logical. If ppc is TRUE, the estimates of the parameters that can be used to generate replications from the model are saved.

Examples

#Internal function only
#No examples
#
#
Full Bayesian cost-effectiveness models to handle missing data in the outcomes under different missing data mechanism assumptions, using alternative parametric distributions for the effect and cost variables and using a selection model approach to identify the model. The analysis is performed using the BUGS language, which is implemented in the software JAGS using the function jags. The output is stored in an object of class 'missingHE'.

Description

Usage

```
selection(data, model.eff, model.cost, model.me = me ~ 1, model.mc = mc ~ 1, dist_e, dist_c, type, prob = c(0.025, 0.975), n.chains = 2, n.iter = 20000, n.burnin = floor(n.iter/2), inits = NULL, n.thin = 1, ppc = FALSE, save_model = FALSE, prior = "default", ...
)
```

Arguments

data A data frame in which to find the variables supplied in model.eff, model.cost (model formulas for effects and costs) and model.me, model.mc (model formulas for the missing effect and cost models). Among these, effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't', respectively.

model.eff A formula expression in conventional R linear modelling syntax. The response must be a health economic effectiveness outcome ('e') whose name must correspond to that used in data. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the
selection

"location" parameter of the distribution through a linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.cost
A formula expression in conventional R linear modelling syntax. The response must be a health economic cost outcome (‘c’) whose name must correspond to that used in data. Any covariates in the model must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "location" parameter of the distribution through a linear model. A joint bivariate distribution for effects and costs can be specified by including 'e' on the right-hand side of the formula for the costs model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.me
A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'me'(missing effects) and any covariates must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "probability" parameter for the missing effects through a logistic-linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

model.mc
A formula expression in conventional R linear modelling syntax. The response must be indicated with the term 'mc'(missing costs) and any covariates must be provided on the right-hand side of the formula. If there are no covariates, 1 should be specified on the right hand side of the formula. By default, covariates are placed on the "probability" parameter for the missing costs through a logistic-linear model. Random effects can also be specified for each model parameter. See details for how these can be specified.

dist_e
Distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern').

dist_c
Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm').

type
Type of missingness mechanism assumed. Choices are Missing At Random (MAR) and Missing Not At Random (MNAR).

prob
A numeric vector of probabilities within the range (0,1), representing the upper and lower CI sample quantiles to be calculated and returned for the imputed values.

n.chains
Number of chains.

n.iter
Number of iterations.

n.burnin
Number of warmup iterations.

inits
A list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the JAGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for all the model parameters.

n.thin
Thinning interval.
selection

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppc</td>
<td>Logical. If ppc is TRUE, the estimates of the parameters that can be used to generate replications from the model are saved.</td>
</tr>
<tr>
<td>save_model</td>
<td>Logical. If save_model is TRUE, a txt file containing the model code is printed in the current working directory.</td>
</tr>
<tr>
<td>prior</td>
<td>A list containing the hyperprior values provided by the user. Each element of this list must be a vector of length two containing the user-provided hyperprior values and must be named with the name of the corresponding parameter. For example, the hyperprior values for the standard deviation effect parameters can be provided using the list <code>prior = list('sigma_prior.e' = c(0, 100))</code>. For more information about how to provide prior hypervalues for different types of parameters and models see details. If prior is set to 'default', the default values will be used.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments that can be provided by the user. Examples are <code>center = TRUE</code> to center all the covariates in the model or the additional arguments that can be provided to the function <code>bcea</code> to summarise the health economic evaluation results.</td>
</tr>
</tbody>
</table>

Details

Depending on the distributions specified for the outcome variables in the arguments `dist_e` and `dist_c` and the type of missingness mechanism specified in the argument type, different selection models are built and run in the background by the function `selection`. These models consist in logistic regressions that are used to estimate the probability of missingness in one or both the outcomes. A simple example can be used to show how selection models are specified. Consider a data set comprising a response variable y and a set of centered covariate X_j. For each subject in the trial $i = 1, ..., n$ we define an indicator variable m_i taking value 1 if the i-th individual is associated with a missing value and 0 otherwise. This is modelled as:

$$m_i \sim Bernoulli(\pi_i)$$

$$\text{logit}(\pi_i) = \gamma_0 + \sum \gamma_j X_j + \delta(y)$$

where

- π_i is the individual probability of a missing value in y
- γ_0 represents the marginal probability of a missing value in y on the logit scale.
- γ_j represents the impact on the probability of a missing value in y of the centered covariates X_j.
- δ represents the impact on the probability of a missing value in y of the missing value itself.

When $\delta = 0$ the model assumes a 'MAR' mechanism, while when $\delta \neq 0$ the mechanism is 'MNAR'. For the parameters indexing the missingness model, the default prior distributions assumed are the following:

- $\gamma_0 \sim \text{Logistic}(0, 1)$
- $\gamma_j \sim \text{Normal}(0, 0.01)$
- $\delta \sim \text{Normal}(0, 1)$
When user-defined hyperprior values are supplied via the argument `prior` in the function `selection`, the elements of this list (see Arguments) must be vectors of length two containing the user-provided hyperprior values and must take specific names according to the parameters they are associated with. Specifically, the names for the parameters indexing the model which are accepted by `missingHE` are the following:

- location parameters α_0 and β_0: "mean.prior.e"(effects) and/or "mean.prior.c"(costs)
- auxiliary parameters σ: "sigma.prior.e"(effects) and/or "sigma.prior.c"(costs)
- covariate parameters α_j and β_j: "alpha.prior"(effects) and/or "beta.prior"(costs)
- marginal probability of missing values γ_0: "p.prior.e"(effects) and/or "p.prior.c"(costs)
- covariate parameters in the missingness model γ_j (if covariate data provided): "gamma.prior.e"(effects) and/or "gamma.prior.c"(costs)
- mnar parameter δ: "delta.prior.e"(effects) and/or "delta.prior.c"(costs)

For simplicity, here we have assumed that the set of covariates X_j used in the models for the effects/costs and in the model of the missing effect/cost values is the same. However, it is possible to specify different sets of covariates for each model using the arguments in the function `selection` (see Arguments).

For each model, random effects can also be specified for each parameter by adding the term $+ (x | z)$ to each model formula, where x is the fixed regression coefficient for which also the random effects are desired and z is the clustering variable across which the random effects are specified (must be the name of a factor variable in the dataset). Multiple random effects can be specified using the notation $+ (x1 + x2 | site)$ for each covariate that was included in the fixed effects formula. Random intercepts are included by default in the models if a random effects are specified but they can be removed by adding the term 0 within the random effects formula, e.g. $+ (0 + x | z)$.

Value

An object of the class `missingHE` containing the following elements

- **data_set** A list containing the original data set provided in `data` (see Arguments), the number of observed and missing individuals, the total number of individuals by treatment arm and the indicator vectors for the missing values
- **model_output** A list containing the output of a JAGS model generated from the functions `jags`, and the posterior samples for the main parameters of the model and the imputed values
- **cea** A list containing the output of the economic evaluation performed using the function `bcea`
- **type** A character variable that indicate which type of missingness mechanism has been used to run the model, either `MAR` or `MNAR` (see details)

Author(s)

Andrea Gabrio
selection

References

Daniels, MJ. Hogan, JW. Missing Data in Longitudinal Studies: strategies for Bayesian modelling and sensitivity analysis, CRC/Chapman Hall.

See Also

jags, bcea

Examples

Quick example to run using subset of MenSS dataset
MenSS.subset <- MenSS[50:100,]

Run the model using the selection function assuming a SCAR mechanism
Use only 100 iterations to run a quick check
model.selection <- selection(data = MenSS.subset, model.eff = e ~ 1, model.cost = c ~ 1,
 model.me = me ~ 1, model.mc = mc ~ 1, dist.e = "norm", dist.c = "norm",
 type = "MAR", n.chains = 2, n.iter = 100, ppc = TRUE)

Print the results of the JAGS model
print(model.selection)

Use dic information criterion to assess model fit
pic.dic <- pic(model.selection, criterion = "dic", module = "total")
pic.dic

Extract regression coefficient estimates
coef(model.selection)

Assess model convergence using graphical tools
Produce histograms of the posterior samples for the mean effects
diag.hist <- diagnostic(model.selection, type = "histogram", param = "mu.e")

Compare observed effect data with imputations from the model
using plots (posterior means and credible intervals)
p1 <- plot(model.selection, class = "scatter", outcome = "effects")

Summarise the CEA information from the model
summary(model.selection)

Further examples which take longer to run
model.selection <- selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e,
model.se = me ~ u.0, model.mc = mc ~ 1, dist.e = "norm", dist.c = "norm",
type = "MAR", n.chains = 2, n.iter = 500, ppc = FALSE)
#
Print results for all imputed values
print(model.selection, value.mis = TRUE)

Use looic to assess model fit
pic.looic <- pic(model.selection, criterion = "looic", module = "total")

Show density plots for all parameters
diag.hist <- diagnostic(model.selection, type = "denplot", param = "all")

Plots of imputations for all data
p1 <- plot(model.selection, class = "scatter", outcome = "all")

Summarise the CEA results
summary(model.selection)

summary.missingHE
Summary method for objects in the class missingHE

Description

Produces a table printout with some summary results of the health economic evaluation probabilistic model run using the function `selection`, `pattern` or `hurdle`.

Usage

```r
## S3 method for class 'missingHE'
summary(object, ...)  
```

Arguments

- `object` A missingHE object containing the results of the Bayesian modelling and the economic evaluation
- `...` Additional arguments affecting the summary produced.
write_hurdle

Value
Prints a table with some information on the health economic model based on the assumption selected for the missingness using the function selection, pattern or hurdle. Summary information on the main parameters of interests is provided.

Author(s)
Andrea Gabrio

References

See Also
selection pattern hurdle diagnostic plot.missingHE

Examples

```r
# For examples see the function selection, pattern or hurdle
#
#
```

write_hurdle An internal function to select which type of hurdle model to execute for both effectiveness and costs. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of structural value mechanism assumed and independence or joint modelling. This function selects which type of model to execute.

Description
An internal function to select which type of hurdle model to execute for both effectiveness and costs. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of structural value mechanism assumed and independence or joint modelling. This function selects which type of model to execute.

Usage

```r
write_hurdle(
  dist_e,
  dist_c,
  type,
  pe_fixed,
  pc_fixed,
  ze_fixed,
  zc_fixed,
)```
Arguments

dist_e Distribution assumed for the effects. Current available choices are: Normal ("norm"), Beta ("beta"), Gamma ("gamma"), Exponential ("exp"), Weibull ("weibull"), Logistic ("logis"), Poisson ("pois"), Negative Binomial ("nbinom") or Bernoulli ("bern")

dist_c Distribution assumed for the costs. Current available choices are: Normal ("norm"), Gamma ("gamma") or LogNormal ("lnorm")

type Type of structural value mechanism assumed. Choices are Structural Completely At Random (SCAR) and Structural At Random (SAR)

pe_fixed Number of fixed effects for the effectiveness model

pc_fixed Number of fixed effects for the cost model

ze_fixed Number of fixed effects or the structural indicators model for the effectiveness

zc_fixed Number of fixed effects or the structural indicators model for the costs

ind_fixed Logical; if TRUE independence at the level of the fixed effects between effectiveness and costs is assumed, else correlation is accounted for

pe_random Number of random effects for the effectiveness model

pc_random Number of random effects for the cost model

ze_random Number of random effects or the structural indicators model for the effectiveness

zc_random Number of random effects or the structural indicators model for the costs

ind_random Logical; if TRUE independence at the level of the random effects between effectiveness and costs is assumed, else correlation is accounted for

model_e_random Random effects formula for the effectiveness model

model_c_random Random effects formula for the costs model

model_se_random Random effects formula for the structural indicators model for the effectiveness

model_sc_random Random effects formula for the structural indicators model for the costs

se Structural value for the effectiveness

sc Structural value for the costs
Examples

```r
Internal function only
No examples
```

```r
write_pattern
```

An internal function to select which type of pattern mixture model to execute. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of missingness mechanism assumed and independence or joint modelling. This function selects which type of model to execute.

Description

An internal function to select which type of pattern mixture model to execute. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of missingness mechanism assumed and independence or joint modelling. This function selects which type of model to execute.

Usage

```r
write_pattern(
 type,
 dist_e,
 dist_c,
 pe_fixed,
 pc_fixed,
 ind_fixed,
 pe_random,
 pc_random,
 ind_random,
 model_e_random,
 model_c_random,
 d_list,
 d1,
 d2,
 restriction
)
```

Arguments

- `type` Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR).
write_selection

Distribution assumed for the effects. Current available choices are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern')

Distribution assumed for the costs. Current available choices are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm')

Number of fixed effects for the effectiveness model

Number of fixed effects for the cost model

Logical; if TRUE independence between effectiveness and costs is assumed, else correlation is accounted for

Number of random effects for the effectiveness model

Number of random effects for the cost model

Logical; if TRUE independence at the level of the random effects between effectiveness and costs is assumed, else correlation is accounted for

Random effects formula for the effectiveness model

Random effects formula for the cost model

Number and type of patterns

Pattern indicator in the control

Pattern indicator in the intervention

type of identifying restriction to be imposed

Examples

# Internal function only
# No examples
#
#

write_selection

An internal function to select which type of selection model to execute. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of missingness mechanism assumed and independence or joint modelling This function selects which type of model to execute.

Description

An internal function to select which type of selection model to execute. Alternatives vary depending on the type of distribution assumed for the effect and cost variables, type of missingness mechanism assumed and independence or joint modelling This function selects which type of model to execute.
Usage

```r
write_selection(
 dist_e,
 dist_c,
 type,
 pe_fixed,
 pc_fixed,
 ze_fixed,
 zc_fixed,
 ind_fixed,
 pe_random,
 pc_random,
 ze_random,
 zc_random,
 ind_random,
 model_e_random,
 model_c_random,
 model_me_random,
 model_mc_random
)
```

Arguments

- **dist_e**: Distribution assumed for the effects. Current available choices are: Normal (‘norm’), Beta (‘beta’), Gamma (‘gamma’), Exponential (‘exp’), Weibull (‘weibull’), Logistic (‘logis’), Poisson (‘pois’), Negative Binomial (‘nbinom’) or Bernoulli (‘bern’)

- **dist_c**: Distribution assumed for the costs. Current available choices are: Normal (‘norm’), Gamma (‘gamma’) or LogNormal (‘lnorm’)

- **type**: Type of missingness mechanism assumed. Choices are Missing At Random (MAR), Missing Not At Random for the effects (MNAR_eff), Missing Not At Random for the costs (MNAR_cost), and Missing Not At Random for both (MNAR)

- **pe_fixed**: Number of fixed effects for the effectiveness model

- **pc_fixed**: Number of fixed effects for the cost model

- **ze_fixed**: Number of fixed effects or the missingness indicators model for the effectiveness

- **zc_fixed**: Number of fixed effects or the missingness indicators model for the costs

- **ind_fixed**: Logical; if TRUE independence between effectiveness and costs is assumed, else correlation is accounted for

- **pe_random**: Number of random effects for the effectiveness model

- **pc_random**: Number of random effects for the cost model

- **ze_random**: Number of random effects or the missingness indicators model for the effectiveness

- **zc_random**: Number of random effects or the missingness indicators model for the costs
ind_random  Logical: if TRUE independence at the level of the random effects between effectiveness and costs is assumed, else correlation is accounted for
model_e_random  Random effects formula for the effectiveness model
model_c_random  Random effects formula for the costs model
model_me_random  Random effects formula for the missingness indicators model for the effectiveness
model_mc_random  Random effects formula for the missingness indicators model for the costs

Examples

#Internal function only
#No examples
#
Index

*Topic Bayesian
  run_hurdle, 38
  run_pattern, 39
  run_selection, 40
*Topic CEA
  hurdle, 11
  pattern, 22
  selection, 41
*Topic Hurdle
  hurdle, 11
  write_hurdle, 47
*Topic JAGS
  hurdle, 11
  jagsresults, 18
  pattern, 22
  pic, 27
  print.missingHE, 33
  run_hurdle, 38
  run_pattern, 39
  run_selection, 40
  selection, 41
  write_hurdle, 47
  write_pattern, 49
  write_selection, 50
*Topic MCMC
  diagnostic, 7
  ppc, 31
*Topic Mixture
  pattern, 22
*Topic Models
  hurdle, 11
  pattern, 22
  selection, 41
*Topic Pattern
  pattern, 22
  write_pattern, 49
*Topic Selection
  prior_pattern, 35
  prior_selection, 36
  selection, 41
  write_selection, 50
*Topic checks
  diagnostic, 7
  ppc, 31
*Topic convergence
  diagnostic, 7
*Topic datasets
  MenSS, 20
*Topic data
  data_read_hurdle, 4
  data_read_pattern, 5
  data_read_selection, 6
  hurdle, 11
  pattern, 22
  plot.missingHE, 29
  print.missingHE, 33
  selection, 41
*Topic diagnostics
  diagnostic, 7
*Topic dic
  pic, 27
*Topic distributions
  prior_hurdle, 34
  prior_pattern, 35
  prior_selection, 36
*Topic effects
  anyBars, 2
  fb, 10
  isAnyArgBar, 16
  isBar, 17
  nobars_, 21
*Topic hurdle
  data_read_hurdle, 4
  prior_hurdle, 34
  run_hurdle, 38
*Topic loo
  pic, 27
*Topic missing
hurdle, 11
pattern, 22
plot.missingHE, 29
print.missingHE, 33
selection, 41
*Topic mixture
run_pattern, 39
write_pattern, 49
*Topic models
anyBars, 2
data_read_hurdle, 4
fb, 10
isAnyArgBar, 16
isBar, 17
nobars_, 21
prior_hurdle, 34
prior_pattern, 35
prior_selection, 36
run_hurdle, 38
run_pattern, 39
run_selection, 40
write_hurdle, 47
write_pattern, 49
write_selection, 50
*Topic model
jagsresults, 18
*Topic pattern
run_pattern, 39
*Topic plot
plot.missingHE, 29
*Topic posterior
ppc, 31
*Topic predictive
ppc, 31
*Topic print
print.missingHE, 33
*Topic priors
prior_hurdle, 34
prior_pattern, 35
prior_selection, 36
*Topic random
anyBars, 2
fb, 10
isAnyArgBar, 16
isBar, 17
nobars_, 21
*Topic read
data_read_hurdle, 4
data_read_pattern, 5
data_read_selection, 6
*Topic replications
ppc, 31
*Topic selection
run_selection, 40
*Topic summary
jagsresults, 18
*Topic waic
pic, 27
anyBars, 2
bcea, 13, 15, 24–26, 43–45
coefficient.missingHE, 3
data_read_hurdle, 4
data_read_pattern, 5
data_read_selection, 6
diagnostic, 3, 7, 31, 32, 47
fb, 10
ggs, 10
grep, 18
hurdle, 3, 7, 8, 10, 11, 27, 29–33, 46, 47
isAnyArgBar, 16
isBar, 17
jags, 11, 15, 22, 25, 26, 29, 38–41, 44, 45
jagsresults, 18
loo, 28, 29
MenSS, 20
nobars_, 21
pattern, 3, 7, 8, 22, 27, 29–33, 46, 47
pic, 27
plot.missingHE, 3, 29, 47
ppc, 31
print.missingHE, 33
prior_hurdle, 34
prior_pattern, 35
prior_selection, 36
regex, 18
INDEX

run_hurdle, 38
run_pattern, 39
run_selection, 40

selection, 3, 7, 8, 10, 27, 29–33, 41, 46, 47
summary.missingHE, 46

waic, 29
write_hurdle, 47
write_pattern, 49
write_selection, 50