Package ‘mixgb’

February 16, 2023

Title Multiple Imputation Through 'XGBoost'

Version 1.0.2

Description Multiple imputation using 'XGBoost', subsampling, and predictive mean matching as described in Deng and Lumley (2023) <arXiv:2106.01574>. Our method utilizes the capabilities of XGBoost, a highly efficient implementation of gradient boosted trees, to capture interactions and non-linear relations automatically. Moreover, we have integrated subsampling and predictive mean matching to minimize bias and reflect appropriate imputation variability. This package supports various types of variables and offers flexible settings for subsampling and predictive mean matching. Additionally, it includes diagnostic tools for evaluating the quality of the imputed values.

URL https://github.com/agnesdeng/mixgb,
 https://agnesdeng.github.io/mixgb/

BugReports https://github.com/agnesdeng/mixgb/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports data.table, ggplot2, Matrix, mice, Rfast, rlang, scales, stats, tidyr, utils, xgboost

Suggests knitr, rmarkdown, RColorBrewer

Depends R (>= 3.5.0)

VignetteBuilder knitr

RoxygenNote 7.2.0

Config/testthat/edition 3

NeedsCompilation no

Author Yongshi Deng [aut, cre] (<https://orcid.org/0000-0001-5845-859X>),
 Thomas Lumley [ths]

Maintainer Yongshi Deng <yongshi.deng@auckland.ac.nz>

Repository CRAN

Date/Publication 2023-02-16 11:00:02 UTC
mixgb-package

R topics documented:

- mixgb-package .. 2
- createNA ... 3
- data_clean ... 4
- impute_new ... 4
- mixgb ... 6
- mixgb_cv .. 8
- nhanes3 .. 9
- nhanes3_newborn ... 10
- plot_1num1fac .. 11
- plot_1num2fac .. 12
- plot_2fac ... 13
- plot_2num ... 15
- plot_2num1fac .. 16
- plot_bar .. 17
- plot_box .. 18
- plot_hist .. 19
- show_var .. 20

Index

- mixgb-package

mixgb-package

mixgb: Multiple Imputation Through XGBoost

Description

Multiple imputation using ’XGBoost’, subsampling, and predictive mean matching as described in Deng and Lumley (2023) <arXiv:2106.01574>. Our method utilizes the capabilities of XGBoost, a highly efficient implementation of gradient boosted trees, to capture interactions and non-linear relations automatically. Moreover, we have integrated subsampling and predictive mean matching to minimize bias and reflect appropriate imputation variability. This package supports various types of variables and offers flexible settings for subsampling and predictive mean matching. Additionally, it includes diagnostic tools for evaluating the quality of the imputed values.

References

createNA

Create missing values for a dataset

Description

This function creates missing values under the missing complete at random (MCAR) mechanism. It is for demonstration purposes only.

Usage

```r
createNA(data, var.names = NULL, p = 0.3)
```

Arguments

- `data` A complete data frame.
- `var.names` The names of variables where missing values will be generated.
- `p` The proportion of missing values in the data frame or the proportions of missing values corresponding to the variables specified in `var.names`.

Value

A data frame with artificial missing values

Examples

```r
# Create 30% MCAR data across all variables in a dataset
withNA_df <- createNA(data = iris, p = 0.3)

# Create 30% MCAR data in a specified variable in a dataset
withNA_df <- createNA(data = iris, var.names = c("Sepal.Length"), p = 0.3)

# Create MCAR data in several specified variables in a dataset
withNA_df <- createNA(
  data = iris,
  var.names = c("Sepal.Length", "Petal.Width", "Species"),
  p = c(0.3, 0.2, 0.1)
)
```
Data cleaning

Description

The function `data_clean()` serves the purpose of performing a preliminary check and fix some evident issues. However, the function cannot resolve all data quality-related problems.

Usage

```
data_clean(rawdata, levels.tol = 0.2)
```

Arguments

- `rawdata`: A data frame.
- `levels.tol`: Tolerant proportion of the number of levels to the number of observations in a multiclass variable. Default: 0.2

Value

A preliminary cleaned dataset

Examples

```
rawdata <- nhanes3
rawdata[4, 4] <- NaN
rawdata[5, 5] <- Inf
rawdata[6, 6] <- -Inf
cleandata <- data_clean(rawdata = rawdata)
```

Impute new data with a saved mixgb imputer object

Description

Impute new data with a saved mixgb imputer object
`impute_new`

Usage

```r
impute_new(
  object,
  newdata,
  initial.newdata = FALSE,
  pmm.k = NULL,
  m = NULL,
  verbose = FALSE
)
```

Arguments

- **object**: A saved imputer object created by `mixgb(..., save.models = TRUE)`
- **newdata**: A data.frame or data.table. New data with missing values.
- **initial.newdata**: Whether to use the information from the new data to initially impute the missing values of the new data. By default, this is set to `FALSE`, the original data passed to `mixgb()` will be used for initial imputation.
- **pmm.k**: The number of donors for predictive mean matching. If `NULL` (the default), the `pmm.k` value in the saved imputer object will be used.
- **m**: The number of imputed datasets. If `NULL` (the default), the `m` value in the saved imputer object will be used.
- **verbose**: Verbose setting for `mixgb`. If `TRUE`, will print out the progress of imputation. Default: `FALSE`.

Value

A list of `m` imputed datasets for new data.

Examples

```r
set.seed(2022)
n <- nrow(nhanes3)
idx <- sample(1:n, size = round(0.7 * n), replace = FALSE)
train.data <- nhanes3[idx, ]
test.data <- nhanes3[-idx, ]

params <- list(max_depth = 3, subsample = 0.7, nthread = 2)
mixgb.obj <- mixgb(data = train.data, m = 2, xgb.params = params, nrounds = 10, save.models = TRUE)

# obtain m imputed datasets for train.data
train.imputed <- mixgb.obj$imputed.data
train.imputed

# use the saved imputer to impute new data
test.imputed <- impute_new(object = mixgb.obj, newdata = test.data)
test.imputed
```
Multiple imputation through XGBoost

Description

This function is used to generate multiply imputed datasets using XGBoost, subsampling and predictive mean matching (PMM).

Usage

mixgb(
 data,
 m = 5,
 maxit = 1,
 ordinalAsInteger = FALSE,
 bootstrap = FALSE,
 pmm.type = "auto",
 pmm.k = 5,
 pmm.link = "prob",
 initial.num = "normal",
 initial.int = "mode",
 initial.fac = "mode",
 save.models = FALSE,
 save.vars = NULL,
 verbose = F,
 xgb.params = list(max_depth = 3, gamma = 0, eta = 0.3, min_child_weight = 1,
 subsample = 0.7, colsample_bytree = 1, colsample_bylevel = 1, colsample_bynode = 1,
 tree_method = "auto", gpu_id = 0, predictor = "auto"),
 nrounds = 100,
 early_stopping_rounds = 10,
 print_every_n = 10L,
 xgboost.verbose = 0,
 ...
)

Arguments

data A data.frame or data.table with missing values
m The number of imputed datasets. Default: 5
maxit The number of imputation iterations. Default: 1
ordinalAsInteger Whether to convert ordinal factors to integers. By default, ordinalAsInteger = FALSE. Setting ordinalAsInteger = TRUE may speed up the imputation process for large datasets.
bootstrap Whether to use bootstrapping for multiple imputation. By default, bootstrap = FALSE. Setting bootstrap = TRUE can improve imputation variability if sampling-related hyperparameters of XGBoost are set to 1.
mixgb

pmm.type
The type of predictive mean matching (PMM). Possible values:
- `NULL`: Imputations without PMM;
- `0`: Imputations with PMM type 0;
- `1`: Imputations with PMM type 1;
- `2`: Imputations with PMM type 2;
- "auto" (Default): Imputations with PMM type 2 for numeric/integer variables; imputations without PMM for categorical variables.

pmm.k
The number of donors for predictive mean matching. Default: 5

pmm.link
The link for predictive mean matching in binary variables
- "prob" (Default): use probabilities;
- "logit": use logit values.

initial.num
Initial imputation method for numeric type data:
- "normal" (Default);
- "mean";
- "median";
- "mode";
- "sample".

initial.int
Initial imputation method for integer type data:
- "mode" (Default);
- "sample".

initial.fac
Initial imputation method for factor type data:
- "mode" (Default);
- "sample".

save.models
Whether to save imputation models for imputing new data later on. Default: FALSE

save.vars
For the purpose of imputing new data, the imputation models for response variables specified in `save.vars` will be saved. The values in `save.vars` can be a vector of names or indices. By default, only the imputation models for variables with missing values in the original data will be saved (`save.vars = NULL`). To save imputation models for all variables, users can specify it with `save.vars = colnames(data)`.

verbose
Verbose setting for mixgb. If TRUE, will print out the progress of imputation. Default: FALSE

xgb.params
A list of XGBoost parameters. For more details, please check XGBoost documentation on parameters.

nrounds
The maximum number of boosting iterations for XGBoost. Default: 100

early_stopping_rounds
An integer value k. XGBoost training will stop if the validation performance has not improved for k rounds. Default: 10.

print_every_n
Print XGBoost evaluation information at every nth iteration if `xgboost_verbose > 0`.

xgboost_verbose
Verbose setting for XGBoost training: 0 (silent), 1 (print information) and 2 (print additional information). Default: 0

... Extra arguments to be passed to XGBoost
Value

If `save.models = FALSE`, this function will return a list of m imputed datasets. If `save.models = TRUE`, it will return an object with imputed datasets, saved models and parameters.

Examples

```r
# obtain m multiply datasets without saving models
params <- list(max_depth = 3, subsample = 0.7, nthread = 2)
mixgb.data <- mixgb(data = nhanes3, m = 2, xgb.params = params, nrounds = 10)

# obtain m multiply imputed datasets and save models for imputing new data later on
mixgb.obj <- mixgb(data = nhanes3, m = 2, xgb.params = params, nrounds = 10, save.models = TRUE)
```

mixgb_cv

Use cross-validation to find the optimal nrounds

Description

Use cross-validation to find the optimal nrounds for an Mixgb imputer. Note that this method relies on the complete cases of a dataset to obtain the optimal nrounds.

Usage

```r
mixgb_cv(
  data,
  nfold = 5,
  nrounds = 100,
  early_stopping_rounds = 10,
  response = NULL,
  select_features = NULL,
  xgb.params = list(max_depth = 3, gamma = 0, eta = 0.3, min_child_weight = 1,
                     subsample = 0.7, colsample_bytree = 1, colsample_bylevel = 1, colsample_bynode = 1,
                     tree_method = "auto", gpu_id = 0, predictor = "auto"),
  stringsAsFactors = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

- `data`: A data.frame or a data.table with missing values.
- `nfold`: The number of subsamples which are randomly partitioned and of equal size. Default: 5
- `nrounds`: The max number of iterations in XGBoost training. Default: 100
- `early_stopping_rounds`: An integer value k. Training will stop if the validation performance has not improved for k rounds.
response The name or the column index of a response variable. Default: NULL (Randomly select an incomplete variable).

select_features The names or the indices of selected features. Default: NULL (Select all the other variables in the dataset).

xgb.params A list of XGBoost parameters. For more details, please check XGBoost documentation on parameters.

stringsAsFactors A logical value indicating whether all character vectors in the dataset should be converted to factors.

verbose A logical value. Whether to print out cross-validation results during the process.

Value
A list of the optimal nrounds, evaluation.log and the chosen response.

Examples

params <- list(max_depth = 3, subsample = 0.7, nthread = 2)
cv.results <- mixgb_cv(data = nhanes3, xgb.params = params)
cv.results$best.nrounds

imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = cv.results$best.nrounds)

nhanes3 A small subset of the NHANES III (1988-1994) newborn data

Description
This dataset is a small subset of nhanes3_newborn. It is for demonstration purposes only. More information on NHANES III data can be found on https://wwwn.cdc.gov/Nchs/Data/Nhanes3/7a/doc/mimodels.pdf

Usage

data(nhanes3)

Format

A data frame of 500 rows and 6 variables. Three variables have missing values.

HSAGEIR Age at interview (screener) - qty (months). An integer variable from 2 to 11.

HSSEX Sex. A factor variable with levels 1 (Male) and 2 (Female).

DMARETHN Race-ethnicity. A factor variable with levels 1 (Non-Hispanic white), 2 (Non-Hispanic black), 3 (Mexican-American) and 4 (Other).

BMPHEAD Head circumference (cm). Numeric.

BMPRECUM Recumbent length (cm). Numeric.

BMPWT Weight (kg). Numeric.
Source

References

nhanes3_newborn NHANES III (1988-1994) newborn data

Description
This dataset is extracted from the NHANES III (1988-1994) for the age class Newborn (under 1 year). Please note that this example dataset only contains selected variables and is for demonstration purposes only.

Usage
data(nhanes3_newborn)

Format
A data frame of 2107 rows and 16 variables. Nine variables have missing values.

HSHSIZER Household size. An integer variable from 1 to 10.
HSAGEIR Age at interview (screener) - qty (months). An integer variable from 2 to 11.
HSSEX Sex. A factor variable with levels 1 (Male) and 2 (Female).
DMARACER Race. A factor variable with levels 1 (White), 2 (Black) and 3 (Other).
DMAETHNR Ethnicity. A factor variable with levels 1 (Mexican-American), 2 (Other Hispanic) and 3 (Not Hispanic).
DMARETHN Race-ethnicity. A factor variable with levels 1 (Non-Hispanic white), 2 (Non-Hispanic black), 3 (Mexican-American) and 4 (Other).
BMPHEAD Head circumference (cm). Numeric.
BMPRECUM Recumbent length (cm). Numeric.
BMPSB1 First subscapular skinfold (mm). Numeric.
BMPSB2 Second subscapular skinfold (mm). Numeric.
BMPTR1 First triceps skinfold (mm). Numeric.
BMPTR2 Second triceps skinfold (mm). Numeric.
BMPWT Weight (kg). Numeric.
DMPPIR Poverty income ratio. Numeric.
HFF1 Does anyone who lives here smoke cigarettes in the home? A factor variable with levels 1 (Yes) and 2 (No).

HYD1 How is the health of subject person in general? An ordinal factor with levels 1 (Excellent), 2 (Very good), 3 (Good), 4 (Fair) and 5 (Poor).

Source

References

plot_1num1fac

Box plots with points for one numeric variable vs one factor (or integer) variable.

Description

Plot observed values versus m sets of imputed values for one numeric variable vs one factor (or integer) variable using **ggplot2**.

Usage

```r
plot_1num1fac(
  imputation.list,
  var.num,
  var.fac,
  original.data,
  true.data = NULL,
  color.pal = NULL,
  shape = FALSE
)
```

Arguments

- `imputation.list`: A list of m imputed datasets returned by the mixgb imputer
- `var.num`: A numeric variable
- `var.fac`: A factor variable
- `original.data`: The original data with missing data
true.data The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.

color.pal A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)

shape Whether to plot shapes for different types of missing values. By default, this is set to FALSE to speed up plotting. We only recommend using 'shape = TRUE' for small datasets.

Value

Box plot with jittered data points for a numeric/integer variable; Bar plot for a categorical variable.

Examples

```r
# obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 30)

# plot the multiply imputed values for variables "BMPHEAD" versus "HSSEX"
plot_1num2fac(
  imputation.list = imputed.data, var.num = "BMPHEAD", var.fac = "HSSEX",
  original.data = nhanes3
)
```

plot_1num2fac
Box plots with overlaying data points for a numeric variable vs a factor condition on another factor

Description

Plot observed values versus m sets of imputed values for one specified numeric variable and two factors using **ggplot2**.

Usage

```r
plot_1num2fac(
  imputation.list, var.fac, var.num, con.fac, original.data, true.data = NULL, color.pal = NULL, shape = FALSE
)
```
Arguments

- **imputation.list**: A list of \(m \) imputed datasets returned by the mixgb imputer
- **var.fac**: A factor variable on the x-axis
- **var.num**: A numeric variable on the y-axis
- **con.fac**: The name of a factor to condition on
- **original.data**: The original data with missing data
- **true.data**: The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.
- **color.pal**: A vector of hex color codes for the observed and \(m \) sets of imputed values panels. The vector should be of length \(m+1 \). Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)
- **shape**: Whether to plot shapes for different types of missing values. By default, this is set to FALSE to speed up plotting. We only recommend using `shape = TRUE` for small datasets.

Value

Boxplots with overlaying data points

Examples

```r
# create some extra missing values in factor variables "HSSEX" and "DMARETHN"
nhanes3_NA <- createNA(nhanes3, var.names = c("HSSEX", "DMARETHN"), p = 0.1)

# obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3_NA, m = 3, xgb.params = params, nrounds = 30)

# plot the multiply imputed values for variables "BMPRECUM" versus "HSSEX" conditional on "DMARETHN"
plot_1num2fac(
  imputation.list = imputed.data, var.fac = "HSSEX", var.num = "BMPRECUM",
  con.fac = "DMARETHN", original.data = nhanes3_NA
)
```

Description

Plot observed values versus \(m \) sets of imputed values for two specified numeric variables using ggplot2.
Usage

plot_2fac(
 imputation.list,
 var.fac1,
 var.fac2,
 original.data,
 true.data = NULL,
 color.pal = NULL
)

Arguments

imputation.list
 A list of \(m \) imputed datasets returned by the \texttt{mixgb} imputer

var.fac1
 A factor variable

var.fac2
 A factor variable

original.data
 The original data with missing data

ture.data
 The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called \texttt{MaskedTrue}, which shows values originally observed but intentionally made missing.

color.pal
 A vector of hex color codes for the observed and \(m \) sets of imputed values panels. The vector should be of length \(m+1 \). Default: \texttt{NULL} (use \texttt{"gray40"} for the observed panel, use \texttt{ggplot2} default colors for other panels.)

Value

Scatter plots for two numeric/integer variable

Examples

create some extra missing values in factor variables "HSSEX" and "DMARETHN"
nhanes3_NA <- createNA(nhanes3, var.names = c("HSSEX", "DMARETHN"), p = 0.1)

obtain \(m \) multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3_NA, m = 3, xgb.params = params, nrounds = 30)

plot the multiply imputed values for variables "HSSEX" versus "DMARETHN"
plot_2fac(
 imputation.list = imputed.data, var.fac1 = "DMARETHN", var.fac2 = "HSSEX",
 original.data = nhanes3_NA
)
plot_2num

Scatter plots for two imputed numeric variables

Description
Plot observed values versus m sets of imputed values for two specified numeric variables using ggplot2.

Usage
plot_2num(
imputation.list,
 var.x,
 var.y,
 original.data,
 true.data = NULL,
 color.pal = NULL,
 shape = FALSE
)

Arguments
imputation.list
A list of m imputed datasets returned by the mixgb imputer

var.x
A numeric variable on the x-axis

var.y
A numeric variable on the y-axis

original.data
The original data with missing data

true.data
The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.

color.pal
A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)

shape
Whether to plot shapes for different types of missing values. By default, this is set to FALSE to speed up plotting. We only recommend using ‘shape = TRUE’ for small datasets.

Value
Scatter plots for two numeric/integer variable
Examples

obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 30)

plot the multiply imputed values for variables "BMPRECUM" versus "BMPHEAD"
plot_2num(
 imputation.list = imputed.data, var.x = "BMPHEAD", var.y = "BMPRECUM",
 original.data = nhanes3
)

plot_2num1fac Scatter plots for two imputed numeric variables conditional on a factor

Description

Plot observed values versus m sets of imputed values for two specified numeric variables and a factor using ggplot2.

Usage

plot_2num1fac(
 imputation.list, var.x, var.y, con.fac, original.data, true.data = NULL,
 color.pal = NULL, shape = FALSE
)

Arguments

imputation.list A list of m imputed datasets returned by the mixgb imputer
var.x A numeric variable on the x-axis
var.y A numeric variable on the y-axis
con.fac The name of a factor to condition on
original.data The original data with missing data
true.data The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.
plot_bar

- **color.pal**: A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)
- **shape**: Whether to plot shapes for different types of missing values. By default, this is set to FALSE to speed up plotting. We only recommend using ‘shape = TRUE’ for small datasets.

Value

Scatter plots

Examples

```r
# obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 30)

# plot the multiply imputed values for variables "BMPRECUM" versus "BMPHEAD" conditional on "HSSEX"
plot_2num1fac(
imputation.list = imputed.data, var.x = "BMPHEAD", var.y = "BMPRECUM",
con.fac = "HSSEX", original.data = nhanes3
)
```

plot_bar
Bar plots for multiply imputed values for a single factor variable

Description

Plot bar plots of observed values versus m sets of imputed values for a specified factor variable using ggplot2.

Usage

```r
plot_bar(
imputation.list,
var.name,
original.data,
true.data = NULL,
color.pal = NULL
)
```

Arguments

- **imputation.list**: A list of m imputed datasets returned by the mixgb imputer
- **var.name**: The name of a factor variable of interest
- **original.data**: The original data with missing data
true.data

The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.

color.pal

A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)

Value

Bar plots for a factor variable

Examples

create some extra missing values in a factor variable "HSSEX" (originally fully observed)
nhanes3_NA <- createNA(nhanes3, var.names = "HSSEX", p = 0.1)

obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3_NA, m = 3, xgb.params = params, nrounds = 30)

plot the multiply imputed values for variable "HSSEX"
plot_bar(
 imputation.list = imputed.data, var.name = "HSSEX",
 original.data = nhanes3_NA
)

plot_box

Boxplots with data points for multiply imputed values for a single numeric variable

Description

Plot boxplots with data points of observed values versus m sets of imputed values for a specified numeric variable using ggplot2.

Usage

plot_box(
 imputation.list,
 var.name,
 original.data,
 true.data = NULL,
 color.pal = NULL
)
plot_hist

Arguments

imputation.list
A list of m imputed datasets.

var.name
The name of a numeric variable of interest.

original.data
The original data with missing values.

true.data
The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.

color.pal
A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)

Value

Boxplots with data points for a numeric variable

Examples

obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 30)

plot the multiply imputed values for variable "BMPHEAD"
plot_box(
 imputation.list = imputed.data, var.name = "BMPHEAD",
 original.data = nhanes3
)

plot_hist

Histogram with density plots for multiply imputed values for a single numeric variable

Description

Plot histograms with density curves of observed values versus m sets of imputed values for a specified numeric variable using ggplot2.

Usage

plot_hist(
 imputation.list,
 var.name,
 original.data,
 true.data = NULL,
 color.pal = NULL
)
Arguments

- **imputation.list**: A list of m imputed datasets returned by the mixgb imputer, or other package.
- **var.name**: The name of a numeric variable of interest.
- **original.data**: The original data with missing values.
- **true.data**: The true data without missing values. This is generally unknown in practice. If the true data is known (e.g., in cases where it is generated by simulation), it can be specified in this argument. The output will then have an extra panel called MaskedTrue, which shows values originally observed but intentionally made missing.
- **color.pal**: A vector of hex color codes for the observed and m sets of imputed values panels. The vector should be of length m+1. Default: NULL (use "gray40" for the observed panel, use ggplot2 default colors for other panels.)

Value

Histogram with density plots

Examples

```r
# obtain m multiply datasets
params <- list(max_depth = 3, subsample = 0.8, nthread = 2)
imputed.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 30)

# plot the multiply imputed values for variable "BMPHEAD"
plot_hist(
imputation.list = imputed.data, var.name = "BMPHEAD",
original.data = nhanes3
)
```

show_var

Show multiply imputed values for a single variable

Description

Show m sets of imputed values for a specified variable.

Usage

```r
show_var(imputation.list, var.name, original.data, true.values = NULL)
```
show_var

Arguments

- **imputation.list**
 A list of \(m \) imputed datasets returned by the `mixgb` imputer.
- **var.name**
 The name of a variable of interest.
- **original.data**
 The original data with missing data.
- **true.values**
 A vector of the true values (if known) of the missing values. In general, this is unknown (`true.values = NULL`).

Value

A data.table with \(m \) columns, each of which represents a set of imputed values for the variable of interest. If `true.values` is provided, an additional column will display the true values of the missing values.

Examples

```r
# obtain m multiply datasets
params <- list(max_depth = 3, subsample = 1, nthread = 2)
mixgb.data <- mixgb(data = nhanes3, m = 3, xgb.params = params, nrounds = 20)

imputed.BMPHEAD <- show_var(
  imputation.list = mixgb.data, var.name = "BMPHEAD",
  original.data = nhanes3
)
imputed.BMPHEAD
```
Index

* datasets
 nhanes3, 9
 nhanes3_newborn, 10

createNA, 3

data_clean, 4

impute_new, 4

mixgb, 6
mixgb-package, 2
mixgb_cv, 8

nhanes3, 9
nhanes3_newborn, 10

plot_1num1fac, 11
plot_1num2fac, 12
plot_2fac, 13
plot_2num, 15
plot_2num1fac, 16
plot_bar, 17
plot_box, 18
plot_hist, 19

show_var, 20