Package ‘mixor’

August 26, 2015

Type Package
Title Mixed-Effects Ordinal Regression Analysis
Version 1.0.3
Date 2015-08-25
Author Donald Hedeker <dhedeker@health.bsd.uchicago.edu>, Kellie J. Archer, Rachel Nordgren, Robert D. Gibbons
Maintainer Kellie J. Archer <kjarcher@vcu.edu>
Description Provides the function 'mixord' for fitting a mixed-effects ordinal and binary response models and associated methods for printing, summarizing, extracting estimated coefficients and variance-covariance matrix, and estimating contrasts for the fitted models.
License GPL (>= 2)
Depends R (>= 2.10)
Suggests survival
BuildResaveData best
Biarch yes
NeedsCompilation yes
LazyLoad true
Repository CRAN
Date/Publication 2015-08-26 14:58:27

R topics documented:
mixor-package .................................................. 2
AIC.mixor .......................................................... 3
BIC.mixor .......................................................... 4
coef.mixor .......................................................... 5
concen .............................................................. 6
Contrasts .......................................................... 7
deviance.mixor .................................................... 8
irt.data ............................................................ 9
logLik.mixor ...................................................... 10
mixor-package

---

Description

This package provides a function `mixor` for fitting mixed-effects ordinal and binary response models and associated methods for printing, summarizing, extracting estimated coefficients and the variance-covariance matrix, and estimating contrasts for the fitted models.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>mixor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0.3</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-06-19</td>
</tr>
<tr>
<td>License:</td>
<td>GPL2.0</td>
</tr>
</tbody>
</table>

This package provides a function `mixor` for fitting mixed-effects ordinal and binary response models and associated methods for printing, summarizing, extracting estimated coefficients and the variance-covariance matrix, and estimating contrasts for the fitted models.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

Maintainer: Donald Hedeker <DHedeker@health.bsd.uchicago.edu> Kellie J. Archer <kjarcher@vcu.edu>

References

AIC.mixor

See Also

See also mixor, and examples in norcag, irt.data, concen, SmokeOnset, schizophrenia

Examples

library("mixor")
data("SmokingPrevention")
# data frame must be sorted by id variable
SmokingPrevention<-SmokingPrevention[order(SmokingPrevention$class),]
# school model
Fitted.school<-mixor(thksord-thkspre+cc+tv+cctv, data=SmokingPrevention,  
    id=school, link="logit")
summary(Fitted.school)
vcov(Fitted.school)
# students in classrooms analysis
Fitted.students<-mixor(thksord-thkspre+cc+tv+cctv, data=SmokingPrevention,  
    id=class, link="logit", QN=11)
summary(Fitted.students)
coef(Fitted.students)
vcov(Fitted.students)
cm<-matrix(c(-1,-1,-1,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,
    0,0,1,0,0,0,0,0,1),
    ncol=3,byrow=TRUE)
Contrasts(Fitted.students, contrast.matrix=cm)

AIC.mixor Return AIC for a Fitted Mixor Model

Description

Returns the AIC of a fitted mixor model.

Usage

## S3 method for class 'mixor'
AIC(object, ...)

Arguments

object a mixor object.

... other arguments.

Value

AIC of the fitted mixor model.
Author(s)
Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also
See Also as `mixor`, `summary.mixor`

Examples

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZ01.fit <- mixor(jmpsl70~ TxDrug + SqrtWeek + TxsWeek, data=schizophrenia, id=id, link="probit")
summary(SCHIZ01.fit)
AIC(SCHIZ01.fit)
```

---

### BIC.mixor

Return BIC for a Fitted Mixor Model

Description

Returns the BIC of a fitted mixor model.

Usage

```r
## S3 method for class 'mixor'
BIC(object, ...)
```

Arguments

- `object` a mixor object.
- `...` other arguments.

Value

BIC of the fitted mixor model.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as `mixor`, `summary.mixor`
Examples

library("mixor")
data("schizophrenia")
### Random intercept
SCHIZ01.fit <- mixor(lmpsa79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
   id=id, link="probit")
summary(SCHIZ01.fit)
BIC(SCHIZ01.fit)

coef.mixor Extract Model Coefficients

Description

coef.mixor is a generic function which extracts the model coefficients from a fitted model object fit using mixor.

Usage

## S3 method for class 'mixor'
coef(object, ...)

Arguments

object a mixor object.

... other arguments.

Value

Coefficients extracted from the model object.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as mixor, summary.mixor

Examples

library("mixor")
data("schizophrenia")
### Random intercept model
SCHIZ01.fit <- mixor(lmpsa79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
   id=id, link="probit")
coef(SCHIZ01.fit)
Twins Trouble Concentrating Data

Description

Monozygotic and dizygotic twins trouble concentrating data

Usage

data(concen)

Format

A data frame with 16 observations on the following 6 variables.

- **id**: a numeric vector indicating the unique twin pair ID
- **tconcen**: an indicator variable representing trouble concentrating (0 = absent, 1 = present)
- **int**: a numeric vector of ones; used in the stand-alone MIXOR program to represent the intercept
- **mz**: an indicator variable representing MZ twins (1 = MZ, 0 = DZ)
- **dz**: an indicator variable representing DZ twins (1 = DZ, 0 = MZ)
- **freq**: a numeric vector representing the frequency of the pattern

References


Examples

```r
library("mixor")
data("concen")
# sort the data by twin pair ID
concen<-concen[order(concen$ID),]
# common ICC probit model
Common.ICC<-mixor(TConcen~Mz, data=concen, id=ID, weights=freq,
                  link="probit", NQ1=10, random.effect.mean=FALSE)
summary(Common.ICC)
# Varying ICC probit model
Varying.ICC<-mixor(TConcen~Mz*Dz, data=concen, id=ID, weights=freq, 
                   which.random.slope=1:2, exclude.fixed.eff=2, link="probit",
                   NQ1=20, random.effect.mean=FALSE, UNID=1)
summary(Varying.ICC)
```
Contrasts

Estimate Contrasts for Mixor Object

Description

This function is used to specify and estimate contrasts of interest for a mixor object.

Usage

Contrasts(fit, contrast.matrix, digits=max(3, getOption("digits") - 2),
          signif.stars=TRUE, dig.tst = max(1, min(5, digits - 1)))

Arguments

fit          A mixor object.
contrast.matrix           A matrix of contrasts of interest. Each column in the contrast matrix should be of the same length as the coef vector of the fitted mixor object.
digits         minimum number of significant digits to be used for most numbers.
signif.stars   logical; if TRUE, P-values are additionally encoded visually as "significance stars" in order to help scanning of long coefficient tables.
dig.tst        minimum number of significant digits for the test statistics.

Value

A list containing the following components:

contrast.matrix           a matrix specifying the contrasts of interest.
Contrasts            a matrix containing the estimates, SEs, Z-values, and p-values for the contrasts of interest.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as mixor, coef.mixor, vcov.mixor
Examples

```r
library("mixor")
data("SmokingPrevention")
# data frame must be sorted by id variable
SmokingPrevention<-SmokingPrevention[order(SmokingPrevention$id),]
Fitted.students<-mixor(thksord-thkspre+cc+tv+cctv, data=SmokingPrevention,
  id=id, link="logit")
summary(Fitted.students)
coef(Fitted.students)
vcov(Fitted.students)
cm<-matrix(c(-1,-1,-1,0,0,0,0,
  0, 0, 0,0,0,0,0,
  0, 0, 1,0,0,0,1),ncol=3,byrow=TRUE)
Contrasts(Fitted.students, contrast.matrix=cm)
```

deviance.mixor  
*Return the deviance for a Fitted Mixor Model*

Description

Returns the deviance of a fitted mixor model.

Usage

```r
## S3 method for class 'mixor'
deviance(object, ...)
```

Arguments

- `object`  
  a mixor object.
- `...`  
  other arguments.

Value

Deviance of the fitted mixor model.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as `mixor`, `summary.mixor`, `logLik.mixor`
Examples

library("mixor")
data("schizophrenia")
### Random intercept
SCHIZ01.fit <- mixor(~imp09o + TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, id=id, link="probit")
summary(SCHIZ01.fit)
device(SCHIZ01.fit)

Description

Arithmetic reasoning items from the Armed Servces Vocational Aptitude Battery

Usage

data(irt.data)

Format

A data frame with 128 observations on the following 13 variables.

ID  a numeric vector indicating unique pattern identifier
Resp  item response (0 = incorrect; 1 = correct)
int  a numeric vector of ones; used in MIXOR stand-alone program to represent the intercept
Item1  Arithmetic reasoning item 1 (0 = no; 1 = yes)
Item2  Arithmetic reasoning item 2 (0 = no; 1 = yes)
Item3  Arithmetic reasoning item 3 (0 = no; 1 = yes)
Item4  Arithmetic reasoning item 4 (0 = no; 1 = yes)
SexF  an indicator variable representing gender (0 = female; 1 = male)
SexItem1  Gender by Item1 interaction
SexItem2  Gender by Item2 interaction
SexItem3  Gender by Item3 interaction
SexItem4  Gender by Item4 interaction
freq  frequency weight of pattern

References

Examples

library("mixor")
data("irt.data")
# Sort data by ID
irt.data<-irt.data[order(irt.data$ID),]
# 2 parameter logistic IRT model
Fitted.irt<mixor(Resp~Item1+Item2+Item3+Item4-1, data=irt.data, id=ID,
weights=freq, which.random.slope=1:4, link="logit", NQ1=10,
random.effect.mean=FALSE, UNID=1, vcov=FALSE)
summary(Fitted.irt)
# 2 parameter logistic IRT model with Sex interations on item parameters
Fitted.irt2<mixor(Resp~Item1+Item2+Item3+Item4+SexItem1+SexItem2+SexItem3+SexItem4-1,
data=irt.data, id=ID, weights=freq, which.random.slope=1:8, link="logit",
NQ1=10, random.effect.mean=FALSE, UNID=1, vcov=FALSE)
summary(Fitted.irt2)

logLik.mixor

Return the log-likelihood for a Fitted Mixor Model

Description

Returns the log-likelihood of a fitted mixor model.

Usage

## S3 method for class 'mixor'
logLik(object, ...)

Arguments

object a mixor object.
...
other arguments.

Value

Log-likelihood of the fitted mixor model.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as mixor, summary.mixor, deviance.mixor
Examples

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit<-mixor(imps79o - TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
id=id, link="probit")
summary(SCHIZO1.fit)
logLik(SCHIZO1.fit)
```

Description

This function fits mixed-effects ordinal and binary response models. Various link functions are supported including probit, logistic, and complementary log-log. For longitudinal data, the `mixor` function allows for individual varying intercepts and slopes across times.

Usage

```r
mixor(formula, data, id, which.random.slope = NA, subset, weights, exclude.fixed.effect = NA, CONV = 1e-04, empirical.prior = FALSE, quadrature.dist = "Normal", NQ1 = 11, adaptive.quadrature = TRUE, link = "probit", KG = 0, KS = 0, IADD = -1, indep.re = FALSE, random.effect.mean = TRUE, UNID = 0, vcov = TRUE)
```

Arguments

- `formula`: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data`: an optional data.frame containing the variables in the model. Note the data.frame must be sorted by id prior to invoking the `mixor` function.
- `id`: name of clustering variable in the data.frame
- `which.random.slope`: `which.random.slope`=NA means no random slope, only a random intercept is fit. To specify a random slope, `which.random.slope` is the number of the predictor variable on the RHS of the model formula. More than one variable can have a random slope.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `weights`: when supplied, indicates differential weights are used; otherwise each id is weighted equally. weights are the frequency weights to be assigned to each id.
`exclude.fixed.effect`

the RHS of the model includes both fixed and random effects. Variables are identified as random effects using `which.random.slope`. If it is desired that a variable be included in the model without a fixed effect (random only), the number of that variable(s) in the RHS formula should be passed to `exclude.fixed.effects`.

`CONV` convergence criteria, default is 0.0001.

`empirical.prior` logical. If TRUE, uses empirical prior for random effects.

`quadrature.dist` distribution for random effects. Either "Normal" (default) or "Uniform".

`NQ1` number of quadrature nodes per dimension. For one random effect, NQ1=20 is reasonable but should be reduced to 5-10 for multiple random effects.

`adaptive.quadrature` logical indicating whether adaptive quadrature (default) or non-adaptive quadrature is performed.

`link` Link function, either "probit", "logit", or "cloglog".

`KG` an optional integer reflecting the number of covariates to interact with threshold parameters (the first KG variables on the RHS of the model formula, so the order of the variables on the RHS of the model formula is important when using KG). Note that if KG is non-zero, KS must be zero.

`KS` an optional integer reflecting the number of covariates used in scaling (the first KS variables on the RHS of the model formula, so the order of the variables on the RHS of the model formula is important when using KS). Note that if KS is non-zero, KG must be zero.

`IADD` indicates how XB part of model is included; -1 subtract covariates and mean of random effects from thresholds; 1 add covariates and mean of random effects to thresholds. Default is -1 (subtract XB).

`indep.re` logical. If TRUE, independent random effects. Default is FALSE which assumes correlated random effects.

`random.effect.mean` logical. If TRUE, estimate the mean of the random effects.

`UNID` indicator variable where 0 = random effects are multi-dimensional; 1 = random effects are variables related to a uni-dimensional random effect (e.g., item indicators of a latent variable).

`vcov` logical. Default is vcov=TRUE which returns estimates of the the random-effect variance-covariance matrix. When vcov=FALSE, then estimates of the Cholesky (matrix square-root) of the random-effect variance-covariance matrix are returned.

**Details**

A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. The response can also be a censored survival response, of the form Surv(time,censorvariable)
Value

A list with components:

call: Model call formula
Deviance: Model deviance
Quadrature.points: number of quadrature nodes per dimension used in fit
Model: a matrix summarizing the model fit including columns Estimate, SE, Z, and P-value
varcov: The variance-covariance matrix
EBmean: empirical Bayes estimates of the means of the posterior distribution for each id
EBvar: empirical Bayes estimates of posterior variance/covariance for each id
RIDGE: Ridge
RLOG: Log-likelihood
SE: a matrix corresponding the standard errors of the parameters estimates in \( \text{coef} \)
AIC: AIC
SBC: Schwarz criterion
AICD: Akaike information criterion
SBCD: deviance information criterion
MU: mean of random effects
ALPHA: fixed effects estimates
SIGMA: random effects variance-covariance matrix
GAM: thresholds
TAU: scaling parameter estimates when proportional odds are not assumed. Returns when KG is non-zero.
IADD: indicates how the XB part of model was included: -1 subtract covariates and mean of random effects from thresholds; 1 add covariates and mean of random effects to thresholds.
Y: the response from the fitted model.
X: the random effects terms from the fitted model.
W: the fixed effects terms from the fitted model.
MAXJ: the number of ordinal levels.
random.effect.mean: If TRUE, the mean of the random effects was estimated.
KS: integer reflecting the number of covariates that were specified to use in scaling (the first KS variables on the RHS of the model formula).
KG: integer reflecting the number of covariates that were specified to interact with the threshold parameters (the first KG variables on the RHS of the model formula).
id: name of clustering variable in the data.frame
which.random.slope
the number of the predictor variable on the RHS of the model formula having a
random slope. When which.random.slope=NA, only a random intercept model
was fit.

ICEN
if 1 indicates right-censoring was considered in the model fit.

link
Link function, either "probit", "logit", or "cloglog"

terms
terms from the fitted model.

Note
This function is essentially a wrapper for the MIXOR stand-alone program by Hedeker and Gibbons
with added generic methods in R to enhance functionality. Note that the Fortran wrapper requires
missing values to be denoted by -9 rather than NA.

Author(s)
Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

References

See Also
See Also as summary.mixor, predict.mixor, coef.mixor, vcov.mixor, print.mixor

Examples
library("mixor")
data("SmokingPrevention")
# data frame must be sorted by id variable
SmokingPrevention<-SmokingPrevention[order(SmokingPrevention$class),]
# school model
Fitted.school<-mixor(thksord~thkspre+cc+tv+cctv, data=SmokingPrevention,
id=school, link="logit")
summary(Fitted.school)
vcov(Fitted.school)
# students in classrooms analysis
Fitted.students<-mixor(thksord~thkspre+cc+tv+cctv, data=SmokingPrevention,
id=class, link="logit")
summary(Fitted.students)
coef(Fitted.students)
vcov(Fitted.students)
cm<-matrix(c(-1,-1,-1,0,0,0,0,
0, 0, 0,0,0,0,0,
0, 0, 0,1,0,0,0,1),ncol=3,byrow=TRUE)
Contrasts(Fitted.students, contrast.matrix=cm)
Deprecated Functions in Package mixor

Description

These functions are provided for compatibility with older versions of mixor only, and will be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated below:

- mixord: mixor

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons, Maintainer: Kellie J. Archer <kjarcher@vcu.edu>

Old Function Name Replaced with mixor

Description

The mixord function has been deprecated. Please use the mixor function for fitting longitudinal/clustered ordinal response models

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as mixor, summary.mixor
Description

Each subject provided ordinal responses on three items concerning their opinion on early teens (age 14-16) having sex before marriage (Item1), a man and a woman having sex before marriage (Item2), and a married person having sex with someone other than their spouse (Item3). Data are provided as frequencies by response pattern.

Usage

data(norcag)

Format

A data frame with 105 observations on the following 6 variables.

- `id`: a numeric vector indicating unique patient identifier
- `sexitems`: ordinal item response coded as 1 = always wrong; 2 = almost always wrong; 3 = wrong only sometimes; 4 = not wrong
- `int`: a numeric vector of ones; used in the stand-alone MIXOR program to indicate the intercept
- `itemRvsQ`: attitude towards premarital vs teenage sex
- `itemSvsQ`: attitude towards extramarital vs teenage sex
- `freq`: frequency weight of the pattern

Source


References


Examples

```r
library("mixor")
data("norcag")
# random intercepts model assuming proportional odds for differences in item responses
Fitted.norcag<-mixor(SexItems~Item2vs1+Item3vs1, data=norcag, id=ID, weights=freq, link="logit", NQI=20)
summary(Fitted.norcag)
# random intercepts model assuming non-proportional odds for differences in item responses
Fitted.norcag.np<-mixor(SexItems~Item2vs1+Item3vs1, data=norcag, id=ID, weights=freq, link="logit", NQI=10, KG=2)
```
plot.m xor  

Plot empirical Bayes estimates of random effects for a Mixor Model Object

Description

Plot of empirical Bayes estimates of random effects from a fitted mixor model object.

Usage

## S3 method for class 'mixor'
plot(x, ...)

Arguments

- x: a mixor object.
- ...: other arguments.

Value

For each random effect, a histogram and normal quantile-quantile plot of empirical Bayes estimates.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as mixor, summary.mixor

Examples

library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit<-mixor(imps79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, 
                    id=id, link="probit")
plot(SCHIZO1.fit)
**predict.mixor**

**Predict Outcome From Mixor Fitted Model**

**Description**

predict method for class mixor.

**Usage**

```r
## S3 method for class 'mixor'
predict(object, newdata = NULL, na.action = na.fail, ...)
```

**Arguments**

- `object`: an object of class mixor.
- `newdata`: an optional data frame to be used for obtaining predictions when the random effects are zero. When `newdata` is not supplied, the random effects estimates are used in obtaining model predictions. All variables used in the mixor model, the fixed and the random effects models, as well as the grouping factors, must be present in the data frame.
- `na.action`: a function that indicates what should happen when `newdata` contains NAS. The default action (`na.fail`) causes the function to print an error message and terminate if there are any incomplete observations.
- `...`: other arguments.

**Details**

This function returns fitted probabilities and the predicted class from a fitted mixor object. When the `newdata` parameter is specified, the random effects are taken to be zero and predictions are returned. Otherwise conditional predictions, which includes both fixed and random effects terms, for the observed data are returned.

**Value**

- `predicted`: class specific probabilities from the fitted model.
- `class`: predicted class, that having the largest fitted probability, from the fitted model.

**Author(s)**

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

**See Also**

See Also `mixor`, `print.mixor`
Examples

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit<-mixor(impS79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, id=id, link="probit")
pihat<-predict(SCHIZO1.fit)
table(pihat$class, schizophrenia$impS79o)
head(pihat$predicted)
```

print.mixor  Printing Mixor Model Fits

Description

print method for class mixor.

Usage

```r
## S3 method for class 'mixor'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- `x` an object of class mixor.
- `digits` the number of significant digits to use when printing.
- `...` further arguments passed to or from other methods.

Value

The function `print.mixor` prints the model call and coefficients from the mixor object.

Author(s)

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

See Also

See Also as `mixor`, `summary.mixor`, `coef.mixor`
Examples

library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit<-mixor(imps79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
id=id, link="probit")
print(SCHIZO1.fit)
### Random intercept and slope
SCHIZO2.fit<-mixor(imps79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
id=id, which.random.slope=2, link="probit")
print(SCHIZO2.fit)

schizophrenia

National Institute of Mental Health Schizophrenia Collaborative Study

Description

In the NIMH Schizophrenia Collaborative Study, patients were randomized to receive one of four medications, either placebo or one of three different anti-psychotic drugs. The protocol indicated subjects were to then be evaluated at weeks 0, 1, 3, 6 to assess severity of illness; additionally some measurements were made at weeks 2, 4, and 5.

Usage

data(schizophrenia)

Format

A data frame with 1603 observations on the following 9 variables.

id  a numeric vector indicating the unique patient identifier
imps79 a numeric vector from item 79 on the Inpatient Multidimensional Psychiatric Scale indicating severity of illness. The scores were applied to be interpreted as follows: 1 = normal, not ill at all; 2 = borderline mentally ill; 3 = mildly ill; 4 = moderately ill; 5 = markedly ill; 6 = severely ill; 7 = among the most extremely ill
imps79b a binary version of imps79
imps79o an ordinally scaled version of imps79
int  a numeric vector of ones; used in stand-alone package to indicate intercept
TxDrug a numeric vector indicating treatment with drug (1) or placebo (0)
Week a numeric vector indicating time, in weeks
SqrtWeek the square root of the Week variable
TxSWeek a variable representing the TxDrug x Week interaction

Source

From http://tigger.uic.edu/~hedeker/SCHIZX1.DAT.txt
References


Examples

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit<-mixor(imp79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, id=id, link="probit")
summary(SCHIZO1.fit)
### Random intercept and slope
SCHIZO2.fit<-mixor(imp79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, id=id, which.random.slope=2, link="probit")
summary(SCHIZO2.fit)
# random intercept and trend with independent random effects; using logit link
SCHIZO3.fit<-mixor(imp79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia, id=id, which.random.slope=2, indep.re=TRUE, link="logit")
summary(SCHIZO3.fit)
```

---

**SmokeOnset**

**Smoking Onset Data**

Description

From the Television School and Family Smoking Prevention and Cessation Project, a study designed to increase knowledge of the effects of tobacco use in school-age children.

Usage

data(SmokeOnset)

Format

A data frame with 1556 observations on the following 10 variables.

- school: a numeric vector identifying the unique school in the Los Angeles area
- class: a numeric vector identifying classroom
- student: a numeric vector identifying student
- smkonset: a numeric vector indicating time to smoking or right-censoring (post-intervention=1, 1 year follow-up=2, and 2 year follow-up=3). For these data right-censoring means that the observation was observed at the indicated timepoint (and had not smoked at that timepoint or at earlier timepoints), but was not observed at subsequent timepoints or thereafter.
- event: a numeric vector indicating whether the student smoked (1) or did not (0)
- int: a numeric vector of ones; used in stand-alone MIXOR program to represent the intercept
SexMale  a numeric vector indicating gender of the student (0=Female, 1=Male)
c  a numeric vector indicating whether the school was randomized to a social-resistance classroom
  curriculum (1=Yes, 0=No)
tv  a numeric vector indicating whether the school was randomized to a media (television) inter-
  vention (1=Yes, 0=No)
cctv  a numeric vector indicating whether the school was randomized to CC combined with TV

References

Flay B.R., Brannon B.R., Johnson C.A. et al. (1989) The television, school and family smoking ces-
  sation and prevention project: I. Theoretical basis and program development, Preventive Medicine
  17, 585-607.

Hedeker D., Siddiqui O. and Hu F.B. Random-effects regression analysis of correlated grouped-time
  survival data, Statistical Methods in Medical Research 9,161-179.


Examples

library("mixor")
data("SmokeOnset")
require("survival")
### Grouped survival time example
### students in classrooms analysis
Surv.mixor <- mixor(Surv(smكونset,event)-SexMale+cc+tv, data=SmokeOnset,
                  id=class, link="cloglog", NQ1=20, IADD=1)
Surv.mixor
vcov(Surv.mixor)
### students in schools analysis
School.mixor <- mixor(Surv(smkonset,event)-SexMale+cc+tv, data=SmokeOnset,
                 id=school, link="cloglog", NQ1=20, IADD=1)
School.mixor
vcov(School.mixor)
### students in classrooms analysis with varying Sex effect across time intervals
students.mixor <- mixor(Surv(smконset,event)-SexMale+cc+tv, data=SmokeOnset,
                id=class, link="cloglog", KG=1, NQ1=20, IADD=1)
students.mixor

SmokingPrevention

Television School and Family Smoking Prevention and Cessation
Project Data

Description

From the Television School and Family Smoking Prevention and Cessation Project, a study de-
  signed to increase knowledge of the effects of tobacco use in school-age children.
Usage

data(SmokingPrevention)

Format

A data frame with 1600 observations on the following 9 variables.

- **school**: a numeric vector identifying the Los Angeles school
- **class**: a numeric vector identifying classroom
- **thksord**: a numeric vector reflecting quartiles of the post-intervention tobacco and health knowledge scale score
- **thksbin**: a binary version of the post-intervention tobacco and health knowledge scale score
- **int**: a numeric vector of ones; used in the stand-alone MIXOR program to represent the intercept
- **thkspre**: the pre-intervention tobacco and health knowledge scale score
- **cc**: a numeric vector indicating whether the school was randomized to a social-resistance classroom curriculum (1=Yes, 0=No)
- **tv**: a numeric vector indicating whether the school was randomized to a media (television) intervention (1=Yes, 0=No)
- **cctv**: a numeric vector indicating whether the school was randomized to CC combined with TV

References


Examples

```r
library("mixor")
data("SmokingPrevention")
# sort dataset by id; note for these data sorting by class will also sort by school
SmokingPrevention<-SmokingPrevention[order(SmokingPrevention$class),]
# model
Fitted.school<-mixor(thksord+thkspre+cc+tv+cctv, data=SmokingPrevention, id=school, link="logit")
summary(Fitted.school)
vcov(Fitted.school)
# students in classrooms analysis; not run
#Fitted.students<-mixor(thksord+thkspre+cc+tv+cctv, data=SmokingPrevention, id=class, link="logit")
#summary(Fitted.students)
#vcov(Fitted.students)
```
summary.mixor

**Summary Mixor Model Fit**

**Description**

Summary method for class mixor.

**Usage**

```r
## S3 method for class 'mixor'
summary(object, digits=max(3, getOption("digits") - 2),
         signif.stars=TRUE, dig.tst = max(1, min(5, digits - 1)), ...)
```

**Arguments**

- `object`: an object of class mixor.
- `digits`: minimum number of significant digits to be used for most numbers.
- `signif.stars`: logical; if TRUE, P-values are additionally encoded visually as "significance stars" in order to help scanning of long coefficient tables.
- `dig.tst`: minimum number of significant digits for the test statistics.
- `...`: other arguments.

**Value**

Prints the following items extracted from the fitted mixor object: the call to mixor (model formula), mode Deviance, Log-likelihood, RIDGEMAX, AIC, SBC, and model parameter estimates along with their SE, Z, and p-value.

**Author(s)**

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

**See Also**

See Also `mixor`, `print.mixor`, `coef.mixor`

**Examples**

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZ01.fit<-mixor(limps79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
                   id=id, link="probit")
summary(SCHIZ01.fit)
```
vcov.mixor

---

**Return Variance-Covariance Matrix for a Mixor Model Object**

**Description**

Returns the variance-covariance matrix of a fitted mixor model object.

**Usage**

```r
## S3 method for class 'mixor'
vcov(object, ...)  
```

**Arguments**

- `object`: a mixor object.
- `...`: other arguments.

**Value**

A matrix of the estimated covariances between the parameter estimates in the model.

**Author(s)**

Kellie J. Archer, Donald Hedeker, Rachel Nordgren, Robert D. Gibbons

**See Also**

See Also as `mixor, summary.mixor`

**Examples**

```r
library("mixor")
data("schizophrenia")
### Random intercept
SCHIZO1.fit <- mixor(jmps79o ~ TxDrug + SqrtWeek + TxSWeek, data=schizophrenia,
                     id=id, link="probit")
summary(SCHIZO1.fit)
vcov(SCHIZO1.fit)
```
Index

*Topic datasets
concen, 6
irt.data, 9
norcag, 16
schizophrenia, 20
SmokeOnset, 21
SmokingPrevention, 22

*Topic methods
AIC.m xor, 3
BIC.m xor, 4
c oef.m xor, 5
Contrasts, 7
deviance.m xor, 8
logLik.m xor, 10
plot.m xor, 17
predict.m xor, 18
print.m xor, 19
summary.m xor, 24
vcov.m xor, 25

mixor, 3–5, 7, 8, 10, 11, 15, 17–19, 24, 25
mixor-package, 2
mixord, 15
norcag, 3, 16
plot.m xor, 17
predict.m xor, 14, 18
print.m xor, 14, 18, 19, 24
schizophrenia, 3, 20
SmokeOnset, 3, 21
SmokingPrevention, 22
summary.m xor, 4, 5, 8, 10, 14, 15, 17, 19, 24, 25
vcov.m xor, 7, 14, 25

*Topic models
mixor, 11
mixor-package, 2

*Topic package
mixor-package, 2

*Topic regression
mixor, 11
mixor-package, 2

AIC.m xor, 3
BIC.m xor, 4
c oef.m xor, 5, 7, 14, 19, 24
concen, 3, 6
Contrasts, 7
deviance.m xor, 8, 10
formula, 11
irt.data, 3, 9