Package ‘mistat’

January 8, 2018

Type Package

Title Data Sets, Functions and Examples from the Book: "Modern Industrial Statistics" by Kenett, Zacks and Amberti

Version 1.0-5

Date 2018-01-07

Author Daniele Amberti

Depends R (>= 2.14)

Imports graphics, grDevices, methods, stats, utils

Suggests e1071, mvtnorm, AcceptanceSampling, boot, car, Dodge, tseries, qcc, DoE.base, FrF2, rsm, LearnBayes, ggplot2, grid, DiceEval, DiceKriging, DiceDesign, lhs, survival

Maintainer Daniele Amberti <daniele.amberti@gmail.com>

License GPL (>= 2)

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-01-08 14:26:54 UTC

R topics documented:

mistat-package ... 3
ALMPIN .. 4
availDis ... 5
BLEMISHES ... 7
CAR .. 7
COAL ... 8
topics documented:

- COMPURESP .. 9
- CONTACTLEN .. 11
- cusumArl ... 11
- cusumPfaCed .. 13
- CYCLT ... 14
- DISS .. 15
- DOJO1935 ... 16
- DOW1941 ... 16
- ELECFAIL .. 17
- ELECINDX ... 17
- ETCHRATE .. 18
- ETCHRATETWO ... 18
- FAILTIME ... 19
- FILMSP ... 19
- FLEXPROD .. 20
- GASOL .. 21
- GASTURBINE .. 22
- HADPAS ... 23
- HYBRID ... 24
- INSERTION .. 24
- IPL .. 25
- JANDEFECT ... 26
- KEYBOARDS ... 27
- LATHYPPISTON ... 27
- mahalanobisT2 ... 29
- MPG ... 30
- OLECT ... 31
- OLECT1 ... 32
- OTURB .. 32
- OTURB1 ... 33
- OTURB2 ... 33
- PBX .. 34
- pistonSimulation ... 35
- PLACE .. 36
- powerCircuitSimulation 38
- PRED .. 41
- randomizationTest ... 42
- renewDis ... 43
- RNORM10 ... 44
- shroArlPfaCed ... 45
- simulationGroup ... 46
- SOCELL ... 47
- SOLDEF ... 48
- STEELROD .. 49
- STRESS ... 49
- THICKDIFF .. 50
- TSQ ... 51
- VENDOR .. 51
Description

This R package is providing all the data sets and statistical analysis of Modern Industrial Statistics, with applications using R, MINITAB and JMP by R.S. Kenett and S. Zacks with contributions by D. Amberti, John Wiley and Sons, 2013. This second revised and expanded second edition.

Details

Package: mistat
Type: Package
Date: 2012-08-22
License: GPL >= 2

Author(s)

Daniele Amberti
Maintainer: Daniele Amberti <amberti@inwind.it>

See Also

Bootstrap Resampling, Quality Control Charts, Operating Characteristics of an Acceptance Sampling Plan, Quality Control Charts, Fractional Factorial 2-level designs.

Examples

data(OELECT)
data(OELECT1)

randomizationTest(list(a=OELECT, b=OELECT1),
R=500, calc=mean,
fun=function(x) x[1]-x[2],
seed=123)

Ps <- pistonSimulation(
m = rep(60, 100),
s = rep(0.02, 100),
v0 = rep(0.01, 100),
k = rep(5000, 100),
p0 = rep(10000, 100),
t = c(rep(296,35), 296*1.1^(1:65)),
t0 = rep(360, 100),
each = 1,
seed = 123,
check = FALSE)

head(Ps)

cusumAr1(mean= 0.0,
 N=100,
 limit=5000,
 seed=123)

powerCircuitSimulation(seed=123, each=3)

set.seed(123)

Ttf <- rgamma(50,
 shape=2,
 scale=100)

Ttr <- rgamma(50,
 shape=2,
 scale=1)

AvailEbd <- availDis(ttf=Ttf,
 ttr=Ttr,
 n=1000, seed=123)

RenewEbd <- renewDis(ttf=Ttf,
 ttr=Ttr,
 time=1000,
 n=1000)

ALMPIN

Aluminium Pins (6 dimensions)

Description

Records of 6 dimension variables (a subset of 2 in ALMPIN) measured in mm on 70 alluminium pins used in airplanes, in order of production.

Usage

data(ALMPIN)
Format

A data frame with 70 observations on the following 6 variables.

- `diam1` pin diameter at specified location, a numeric vector
- `diam2` pin diameter at specified location, a numeric vector
- `diam3` pin diameter at specified location, a numeric vector
- `capDiam` diameter of the cap on top of the pin, a numeric vector
- `lenNocp` length of the pin without the cap, a numeric vector
- `lenWcp` length of the pin with the cap, a numeric vector

Details

The aluminum pins are inserted with air-guns in pre-drilled holes in order to combine critical airplane parts such as wings, engine supports and doors.

The measurements were taken in a computerized numerically controlled (CNC) metal cutting operation. The six variables are Diameter 1, Diameter 2, Diameter 3, Cap Diameter, LengthNocp and LengthWcp. All the measurements are in millimeters. The first three variables give the pin diameter at three specified locations. Cap Diameter is the diameter of the cap on top of the pin. The last two variables are the length of the pin, without and with the cap, respectively.

Source

Examples

```r
data(ALMPIN)
cor(ALMPIN)
plot(ALMPIN)
```

availDis
Availability Distribution

Description

Provide the Empirical Bootstrap Distribution of the asymptotic availability index A_∞, based on observed samples of failure times and repair times.

Usage

`availDis(ttf, ttr, n, seed = NA, printSummary = TRUE)`
Arguments

- ttf: numeric vector of Time To Failure
- ttr: numeric vector of Time To Repair
- n: the number of bootstrap replicates
- seed: a single value, interpreted as an integer. If specified make the simulation replicable.
- printSummary: logical, if TRUE print the Mean Time To Failure, Mean Time To Repair and the asymptotic availability

Value

A numeric vector of length n with simulated availabilities

Author(s)

Daniele Amberti

References

See Also

renewDis

Examples

set.seed(123)

Ttf <- rgamma(50, shape=2, scale=100)

Ttr <- rgamma(50, shape=2, scale=1)

AvailEbd <- availDis(ttf=Ttf, ttr=Ttr, n=1000)
Description

Blemishes found on each of 30 ceramic plates.

Usage

data(BLEMISHES)

Format

A data frame with 30 observations:

plateID a factor
count an integer vector

Details

Blemishes will affect the final product’s (hybrid micro electronic components) electrical performance and its overall yield

Source

Examples

data(BLEMISHES)
table(factor(BLEMISHES$count, levels=0:5))
Format

A data frame with 109 observations on the following 5 variables.

cyl Number of cylinders, an integer vector
origin Car origin, 1 = US; 2 = Europe; 3 = Asia, an integer vector
turn Turn diameter, a numeric vector
hp Horsepower, a numeric vector
mpg Miles per gallon in city driving, a numeric vector

Source

Examples

data(CAR)

with(data=CAR, expr=table(cyl, origin))

<table>
<thead>
<tr>
<th>COAL</th>
<th>Number of Coal Mine Disasters</th>
</tr>
</thead>
</table>

Description

Data on the number of coal mine disasters (explosions) in England, per year, for the period 1850 to 1961.

Usage

data(COAL)

Source

Examples

data(COAL)
Bp <- barplot(COAL)

axis(side=1,
labs=seq(
 from=1850,
to=1960,
by=10),

```R

```
The experiment described here was part of an extensive effort to optimize a UNIX operating system running on a VAX 11-780 machine. The machine had 48 user terminal ports, two remote job entry links, four megabytes of memory, and five disk drives. The typical number of users logged on at a given time was between 20 to 30.

1. **Problem Definition.** Users complained that the system performance was very poor, especially in the afternoon. The objective of the improvement effort was to both minimize response time and reduce variability in response.

2. **Response variable.** In order to get an objective measurement of the response time two specific representative commands called ‘standard’ and ‘trivial’ were used. The ‘standard’ command consisted of creating, editing and removing a file. The ‘trivial’ command was the UNIX system ‘date’ command. Response times were measured by submitting these commands every 10 minutes and clocking the time taken for the system to complete their execution.
Source
Pao, Phadke and Sherrerd (1985)

Examples

data(COMPURESP)

layout(matrix(1:4, 2, byrow=TRUE))

with(COMPURESP,
 interaction.plot(
 x.factor=F,
 trace.factor=rep(0, length(F)),
 response=SN,
 legend=FALSE,
 type="b",
 pch=15:18,
 ylim=c(-17, -10)))

with(COMPURESP,
 interaction.plot(
 x.factor=B,
 trace.factor=rep(0, length(B)),
 response=SN,
 legend=FALSE,
 type="b",
 pch=15:18,
 ylim=c(-17, -10)))

with(COMPURESP,
 interaction.plot(
 x.factor=C,
 trace.factor=rep(0, length(C)),
 response=SN,
 legend=FALSE,
 type="b",
 pch=15:18,
 ylim=c(-17, -10)))

with(COMPURESP,
 interaction.plot(
 x.factor=D,
 trace.factor=rep(0, length(D)),
 response=SN,
 legend=FALSE,
 type="b",
 pch=15:18,
 ylim=c(-17, -10)))

layout(1)
CONTACTLEN

| CONTACTLEN | Length of the Electrical Contacts |

Description

Length (in cm) of the electrical contacts of relays in samples of size five, taken hourly from a running process.

Usage

```r
data(CONTACTLEN)
```

Format

A numeric matrix with five columns representing a sample and twenty rows representing hourly samples.

Source

Examples

```r
data(CONTACTLEN)
library(qcc)
qcc(CONTACTLEN, type="xbar")
```

cusumAr1

Cumulative Sum Control Charts Average Run Length

Description

Computes the ARL function by simulation

Usage

```r
cusumAr1(..., randFunc = rnorm, N = 100, limit = 10000, seed = NA,
kp = 1, km = -1, hp = 3, hm = -3, side = "both",
printSummary = TRUE)
```
Arguments

- \ldots \quad \text{arguments such as mean, lambda or sd to be passed to the appropriate random generation function}
- `randFunc` a random generation function
- `N` the number of replicates
- `limit` safety parameter, stop rule for procedures with very long ARL
- `seed` a single value, interpreted as an integer. If specified make the simulation replicable.
- `kp` K^+ parameter of the control scheme
- `km` $K^−$ parameter of the control scheme
- `hp` h^+ parameter of the control scheme
- `hm` $h^−$ parameter of the control scheme
- `side` a character string specifying the side of the control scheme, must be one of "both" (default), "upper" or "lower"
- `printSummary` logical, if TRUE print a summary of the cusum ARL

Value

- a list with elements:
 - `rls` a numeric vector representing the Run Length of the simulation
 - `statistics` a numeric vector with summary statistics
 - `run` a list of length `N` elements each of which has single numeric elements `violationLower`, `violationUpper` and `rl`

Author(s)

Daniele Amberti

References

Examples

```r
# Example 1
# cusumArl, lambda, kp, km, hp, hm
# cusumArl(lambda=10, kp=12.33, km=8.41, hp=11.36, hm=-12.91, randFunc=rpois, seed=123, N=100, limit=2000)
```

```r
# Example 2
# cusumArl, mean, lambda, seed, N
# cusumArl(mean=1, seed=123, N=100, limit=1000)
```

```r
# Example 3
# cusumArl, size, prob, kp, km, hp, hm
# cusumArl(size=100, prob=0.05, kp=5.95, km=3.92, hp=12.87, hm=-8.66, randFunc=rbinom, seed=123, N=100, limit=2000)
```
Description

Compute the Probability of False Alarm, PFA, and the Conditional Expected Delay, CED, for the Normal, Binomial and Poisson distributions.

Usage

cusumpfadecBinom(size0 = 0, prob0 = 1, size1 = 0, prob1 = 1,
 tau = 10, N = 100, limit = 10000, seed = NA,
 kp = 1, km = -1, hp = 3, hm = -3, side = "both",
 printSummary = TRUE)

cusumpfadecNorm(mean0 = 0, sd0=1, mean1=0, sd1=1,
 tau=10, N=100, limit=10000, seed=NA,
 kp=1, km=-1, hp=3, hm=-3, side="both",
 printSummary = TRUE)

cusumpfadecPois(lambda0 = 0, lambda1=1,
 tau=10, N=100, limit=10000, seed=NA,
 kp=1, km=-1, hp=3, hm=-3, side="both",
 printSummary = TRUE)

Arguments

size0 number of trials (zero or more)
prob0 probability of success on each trial
size1 number of trials (zero or more) after a process level change
prob1 probability of success on each trial after a process level change
mean0 distribution mean
sd0 distribution standard deviation
mean1 distribution mean after a process level change
sd1 distribution standard deviation after a process level change
lambda0 (non-negative) mean
lambda1 (non-negative) mean after a process level change
tau time on which the process level change occurs
N the number of replicates
limit safety parameter, stop rule for procedures with very long ARL
seed a single value, interpreted as an integer. If specified make the simulation replicable.
kp K^+ parameter of the control scheme
km \quad K^- \text{ parameter of the control scheme}

hp \quad h^+ \text{ parameter of the control scheme}

hm \quad h^- \text{ parameter of the control scheme}

side \quad \text{a character string specifying the side of the control scheme, must be one of \"both\" (default), \"upper\" or \"lower\"}

printsummary \quad \text{logical, if TRUE print a summary of the cusum PFA and CED}

Value

a list with elements:

rls \quad \text{a numeric vector representing the Run Length of the simulation}

statistics \quad \text{a numeric vector with summary statistics}

run \quad \text{a list of length} N \text{ elements each of which has single numeric elements violationLower, violationUpper and rl}

Author(s)

Daniele Amberti

References

Examples

cusumPfaCedNorm(mean=1.5,
 tau=100,
 N=100,
 limit=1000,
 seed=123)

CYCLT

50 Cycle Times

Description

50 cycle times (in seconds) of a piston operating at fixed operating conditions set at the minimal levels of seven control factors.

Usage

data(CYCLT)
Source

Examples

```r
data(CYCLT)
summary(CYCLT)
plot(CYCLT, type="b")
```

DISS

Dissolution Data

Description

Dissolution data of a new product and a reference approved product.

Usage

```r
data(DISS)
```

Format

A data frame with 12 observations on the following 4 variables.

- `batch`: a factor with levels REF TEST
- `tablet`: a factor with levels 1 2 3 4 5 6
- `min15`: a numeric vector
- `min90`: a numeric vector

Source

Examples

```r
data(DISS)
## maybe str(DISS) ; plot(DISS) ...
```
DOW1941 \hspace{1cm} Dow-Jones Financial Index 1941

Description

The Dow-Jones financial index for the 300 business days of 1941.

Usage

```
data(DOW1941)
```

Source

Examples

```
data(DOW1941)
plot(DOW1941,
    type="b",
    ylab="Dow Jones 1941")
```

DOJ01935 \hspace{1cm} Dow-Jones Financial Index 1935

Description

The Dow-Jones financial index for the 300 business days of 1935.

Usage

```
data(DOJ01935)
```

Source

Examples

```
data(00J01935)
plot(00J01935,
    type="b",
    ylab="Dow Jones")
```
ELECFAIL

Failures of an Electronic Device

Description

50 failure times of an electronic device.

Usage

data(ELECFAIL)

Source

Examples

data(ELECFAIL)

hist(ELECFAIL)

ELECINDX

Bernoulli Sample on OLECT Data

Description

Bernoulli sample in which, we give a circuit in OLECT the value 1 if its electric output is in the interval (216, 224) and the value 0 otherwise.

Usage

data(ELECINDX)

Source

See Also

OLECT

Examples

data(ELECINDX)

qbinom(p=0.5, size=100, prob=mean(ELECINDX))
ETCHRATE

Data on the Rate of Etching

Description
Rate of removal of field oxide in a semiconductor plasma etching process.

Usage
data(ETCHRATE)

Source

Examples
data(ETCHRATE)
hist(ETCHRATE)

ETCHRATETWO

Data on the Rate of Etching (two samples)

Description
Rate of removal of field oxide in two different semiconductor plasma etching processes, A and B.

Usage
data(ETCHRATETWO)

Format
A data frame with 12 observations on the following 2 variables.

- **A**: a numeric vector, rate of etching, sample A
- **B**: a numeric vector, rate of etching, sample B

Source

Examples
data(ETCHRATETWO)
boxplot(values ~ ind, data=stack(ETCHRATETWO))
FAILTIME

Description

Failure times of 20 electric generators (in hr).

Usage

data(FAILTIME)

Source

Examples

data(FAILTIME)

library(survival)

SuRe <- survreg(
 Surv(time=FAILTIME) ~ 1 ,
 dist = "exponential")

summary(SuRe)

FILMSP

Film Speed

Description

Data gathered from 217 rolls of film. The data consists of the film speed as measured in a special lab.

Usage

data(FILMSP)

Source

Examples

data(FILMSP)

hist(FILMSP)

FLEXPROD The Quinlan Experiment at Flex Products

Description

Flex Products is a subcontractor of General Motors, manufacturing mechanical speedometer cables. The basic cable design has not changed for fifteen years and General Motors had experienced many disappointing attempts at reducing the speedometer noise level.

Usage

data(FLEXPROD)

Format

A data frame with 16 observations on the following 16 variables.

A Liner O.D., a factor with levels 1 2
B Liner Die, a factor with levels 1 2
C Liner Material, a factor with levels 1 2
D Liner Line Speed, a factor with levels 1 2
E Wire Braid Type, a factor with levels 1 2
F Braiding Tension, a factor with levels 1 2
G Wire Diameter, a factor with levels 1 2
H Liner Tension, a factor with levels 1 2
I Liner Temperature, a factor with levels 1 2
J Coating Material, a factor with levels 1 2
K Coating Dye Type, a factor with levels 1 2
L Melt Temperature, a factor with levels 1 2
M Screen Pack, a factor with levels 1 2
N Cooling Method, a factor with levels 1 2
O Line Speed, a factor with levels 1 2
SN Signal to noise ratio, a numeric vector
Details

Problem Definition: The product under investigation is an extruded thermoplastic speedometer casing used to cover the mechanical speedometer cable on automobiles. Excessive shrinkage of the casing is causing noise in the mechanical speedometer cable assembly.

Response variable: The performance characteristic in this problem is the post extrusion shrinkage of the casing. The percent shrinkage is obtained by measuring approximately 600mm of casing that has been properly conditioned \(A\), placing that casing in a two hour heat soak in an air circulating oven, reconditioning the sample and measuring the length \(B\). Shrinkage is computed as:

\[
\text{Shrinkage} = 100 \times \frac{A - B}{A}.
\]

Factor Levels: Existing (1) - Changed (2)

Number of Replications: Four random samples of 600mm from the 3000 feet manufactured at each experimental run.

Data Analysis: Signal to noise ratios \((SN)\) are computed for each experimental run and analyzed using main effect plots and an ANOVA. Savings are derived from Loss function computations.

The signal to noise formula used by Quinlan is:

\[
\eta = -10 \log_{10} \left(\frac{1}{n} \sum y^2 \right)
\]

Source

Examples

data(FLEXPROD)

aov(SN ~ ., data=FLEXPROD)

<table>
<thead>
<tr>
<th>GASOL</th>
<th>Distillation Properties of Crude Oils</th>
</tr>
</thead>
</table>

Description

32 measurements of distillation properties of crude oils.

Usage

data(GASOL)
Format

A data frame with 32 observations on the following 5 variables.

- `x1` crude oil gravity (API), a numeric vector
- `x2` crude oil vapour pressure (psi), a numeric vector
- `astm` crude oil ASTM 10% point (Fahrenheit), a numeric vector
- `endPt` gasoline ASTM endpoint (Fahrenheit), a numeric vector
- `yield` yield of gasoline (in percentage of crude oil), a numeric vector

Source

Daniel and Wood (1971) pp. 165

Examples

```r
data(GASOL)

lmYield <- lm(yield ~ 1 + astm + endPt, data=GASOL)
summary(lmYield)
```

GASTURBINE Gas Turbine Cycle Times

Description

125 gas turbine cycle times divided in 25 samples of 5 observations.

Usage

```r
data(GASTURBINE)
```

Source

Examples

```r
data(GASTURBINE)

plot(rowMeans(GASTURBINE), type="b")
```
Description

Several resistance measurements (Ω) of five types of resistances (Res 3, Res 18, Res 14, Res 7 and Res 20), which are located in six hybrid micro circuits simultaneously manufactured on ceramic substrates. There are altogether 192 records for 32 ceramic plates.

Usage

data(HADPAS)

Format

A data frame with 192 observations on the following 7 variables.

diska ceramic plate, a numeric vector
hyb hybrid micro circuit, a numeric vector
res3 a numeric vector
res18 a numeric vector
res14 a numeric vector
res7 a numeric vector
res20 a numeric vector

Source

Examples

data(HADPAS)

boxplot(HADPAS$res3 ~ HADPAS$hyb)
HYBRID

Resistance Values of Res 3

Description

A subset of data in HADPAS, only variable res3 is recorded. HYBRID contains values for hybrids 1 to 3, HYBRID1 contains hybrid 1 data and HYBRID2 contains values of hybrids 1 and 2.

Usage

```r
data(HYBRID)
```

Format

A data frame (a vector for HYBRID1) with 32 observations on the following variables.

- `hyb1` resistance measurements (Ω) of Res 3, a numeric vector
- `hyb2` resistance measurements (Ω) of Res 3, a numeric vector
- `hyb3` resistance measurements (Ω) of Res 3, a numeric vector

Source

See HADPAS

Examples

```r
data(HYBRID)
lapply(HYBRID, var)
```

INSERTION

Components Insertions into a Board

Description

Data represents a large number of insertions with \(k = 9 \) different components. The result of each trial (insertion) is either Success (no insertion error) or Failure (insertion error).

Usage

```r
data(INSERTION)
```
IPL

Format

A data frame with 9 \((k) \) observations on the following 3 variables.

\[
\begin{align*}
\text{comp} & \quad \text{Component, a factor with levels C1 C2 C3 C4 C5 C6 C7 C8 C9} \\
\text{fail} & \quad \text{Failure, a numeric vector} \\
\text{succ} & \quad \text{Success, a numeric vector}
\end{align*}
\]

Details

Components are:

- C1: Diode
- C2: 1/2 Watt Canister
- C3: Jump Wire
- C4: Small Corning
- C5: Large Corning
- C6: Small Bullet
- C7: 1/8 Watt Dogbone
- C8: 1/4 Watt Dogbone
- C9: 1/2 Watt Dogbone

Source

See PLACE

Examples

```r
data(INERTION)

barplot(INERTION$fail / 
   (INERTION$fail + INERTION$succ) * 100, 
   names.arg=INERTION$comp, 
   ylab= "Percentage")
```

<table>
<thead>
<tr>
<th>IPL</th>
<th>Number of Computer Crashes per Month</th>
</tr>
</thead>
</table>

Description

Number of computer crashes per month, due to power failures experienced at a computer center, over a period of 28 months. After a crash, the computers are made operational with an "Initial Program Load".
Usage

data(IPL)

Source

Examples

data(IPL)

plot(IPL, type="b")

<table>
<thead>
<tr>
<th>JANDEFECT</th>
<th>January Number of Defects in Daily Samples</th>
</tr>
</thead>
</table>

Description

Number of defective items found in random samples of size $n = 100$, drawn daily from a production line in January.

Usage

data(JANDEFECT)

Source

Examples

data(JANDEFECT)

plot(JANDEFECT, type="b")
KEYBOARDS

New Designs of Keyboards for Desktop Computers

Description

The design of the keyboard might have effect on the speed of typing or on the number of typing errors. Noisy factors are typist or type of job. Letters A, B, C, D of variable keyboard denote the designs.

Usage

```r
data(KYBOARDS)
```

Format

A data frame with 25 observations on the following 4 variables.

- **typist**: The typist, a factor with levels Q R S T U
- **job**: The type of job, a factor with levels Q R S T U
- **keyboard**: Keyboard design, a factor with levels a b c d e
- **errors**: Number of typing errors, a numeric vector

Source

Examples

```r
data(KYBOARDS)
boxplot(errors ~ keyboard, data=KYBOARDS, ylab="Errors")
```

LATHYPPISTON

Latin Hypercube Design for the Piston Simulator

Description

A Latin Hypercube Design for the 7 pistonSimulation arguments and Its response in seconds.

Usage

```r
data(LATHYPPISTON)
```
LATHYPPISTON

Format

A data frame with 14 observations on the following 8 variables.

m a numeric vector
s a numeric vector
v0 a numeric vector
k a numeric vector
p0 a numeric vector
t a numeric vector
t0 a numeric vector
seconds a numeric vector

Source

See Also

pistonSimulation

Examples

data(LATHYPPISTON)
library(DiceEval)

Dice <- km(design=LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"],
 response=LATHYPPISTON[, "seconds"])

#library(DiceView)

#sectionview(Dice,
center=colMeans(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]),
conf_lev=c(0.5, 0.9, 0.95),
title="", col_sur="darkgrey", lwd=2,
Xname=colnames(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]))

layout(1)
mahalanobisT2

Description

Mahalanobis T^2 and Confidence Region

Usage

```r
mahalanobisT2(x, factor.name, response.names = names(x)[!names(x) %in% factor.name], conf.level=0.95, compare.to = NA, plot = FALSE)
```

Arguments

- `x`: a data frame
- `factor.name`: single character indicating column name of the experiment factor to test, the first level is used as a reference
- `response.names`: vector of characters indicating columns names of the responses
- `conf.level`: confidence level for the Confidence Region
- `compare.to`: a vector of length `length(response.names)` to be compared to the result in terms of Mahalanobis T^2
- `plot`: logical, if `TRUE` also a plot is produced

Value

a list with components:

- `coord`: matrix with transformed coordinates of variables in `response.names`
- `mahalanobis`: vector containing Lower Control Region, Center and Upper Control Region of Mahalanobis T^2
- `mahalanobis.compare`: single value, Mahalanobis T^2 of `compare.to`

Author(s)

Daniele Amberti

References

Examples

data(DISS)

mahalanobis(DISS[, c("batch", "min15", "min90")],
 factor.name="batch",
 conf.level=0.90,
 compare.to=c(15, 15))

Description

Gasoline consumption (in miles per gallon in city driving) of cars by origin. There are 3 variables representing samples of sizes \(n_1 = 58 \), \(n_2 = 14 \) and \(n_3 = 37 \).

Usage

data(MPG)

Format

A data frame with 58 observations on the following 3 variables.

- origin1 Gasoline consumption, a numeric vector
- origin2 Gasoline consumption, a numeric vector
- origin3 Gasoline consumption, a numeric vector

Source

See CAR

Examples

data(MPG)

library(boot)

set.seed(123)

B <- apply(MPG, MARGIN=2,
 FUN=boot,
 statistic=function(x, i){
 var(x[i], na.rm = TRUE)
 },
 R = 500)

Bt0 <- sapply(B,
fun <- function(x) x$t0

Bt <- sapply(B,
 FUN=function(x) x$t)

Bf <- max(Bt)/min(Bt)

FBoot <- apply(Bt, MARGIN=1,
 FUN=function(x){
 max(x)/min(x)
 })

Bf

quantile(FBoot, 0.95)

sum(FBoot >= Bf)/length(FBoot)

rm(Bt, Bt, Bf, FBoot)

OSELECT

Electric Voltage Outputs of Rectifying Circuits

Description

99 electric voltage outputs of a rectifying circuit (V).

Usage

data(OSELECT)

Source

Examples

data(OSELECT)

summary(OSELECT)

mean(OSELECT)
Electric Voltage Outputs of Another Rectifying Circuit

Description
25 electric voltage outputs of a rectifying circuit (V).

Usage
data(OELECT1)

Source

Examples
data(OELECT)
data(OELECT1)
randomizationTest(list(a=OELECT, b=OELECT1), R=500, calc=mean, fun=function(x) x[1]-x[2])

Cycle Times of a Piston

Description
100 cycle times (s) of a piston, as from pistonSimulation.

Usage
data(OTURB)

References
See pistonSimulation

Examples
data(OTURB)
plot(OTURB, type="b")
Description

50 cycle times (in s) of a piston generated with pistonSimulation(seed=123). Cycle times are rounded to 3 decimals.

Usage

data(OTURB1)

References

See pistonSimulation

Examples

data(OTURB1)

REF <- round(pistonSimulation(seed=123)$seconds, 3)
plot(OTURB1, type="b", lwd=6)
lines(REF, col=2, lwd=2)
sum(OTURB1 - REF)

Description

In this data frame we have three variables. In the first we have the sample size. In the second and third we have the sample means and standard deviation.

Usage

data(OTURB2)

Format

A data frame with 10 observations on the following 3 variables.

- groupSize: a numeric vector
- xbar: a numeric vector
- std: a numeric vector
Source

Examples

data(PBX)
plot(PBX$xbar, type="b")
plot(PBX$std, type="b")

PBX

Software Errors Found in Testing a PBX

Description

Software errors found in testing a Private Branch Exchange electronic switch. Errors are labeled according to the software unit where they occurred (e.g. "EKT", Electronic Key Telephone).

Usage

data(PBX)

Format

The format is: Named num [1:5] 473 252 110 100 65 - attr(, "names")= chr [1:5] "GEN" "VHS" "HI" "LO" ...

Source

Examples

data(PBX)

barplot(PBX)
pistonSimulation

The Piston Simulator

Description

A simulator of a piston moving within a cylinder. The piston’s performance is measured by the time it takes to complete one cycle, in seconds. Several factors can affect the piston’s performance, they are listed in the arguments section.

Usage

pistonSimulation(m = 60, s = 0.02, v0 = 0.01,
k = 5000, p0 = 110000, t = 296,
t0 = 360, each = 50, seed = NA,
check = TRUE)

Arguments

m the impact pressure determined by the piston weight (kg). A single value or a vector of length n.
s the piston surface area (m^2). A single value or a vector.
v0 the initial volume of the gas inside the piston (m^3). A single value or a vector of length n.
k the spring coefficient (N/m^3). A single value or a vector of length n.
p0 the atmospheric pressure (N/m^2). A single value or a vector of length n.
t the surrounding ambient temperature (K). A single value or a vector of length n.
t0 the filling gas temperature (K). A single value or a vector of length n.
each non-negative integer. Each element of previous parameters is repeated each times.
seed a single value, interpreted as an integer. If specified make the simulation replicable.
check if TRUE (the default) then a formal check on piston parameters is performed

Details

Factors affect the Cycle Time s via a chain of nonlinear equations:

$$s = 2\pi \sqrt{\frac{M}{k + S^2 p_0 v_0 T_0 \frac{T - a}{V^2}}}$$

where

$$V = \frac{S}{2k} \sqrt{A^2 + 4k \frac{p_0 v_0}{T_0} T - a}$$

and

$$A = p_0 S + 19.62 M - \frac{k v_0}{S}$$
Value

A data frame, a matrix-like structure, with each * n rows and with columns:

- m numeric value of m
- s numeric value of s
- v0 numeric value of v0
- k numeric value of k
- p0 numeric value of p0
- t numeric value of t
- t0 numeric value of t0
- seconds numeric time to complete one cycle (s)

Author(s)

Daniele Amberti

References

See Also

powerCircuitSimulation, simulationGroup, LATHYPPISTON

Examples

Ps <- pistonSimulation(
 m = rep(60, 100),
 s = rep(0.02, 100),
 v0 = rep(0.01, 100),
 k = rep(5000, 100),
 p0 = rep(1100, 100),
 t = c(rep(296, 35), 296*1.1^(1:65)),
 t0 = rep(380, 100),
 each = 1,
 seed = 123,
 check = FALSE)
head(Ps)
tail(Ps)
plot(Ps$seconds)
Description

The observations are the displacements (position errors) of electronic components on printed circuit boards. There are 26 boards. 16 components are placed on each board. Each component has to be placed at a specific location \((x, y)\) on a board and with correct orientation \(\theta\).

Usage

```r
data(PLACE)
```

Format

A data frame with 416 observations on the following 4 variables.

- **crcBrd** Circuit board number, a numeric vector
- **xDev** Error in placement along the \(x\)-axis, a numeric vector
- **yDev** Error in placement along the \(y\)-axis, a numeric vector
- **tDev** Error in orientation \(\theta\), a numeric vector

Source

Examples

```r
data(PLACE)
plot(PLACE[, -1])

boxplot(xDev ~ crcBrd, data=PLACE,
       ylab="xDev", xlab="crcBrd")

PLACE$code <- factor(c(rep("1Dev", 9*16),
                    rep("mDev", 3*16),
                    rep("hDev", 14*16)))

plot(PLACE[, "xDev"], PLACE[, "yDev"],
     pch=as.integer(PLACE[, "code"]),
     main="", xlab="xDev", ylab="yDev")

grid()
```
Description

A simulator of a voltage conversion power circuit. The target output voltage of the power circuit is 220 volts DC. The circuit consists of 10 resistances labeled A to J, and 3 transistors, labeled K to M. These components can be purchased with different tolerance grades.

Usage

```plaintext
circuitSimulation (rsA = 8200, rsB = 220000, rsC = 1000, rsD = 33000, rsE = 56000, rsF = 5600, rsG = 3300, rsH = 58.5, rsI = 1000, rsJ = 120, trK = 130, trL = 100, trM = 130, t1A = 5, t1B = 10, t1C = 10, t1D = 5, t1E = 5, t1F = 5, t1G = 10, t1H = 5, t1I = 5, t1J = 5, t1K = 5, t1L = 10, t1M = 5, each = 50, seed = NA)
```

Arguments

- `rsA`: the resistance (Ω) of A. A single value or a vector of length `n`.
- `rsB`: the resistance (Ω) of B. A single value or a vector of length `n`.
- `rsC`: the resistance (Ω) of C. A single value or a vector of length `n`.
- `rsD`: the resistance (Ω) of D. A single value or a vector of length `n`.
- `rsE`: the resistance (Ω) of E. A single value or a vector of length `n`.
- `rsF`: the resistance (Ω) of F. A single value or a vector of length `n`.
- `rsG`: the resistance (Ω) of G. A single value or a vector of length `n`.
- `rsH`: the resistance (Ω) of H. A single value or a vector of length `n`.
- `rsI`: the resistance (Ω) of I. A single value or a vector of length `n`.
- `rsJ`: the resistance (Ω) of J. A single value or a vector of length `n`.
- `trK`: the resistance (Ω) of K. A single value or a vector of length `n`.
- `trL`: the resistance (Ω) of L. A single value or a vector of length `n`.
- `trM`: the resistance (Ω) of M. A single value or a vector of length `n`.
- `t1A`: the tolerance of A. It is a number > 0 (e.g. 5% is 5.0)
- `t1B`: the tolerance of B. It is a number > 0 (e.g. 5% is 5.0)
- `t1C`: the tolerance of C. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of D. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of E. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of F. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of G. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of H. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of I. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of J. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of K. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of L. It is a number > 0 (e.g. 5% is 5.0)

the tolerance of M. It is a number > 0 (e.g. 5% is 5.0)

each non-negative integer. Each element of previous parameters is repeated each times.

a single value, interpreted as an integer. If specified make the simulation replicable.

Details

Factors affect the voltage output V via a chain of nonlinear equations:

$$V = \frac{136.67(a + \frac{b}{Z(10)}) + d(c + e)\frac{Z(10)}{Z(11)} - h}{1 + d\frac{Z(2)}{Z(10)} + b(frac1Z(10) + 0.006(1 + \frac{13.67}{Z(10)}))] + 0.08202a}$$

where

$$a = \frac{Z(2)}{Z(1) + Z(2)}$$

$$b = \frac{1}{Z(12) + Z(13)}(Z(3) + \frac{Z(1)Z(2)}{Z(1) + Z(2)}) + Z(9)$$

$$c = Z(5) + Z(7)/2$$

$$d = Z(11)\frac{Z(1)Z(2)}{Z(1) + Z(2)}$$

$$e = Z(6) + Z(7)/2$$

$$f = (c + e)(1 + Z(11))Z(8) + ce$$

$$g = 0.6 + Z(8)$$

$$h = 1.2$$

with $Z(1), \ldots, Z(10)$ resistances in Ω of the 10 resistances and $Z(11), Z(12), Z(13)$ are the h_{FE} values of three transistors.
Value

A data frame, a matrix-like structure, with each * n rows and with columns:

- rsA numeric value of rsA
- rsB numeric value of rsB
- rsC numeric value of rsC
- rsD numeric value of rsD
- rsE numeric value of rsE
- rsF numeric value of rsF
- rsG numeric value of rsG
- rsH numeric value of rsH
- rsI numeric value of rsI
- rsJ numeric value of rsJ
- trK numeric value of trK
- trL numeric value of trL
- trM numeric value of trM
- tlA numeric value of tlA
- tIB numeric value of tIB
- tlC numeric value of tlC
- tlD numeric value of tlD
- tlE numeric value of tlE
- tlF numeric value of tlF
- tlG numeric value of tlG
- tlH numeric value of tlH
- tlI numeric value of tlI
- tlJ numeric value of tlJ
- tlK numeric value of tlK
- tlL numeric value of tlL
- tlM numeric value of tlM
- volts numeric output in volts (V)

Author(s)

Daniele Amberti

References

See Also

pistonSimulation, simulationGroup

Examples

powerCircuitSimulation(seed=123, each=3)
Description

1,000 records on variable x and y. x is the number of soldering points on a board, and y is the number of defective soldering points.

Usage

data(PRED)

Format

A data frame with 1000 observations on the following 2 variables.

x Number of soldering points, a numeric vector
y Number of defective soldering points, a numeric vector

Details

Electronic systems such as television sets, radios or computers contain printed circuit boards with electronic components positioned in patterns determined by design engineers. After assembly (either by automatic insertion machines or manually) the components are soldered to the board. In the relatively new Surface Mount Technology minute components are simultaneously positioned and soldered to the boards. The occurrence of defective soldering points impacts the assembly plant productivity and is therefore closely monitored.

Source

Examples

data(PRED)

library(boot)

set.seed(123)

YRatioPred <- boot(data=PRED$x,
 statistic=function(x,i){
 mean(x[i[1:100]])*7.495/148.58
 },
 R=1000)$t

hist(YRatioPred, main="", xlab="",xlim=c(7,8))
randomizationTest Randomization Test

Description

A function to perform randomization test

Usage

randomizationTest(list, R = 500, calc, fun = NA,
 seed = NA, printSummary = TRUE)

Arguments

 list a list with two or more numeric vectors
 R
 calc a function to be applied to every vector in list
 fun a function to be applied to a vector (e.g. x) of length length(list), containing
 result of function calc
 seed a single value, interpreted as an integer. If specified make the simulation repli-
 cable.
 printSummary logical, if TRUE print a summary of the randomization test

Value

The silently returned value is an object of class "boot"

Author(s)

Daniele Amberti

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applica-
 tions in R, MINITAB and JMP. Wiley.

See Also

 boot
Examples

```r
data(OELECT)
data(OELECT1)

# test difference in mean:
randomizationTest(list(a=OELECT, b=OELECT1),
R=500, calc=mean,
fun=function(x) x[1]-x[2],
seed=123)
```

renewDis

Renewals Distribution

Description

Provide the Empirical Bootstrap Distribution of the number of renewals in a specified time interval.

Usage

```r
renewDis(ttf, ttr, time, n, printSummary = TRUE)
```

Arguments

- `ttf` numeric vector of Time To Failure
- `ttr` numeric vector of Time To Repair
- `time` numeric value representing the time horizon on which number of renewals are calculated
- `n` the number of bootstrap replicates
- `printSummary` logical, if TRUE print the Mean Number of Renewals, and a summary of renewals values

Value

A numeric vector of length `n` with simulated number of renewals

Author(s)

Daniele Amberti

References

See Also

`availDis`
Examples

```r
set.seed(123)
Ttf <- rgamma(50,
    shape=2,
    scale=100)
Ttr <- rgamma(50,
    shape=2,
    scale=1)
RenewEbd <- renewDis(ttf=Ttf,
    ttr=Ttr,
    time=1000,
    n=1000)
```

<table>
<thead>
<tr>
<th>RNORM10</th>
<th>Random Sample from N(10, 1)</th>
</tr>
</thead>
</table>

Description

Random sample of size $n = 28$ from the normal distribution $N(10, 1)$.

Usage

```r
data(RNORM10)
```

Source

Examples

```r
data(RNORM10)
plot(RNORM10, type="b")
abline(h=10, lwd=2, col=2)
```
shroArlPfaCed

ARL, PFA and CED of Shirayev-Roberts procedure

Description

Average Run Length, the Probability of False Alarm and the Conditional Expected Delay, given that the alarm is given after the change-point for Normal and Poisson cases.

Usage

```r
shroArlPfaCedNorm(mean0 = 0, mean1 = NA, sd = 1, n = 10, delta = 1, tau = NA, N = 100, limit = 10000, seed = NA, w = 19, printSummary = TRUE)
```

```r
shroArlPfaCedPois(lambda0 = 10, lambda1 = NA, delta = 1, tau = NA, N = 100, limit = 10000, seed = NA, w = 19, printSummary = TRUE)
```

Arguments

- `mean0`: value of the mean of a normal distributed process
- `mean1`: optional value of the mean after a shift in a normal process, ignored if `delta` is not `NA`
- `sd`: standard deviation of a normal distributed process
- `n`: sample size
- `lambda0`: mean of a Poisson distributed process
- `lambda1`: optional value of the mean after a shift in a Poisson process, ignored if `delta` is not `NA`
- `delta`: value of the shift from `mean0` or `lambda0`, set to `NA` if the alternative specification with `mean1` or `lambda1` is needed
- `tau`: location of the point of change in the process parameter `mean0` or `lambda0`, if `NA` simulation is performed without any shift: `mean1`, `lambda1` and `delta` are ignored
- `N`: the number of replicates
- `limit`: safety parameter, stop rule for procedures with very long ARL
- `seed`: a single value, interpreted as an integer. If specified make the simulation replicable.
- `w`: Shirayev-Roberts statistics used as the stopping threshold
- `printSummary`: logical, if `TRUE` print a summary of the Shirayev-Roberts ARL, PFA and CED
Value

a list with elements:

- `rls` a numeric vector representing the Run Length of the simulation
- `statistics` a numeric vector with summary statistics
- `run` a list of length N elements each of which has single numeric elements `violationLower`, `violationUpper` and `rl`

Author(s)

Daniele Amberti

References

Examples

```r
shroAr1PfaCedNorm(mean0=10, sd=3, n=5, delta=0.5, tau=10, w=99, seed=123)

shroAr1PfaCedPois(lambda0=5, delta=0.5, tau=10, w=99, seed=123)

shroAr1PfaCedNorm(mean0=15, sd=3, n=5, delta=0.5, tau=NA, w=99, seed=123)
```

Description

Add a column named `group` to an object of class "mistatSimulation".
Usage

simulationGroup(x, n)

Arguments

x an object of class "mistatSimulation"

n size of the group or sample

Value

Add a column named group to an object of class "mistatSimulation".

Author(s)

Daniele Amberti

See Also

pistonSimulation, powerCircuitSimulation

Examples

simulationGroup(pistonSimulation(each=20), 5)
simulationGroup(powerCircuitSimulation(each=20), 5)

SOCELL

Short Circuit Current of Solar Cells

Description

Short circuit current (ISC) of 16 solar cells measured at three time epochs, one month apart.

Usage

data(SOCELL)

Format

A data frame with 16 observations on the following 3 variables.

t1 ISC at time epoch 1, a numeric vector
t2 ISC at time epoch 2, a numeric vector
t3 ISC at time epoch 3, a numeric vector
Details

Telecommunication satellites are powered while in orbit by solar cells. Tadicell, a solar cells producer that supplies several satellite manufacturers, was requested to provide data on the degradation of its solar cells over time. Tadicell engineers performed a simulated experiment in which solar cells were subjected to temperature and illumination changes similar to those in orbit and measured the short circuit current ISC (amps), of solar cells at three different time periods, in order to determine their rate of degradation.

Source

Examples

data(SOCELL)

LmISC <- lm(t2 - 1 + t1, data=SOCELL)

summary(LmISC)

SOLDEF

Solder Defects

Description

Solder defects on 380 printed circuits boards of varying size.

Usage

data(SOLDEF)

Details

In SOLDEF we present results of testing batches of circuit boards for defects in solder points, after wave solderings. The batches includes boards of similar design. There were close to 1,000 solder points on each board. The results X are number of defects per 10^6 points (PPM). The quality standard is \(\lambda_0 = 100/PPM \). \(\lambda_t \) values below \(\lambda_0 \) represent high quality soldering. In this data file there are \(N = 380 \) test results. Only 78 batches had an \(X_t \) value greater than \(\lambda_0 = 100 \).

Source

Example data

```
data(SOLDEF)
hist(SOLDEF)
```

Example steelrod data

```
data(steelrod)
plot(steelrod, ylab = "Steel rod Length", xlab = "Index")
```

Description

Steel rods are used in the car and truck industry to strengthen vehicle structures. Steel rods supplied by Urdon Industries are produced by a process adjusted to obtain rods of length 20 cm. However, due to natural fluctuations in the production process, the actual length of the rods varies around the nominal value of 20 cm.

Usage

```
data(steelrod)
```

Source

Description

Results of a 33 factorial experiment to investigate the effects of three factors A, B, C on the stress levels of a membrane Y. The first three columns of the data provide the levels of the three factors, and column 4 presents the stress values.

Usage

```
data(STRESS)
```
Format

A data frame with 27 observations on the following 4 variables.

A levels of factor A, a numeric vector
B levels of factor B, a numeric vector
C levels of factor C, a numeric vector
stress stress levels of a membrane Y, a numeric vector

Source

Oikawa and Oka (1987)

Examples

data(STRESS)

summary(
 aov(stress ~ (A+B+C)^3 +I(A^2)+I(B^2)+I(C^2),
 data=STRESS))

<table>
<thead>
<tr>
<th>THICKDIFF</th>
<th>Difference in Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Difference between the thickness of the grown silicon layer and its target value.

Usage

data(THICKDIFF)

Source

E. Yashchin (1991)

Examples

data(THICKDIFF)

plot(THICKDIFF, type="b")
Description

368 T^2 values corresponding to the vectors (x, y, θ) of displacements (position errors) of electronic components on printed circuit boards.

Usage

data(TSQ)

Source

See PLACE

Examples

data(TSQ)

plot(TSQ, type="b")

Description

Number of cycles required until latch failure in 30 floppy disk drives from three different disk vendors.

Usage

data(VENDOR)

Format

A data frame with 10 observations on the following 3 variables.

vendor1 number of cycles required until latch failure for vendor A1, a numeric vector
vendor2 number of cycles required until latch failure for vendor A2, a numeric vector
vendor3 number of cycles required until latch failure for vendor A3, a numeric vector
Details

Three different vendors are considered for supplying cases for floppy disk drives. The question is whether the latch mechanism that opens and closes the disk loading slot is sufficiently reliable. In order to test the reliability of this latch, three independent samples of cases, each of size $n = 10$, were randomly selected from the production lots of these vendors. The testing was performed on a special apparatus that opens and closes a latch, until it breaks. The number of cycles required until latch failure was recorded. In order to avoid uncontrollable environmental factors to bias the results, the order of testing of cases of different vendors was completely randomized. In data VENDOR there are the results of this experiment, arranged in 3 columns. Column 1 represents the sample from vendor A_1; column 2 that of vendor A_2 and column 3 of vendor A_3.

Source

Examples

```r
data(VENDOR)
VENDOR <- stack(VENDOR)
VENDOR$ind <- as.factor(VENDOR$ind)
VENDOR$values <- sqrt(VENDOR$values)
confint(lm(values ~ -1 + ind, data=VENDOR))
```

WEIBUL

Random sample from a Weibull distribution

Description

Values of a random sample of size $n = 50$ from a Weibull distribution.

Usage

```r
data(WEIBUL)
```

Source

Examples

data(WEIBUL)

hist(WEIBUL)

YARNSTRG
Yarn strength

Description

Yarn strength is typically analyzed on a logarithmic scale. This logarithmic transformation produces data that is more symmetrically distributed. In YARNSTRG data there are \(n = 100 \) values of \(Y = \ln(X) \) where \(X \) is the yarn-strength in \(lb./22\text{yarns} \) of woolen fibers.

Usage

data(YARNSTRG)

Source

Examples

data(YARNSTRG)

hist(YARNSTRG,
breaks=6,
main="",
xlab = "Log yarn strength")
Index

*Topic **datagen**
 pistonSimulation, 35
 powerCircuitSimulation, 38

*Topic **datasets**
 ALMPIN, 4
 BLEMISHES, 7
 CAR, 7
 COAL, 8
 COMPURESP, 9
 CONTACTLEN, 11
 CYCLT, 14
 DISS, 15
 DOJ01935, 16
 DOW1941, 16
 ELECFAIL, 17
 ELECFIDX, 17
 ETCHRATE, 18
 ETCHRATETWO, 18
 FAILTIME, 19
 FILMSP, 19
 FLEXPROD, 20
 GASOL, 21
 GASTURBINE, 22
 HADPAS, 23
 HYBRID, 24
 INSERTION, 24
 IPL, 25
 JANDETECT, 26
 KEYBOARDS, 27
 LATHYPPISTON, 27
 MPG, 30
 ODELECT, 31
 ODELECT1, 32
 OTURB, 32
 OTURB1, 33
 OTURB2, 33
 PBX, 34
 PLACE, 36
 PRED, 41
 RNORM10, 44
 SOCELL, 47
 SOLDEF, 48
 STEELROD, 49
 STRESS, 49
 THICKDIFF, 50
 TSQ, 51
 VENDOR, 51
 WEIBUL, 52
 YARNSTRG, 53

*Topic **distribution**
 availDis, 5
 renewDis, 43

*Topic **math**
 pistonSimulation, 35
 powerCircuitSimulation, 38

*Topic **multivariate**
 mahalanobisT2, 29

*Topic **nonparametric**
 availDis, 5
 csumArl, 11
 csumPfaCed, 13
 randomizationTest, 42
 renewDis, 43
 shroAr1PfaCed, 45

*Topic **package**
 mistatPpackage, 3

*Topic **ts**
 availDis, 5
 csumArl, 11
 csumPfaCed, 13
 renewDis, 43
 shroAr1PfaCed, 45

*Topic **utilities**
 simulationGroup, 46

ALMPIN, 4
ALMPIN2 (ALMPIN), 4
availDis, 5, 43
INDEX

BLEMISHES, 7
boot, 42

CAR, 7, 30
COAL, 8
COMPURESP, 9
CONTACTLEN, 11
cusumAr1, 11
cusumPfaCed, 13
cusumPfaCedBinom (cusumPfaCed), 13
cusumPfaCedNorm (cusumPfaCed), 13
cusumPfaCedPois (cusumPfaCed), 13
CYCLT, 14

DISS, 15
DOJO1935, 16
DOW1941, 16

ELECFAIL, 17
ELECINDX, 17
ETCHRATE, 18
ETCHRATETWO, 18

FAILTIME, 19
FILMSP, 19
FLEXPROD, 20

GASOL, 21
GASTURBINE, 22

HADPAS, 23, 24
HYBRID, 24
HYBRID1 (HYBRID), 24
HYBRID2 (HYBRID), 24

INSERTION, 24
IPL, 25

JANDEFECT, 26
KEYBOARDS, 27

LATHYPPISTON, 27, 36

mahalanobisT2, 29
mistat (mistat-package), 3
mistat-package, 3
MPG, 30

OSELECT, 17, 31
OSELECT1, 32

OTURN, 32
OTURN1, 33
OTURN2, 33

PBX, 34
pistonSimulation, 28, 32, 33, 35, 40, 47
PLACE, 25, 36, 51
powerCircuitSimulation, 36, 38, 47
PREDE, 41

randomizationTest, 42
renewDis, 6, 43
RNORM10, 44

shroAr1PfaCed, 45
shroAr1PfaCedNorm (shroAr1PfaCed), 45
shroAr1PfaCedPois (shroAr1PfaCed), 45
simulationGroup, 36, 40, 46
SOCCELL, 47
SOLDEF, 48
STEELROD, 49
STRESS, 49

THICKDIFF, 50
TSQ, 51

VENDOR, 51
WEIBUL, 52

YARNSTRG, 53