Package ‘mixcat’

Title Mixed Effects Cumulative Link and Logistic Regression Models
Version 1.0-4
Date 2019-12-20
Author Georgios Papageorgiou [aut, cre],
John Hinde [aut]
Maintainer Georgios Papageorgiou <gpapageo@gmail.com>
Depends R (>= 2.8.1), statmod
LazyLoad yes
Description Mixed effects cumulative and baseline logit link models for the analysis of ordinal or nominal responses, with non-parametric distribution for the random effects.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-12-20 12:20:02 UTC

R topics documented:

mixcat-package .. 1
npmlt .. 2
schizo ... 6
summary.npmreg .. 7

Index

| mixcat-package | Mixed effects cumulative link and logistic regression models |

Description

Mixed effects models for the analysis of binary or multinomial (ordinal or nominal) data with non-parametric distribution for the random effects. The main function is `npmlt` and it fits cumulative and baseline logit models.
Details

Package: mixcat
Type: Package
Version: 1.0-4
Date: 2019-12-20
License: GPL (>=2)
LazyLoad: no

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

For details on the GNU General Public License see http://www.gnu.org/copyleft/gpl.html or write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Acknowledgments

Papageorgiou’s work was supported by the Science Foundation Ireland Research Frontiers grant 07/RFP/MATF448.

Author(s)

Georgios Papageorgiou and John Hinde (2011)

Maintainer: Georgios Papageorgiou <gpapageo@gmail.com>

References

npmlt

Mixed effects cumulative link and logistic regression models

Description

Fits cumulative logit and baseline logit and link mixed effects regression models with non-parametric distribution for the random effects.
Usage

npmlt(formula, formula.npo=~1, random=~1, id, k=1, eps=0.0001,
start.int=NULL, start.reg=NULL, start.mp=NULL,
start.m=NULL, link="clogit",
EB=FALSE, maxit=500, na.rm=TRUE, tol=0.0001)

Arguments

formula a formula defining the response and the fixed, proportional odds, effects part of
the model, e.g. \(y \sim x \).

formula.npo a formula defining non proportional odds variables of the model. A response is
not needed as it has been provided in formula. Intercepts need not be provided
as they are always non proportional. Variables in formula.npo must be a subset
of the variables that appear in the right hand side of formula, e.g. \(\sim x \).

random a formula defining the random part of the model. For instance, random = \(\sim 1 \)
defines a random intercept model, while random = \(\sim 1+x \) defines a model with
random intercept and random slope for the variable \(x \). If argument k=1, the
resulting model is a fixed effects model (see below). Variables in random must
be a subset of the variables that appear in the right hand side of formula.

id a factor that defines the primary sampling units, e.g. groups, clusters, classes, or
individuals in longitudinal studies. These sampling units have their own random
coefficient, as defined in random. If argument id is missing it is taken to be
id=seq(N), where N is the total number of observations, suitable for overdis-
persed independent multinomial data.

k the number of mass points and masses for the non-parametric (discrete) random
effects distribution. If \(k=1 \) the function fits a fixed effects models, regard-
erless of the random specification, as with \(k=1 \) the random effects distribution is degen-
erate at zero.

eps positive convergence tolerance \(\epsilon \). Convergence is declared when the max-
imum of the absolute value of the score vector is less than \(\epsilon \).

start.int a vector of length (number of categories minus one) with the starting values the
fixed intercept(s).

start.reg a vector with the starting values for the regression coefficients. One starting
value for the proportional odds effects and (number of categories minus one)
starting values for the non proportional effects, in the same order as they appear
in formula.

start.mp starting values for the mass points of the random effects distribution in the
form: (k starting values for the intercepts, k starting values for the first random
slope,...).

start.m starting values for the masses of the random effects distribution: a vector of
length k with non-negative elements that sum to 1.

link for a cumulative logit model set link="clogit" (default). For a baseline logit
model, set link="blogit". Baseline category is the last category.

EB if EB=TRUE the empirical Bayes estimates of the random effects are calculated
and stored in the component eBayes. Further, fitted values of the linear predictor
(stored in the component `fitted`) and fitted probabilities (stored in object `prob`) are obtained at the empirical Bayes estimates of the random effects. Otherwise, if `EB=FALSE` (default), empirical Bayes estimates are not calculated and fitted values of the linear predictors and probabilities are calculated at the zero value of the random effects.

- `maxit` integer giving the maximal number of iterations of the fitting algorithm until convergence. By default this number is set to 500.
- `na.rm` a logical value indicating whether NA values should be stripped before the computation proceeds.
- `tol` positive tolerance level used for calculating generalised inverses (g-inverses). Consider matrix $A = PDP^T$, where $D = Diag\{eigen_i\}$ is diagonal with entries the eigen values of A. Its g-inverse is calculated as $A^{-1} = PD^-P^T$, where D^- is diagonal with entries $1/eigen_i$ if $eigen_i > tol$, and 0 otherwise.

Details

Maximizing a likelihood over an unspecified random effects distribution results in a discrete mass point estimate of this distribution (Laird, 1978; Lindsay, 1983). Thus, the terms ‘non-parametric’ (NP) and ‘discrete’ random effects distribution are used here interchangeably. Function `npmlt` allows the user to choose the number k of mass points/masses of the discrete distribution, a choice that should be based on the log-likelihood. Note that the mean of the NP distribution is constrained to be zero and thus for $k=1$ the fitted model is equivalent to a fixed effects model. For $k>1$ and a random slope in the model, the mass points are bivariate with a component that corresponds to the intercept and another that corresponds to the slope.

The response variable y can be binary or multinomial. A binary response should take values 1 and 2, and the function `npmlt` will model the probability of 1. For an ordinal response, taking values 1, ..., q, a cumulative logit model can be fit. Ignoring the random effects, such a model, with formula $y \sim x$, takes the form

$$
\log \frac{P(Y \leq r)}{1 - P(Y \leq r)} = \beta_r + \gamma x,
$$

where β_r, $r = 1, \ldots, q - 1$, are the cut-points and γ is the slope. Further, if argument `formula.npo` is specified as $\sim x$, the model becomes

$$
\log \frac{P(Y \leq r)}{1 - P(Y \leq r)} = \beta_r + \gamma_r x,
$$

Similarly, for a nominal response with q categories, a baseline logit model can be fit. The fixed effects part of the model, $y \sim x$, takes the form,

$$
\log \frac{P(Y = r)}{P(Y = q)} = \beta_r + \gamma x,
$$

where $r = 1, \ldots, q - 1$. Again, `formula.npo` can be specified as $\sim x$, in which case slope γ will be replaced by category specific slopes, γ_r.

The user is provided with the option of specifying starting values for some or all the model parameters. This option allows for starting the algorithm at different starting points, in order to ensure that
it has converged to the point of maximum likelihood. Further, if the fitting algorithm fails, the user can start by fitting a less complex model and use the estimates of this model as starting values for the more complex one.

With reference to the tol argument, the fitting algorithm calculates g-inverses of two matrices: 1. the information matrix of the model, and 2. the covariance matrix of multinomial proportions. The covariance matrix of a multinomial proportion \(p \) of length \(q \) is calculated as \(\text{Diag}(p^*) - p^* p^{*T} \), where \(p^* \) is of length \(q - 1 \). A g-inverse for this matrix is needed because elements of \(p^* \) can become zero or one.

Value

The function \texttt{npmlt} returns an object of class ‘npmreg’, a list containing at least the following components:

- \texttt{call} the matched call.
- \texttt{formula} the formula supplied.
- \texttt{formula.npo} the formula for the non proportional odds supplied.
- \texttt{random} the random effects formula supplied.
- \texttt{coefficients} a named vector of regression coefficients.
- \texttt{mass.points} a vector or a table that contains the mass point estimates.
- \texttt{masses} the masses (probabilities) corresponding to the mass points.
- \texttt{vcvremat} the estimated variance-covariance matrix of the random effects.
- \texttt{var.cor.mat} the estimated variance-covariance matrix of the random effects, with the upper triangular covariances replaced by the corresponding correlations.
- \texttt{m2LogL} minus twice the maximized log-likelihood of the chosen model.
- \texttt{SE.coefficients} a named vector of standard errors of the estimated regression coefficients.
- \texttt{SE.mass.points} a vector or a table that contains the the standard errors of the estimated mass points.
- \texttt{SE.masses} the standard errors of the estimated masses.
- \texttt{VRESE} the standard errors of the estimates of the variances of random effects.
- \texttt{CVmat} the inverse of the observed information matrix of the model.
- \texttt{eBayes} if \texttt{EB=TRUE} it contains the empirical Bayes estimates of the random effects. Otherwise it contains vector(s) of zeros.
- \texttt{fitted} the fitted values of the linear predictors computed at the empirical Bayes estimates of the random effects, if \texttt{EB=TRUE}. Otherwise, if \texttt{EB=FALSE} (default) these fitted values are computed at the zero value of the random effects.
- \texttt{prob} the estimated probabilities of observing a response at one of the categories. These probabilities are computed at the empirical Bayes estimates of the random effects, if \texttt{EB=TRUE}. If \texttt{EB=FALSE} (default) these estimated probabilities are computed at the zero value of the random effects.
- \texttt{nrp} number of random slopes specified.
- \texttt{iter} the number of iterations of the fitting algorithm.
maxit the maximal allowed number of iterations of the fitting algorithm until convergence.
flagcvm last iteration at which eigenvalue(s) of covariance matrix of multinomial variable were less than tol argument.
flaginfo last iteration at which eigenvalue(s) of model information matrix were less than tol argument.

Author(s)
Georgios Papageorgiou <gpapageo@gmail.com>

References

See Also
summary.npmreg

Examples
data(schizo)
attach(schizo)

npmlt(y~trt*sqrt(wk),formula.npo=~trt,random=~l+trt,id=id,k=2,EB=FALSE)

schizo
National Institute of Mental Health schizophrenia study

Description
Schizophrenia data from a randomized controlled trial with patients assigned to either drug or placebo group. "Severity of Illness" was measured, at weeks 0,1,...,6, on a four category ordered scale: 1. normal or borderline mentally ill, 2. mildly or moderately ill, 3. markedly ill, and 4. severely or among the most extremely ill. Most of the observations where made on weeks 0,1,3, and 6.
Summary

Usage

data(schizo)

Format

A data frame with 1603 observations on 437 subjects. Four numerical vectors contain information on
id patient ID.
y ordinal response on a 4 category scale.
trt treatment indicator: 1 for drug, 0 for placebo.
wk week.

Source

http://tigger.uic.edu/~hedeker/ml.html

References

Summary.npmreg

Summarizing mixed multinomial regression model fits

Description

summary and print methods for objects of type npmreg.

Usage

S3 method for class 'npmreg'
summary(object,digits = max(3,getOption("digits") - 3),...)
S3 method for class 'npmreg'
print(x,digits = max(3,getOption("digits") - 3),...)

Arguments

object an object of class npmreg.
x an object of class npmreg.
digits the minimum number of significant digits to be printed in values.
... further arguments, which will mostly be ignored.

details

The function npmlt returns an object of class "npmreg". The function summary (i.e., summary.npmreg) can be used to obtain or print a summary of the results, and the function print (i.e., print.npmreg) to print the results.
Value
Summary or print.

Author(s)
Georgios Papageorgiou <gpapageo@gmail.com>

See Also
npmlt

Examples
```r
data(schizo)
attach(schizo)
fit1 <- npmlt(y ~ trt * sqrt(wk), formula.npo = ~ trt, random = ~ 1, id = id, k = 2)
print(fit1)
summary(fit1)
```
Index

*Topic **datasets**
 schizo, 6

*Topic **models**
 mixcat-package, 1
 npmlt, 2
 summary.npmreg, 7

*Topic **regression**
 mixcat-package, 1
 npmlt, 2
 summary.npmreg, 7

mixcat (mixcat-package), 1
mixcat-package, 1

npmlt, 1, 2, 8

print.npmreg (summary.npmreg), 7

schizo, 6
summary.npmreg, 6, 7