Package ‘mixtNB’

May 2, 2015

Type Package
Title DE Analysis of RNA-Seq Data by Mixtures of NB
Version 1.0
Date 2015-05-01
Author Elisabetta Bonafede, Cinzia Viroli
Maintainer Cinzia Viroli <cinzia.viroli@unibo.it>
Description Differential expression analysis of RNA-Seq data when replicates under two conditions are available is performed. First, mixtures of Negative Binomial distributions are fitted on the data in order to estimate the dispersions, then the Wald test is computed.
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2015-05-02 14:11:25

R topics documented:

mixtNB-package .. 1
filter.em ... 2
fit.mixtNB .. 2
fun.a .. 4
wald.test ... 4

Index

mixtNB-package DE Analysis of RNA-Seq Data by Mixtures of Negative Binomials

Description

A method for performing differential expression analysis of RNA-Seq data when replicates under two conditions are available is implemented. First, mixtures of Negative Binomial distributions are fitted on the data in order to estimate the dispersions, then the Wald test is performed.
Details

Package: mixtNB
Type: Package
Version: 1.0
Date: 2015-05-01
License: GPL-3

Author(s)

Authors: Elisabetta Bonafede, Cinzia Viroli
Maintainer: Cinzia Viroli <cinzia.viroli@unibo.it>

References

filter.em

Internal function that perform pre-filtering

Description

Internal function that perform pre-filtering

fit.mixtNB

Fitting mixtures of Negative Binomials in RNA-Seq data

Description

A mixture of K Negative Binomial distributions is fitted on the data with the aim to cluster the genes according to their dispersions. The number of groups must be known in advance.

Usage

fit.mixtNB(y, cr, K, it = 200, eps = 1e-05, init = NULL, seme = 1, filter = TRUE, quiet = FALSE)
Arguments

- **y**: matrix that contains the (normalized) dataset where the rows contain the set of replicates in the counts in two conditions. Given \(p \) the number of genes and \(n \) the total number of replicates, the matrix must have dimensions \(p \times n \).
- **cr**: a vector with \(n \) elements that contains the numerical labels of the conditions.
- **K**: the number of mixture components.
- **it**: maximum number of iterations for the EM algorithm.
- **eps**: a tolerance level for checking the convergence of the EM algorithm.
- **init**: a list that may contain the initial values for the EM algorithm. It may contain: a K-vector 'a' that are the sizes or dispersions of the Negative Binomials, 'w' is the vector with the K initial values for the weights of the components; 'lambda' is the matrix of dimension \(p \times 2 \) with the initial values of the lambda parameters. If init is NULL, a random initialization will be used.
- **seme**: A numerical value to be used in the set.seed function.
- **filter**: Logical to indicate the genes with very small counts should be removed.
- **quiet**: Logical to indicate if information about the fitting should be provided.

Details

A mixture of \(K \) components is fitted with the aim of clustering the genes according to their dispersions. Genes with too small number of reads across experiments are filtered out. The default is to filter out genes with no more than 5 reads totally across all experiments, AND with no more than 0.5 reads averagely across all experiments. The EM algorithm stops when the maximum number of iterations are reached or the relative increment of log-likelihood is smaller than \(\text{eps} \).

Value

A list containing:

- **y**: The filtered data.
- **K**: The number of components.
- **cr**: Labels denoting the condition for the replicates.
- **cl**: Posterior classification of the genes to the components.
- **likelihood**: Log-likelihood at each iteration.
- **AIC**: Akaike information criterion.
- **BIC**: Bayesian information criterion.
- **a**: Estimated dispersions.
- **lambda**: Estimated means.
- **f.z.y**: Estimated posterior probabilities.
- **time.sec**: Computational time (in seconds).
- **variances**: Estimated variances.
- **gname**: Positions of the filtered genes.
Author(s)
Elisabetta Bonafede, Cinzia Viroli

References

Examples

```r
# create a toy data set with 1000 genes, and 5 samples in each of the two conditions.
# The first 100 genes are DE expressed. The other 900 genes are null.

lambda.de <- matrix(runif(100, 0, 250), 100)
lambda.de <- cbind(lambda.de, lambda.de/exp(rnorm(100, 0.5, 0.125)))
lambda.de <- rbind(lambda.de, matrix(runif(900, 0, 250), 900, 2))
a <- runif(1000, 0.5, 600)
cr <- rep(1:2, each=5)
y <- matrix(0, 1000, 10)
for (i in 1:1000) for (l in 1:10) y[i, l] <- rbinom(1, mu=lambda[i, cr[l]], size=a[i])
fit <- fit.mixtNB(y, cr, K=3)
```

fun.a
Internal function for the Newton-Raphson step of the EM algorithm

wald.test
Wald test for performing DE analysis

Description

This function implements the Wald test for performing DE according to three statistics: difference, ratio and logratio

Usage

```r
wald.test(out, statistic = "diff", quiet = FALSE, alpha = 0.01)
```

Arguments

- `out`
The fit of mixtNB
- `statistic`
The statistic to be used: "diff" (difference, the default), "ratio" and "logratio"
- `quiet`
Logical to indicate if the DE genes should be printed
- `alpha`
the significance level to detect DE genes
Details

This function implements the Wald test for performing DE according to three statistics: difference, ratio and logratio. It returns the statistics, the p-values and the adjusted p-values according to the Benjamini and Hochberg (1995)

Value

A list containing

stat The value of the Wald test
pvalue nominal p-values for each gene
pvalueadj adjusted p-values according to the Benjamini and Hochberg (1995)
var estimated variances of the genes
gname Positions of the filtered genes

Author(s)

Elisabetta Bonafede, Cinzia Viroli

References

Examples

```r
lambda.de<-matrix(runif(1000,0,250),100)
lambda.de=cbind(lambda.de,lambda.de/exp(rnorm(100,0.5,0.125)))
lambda<-rbind(lambda.de,matrix(runif(900,0,250),900,2))
a<-runif(1000,0.5,600)
cr<-rep(1:2,each=5)
y<-matrix(0,1000,10)
for (i in 1:1000) for (l in 1:10) y[i,l]<-rnbinom(1,mu=lambda[i,cr[l]],size=a[i])
fit=fit.mixtNB(y,cr,K=3)
DE.genes=wald.test(fit)
```
Index

*Topic RNA-Seq data
 fit.mixtNB, 2
 wald.test, 4

*Topic Wald test
 wald.test, 4

*Topic mixture
 fit.mixtNB, 2

filter.em, 2
fit.mixtNB, 2
fun.a, 4

mixtNB (mixtNB-package), 1
mixtNB-package, 1

wald.test, 4