Package ‘mixture’

April 19, 2021

Type Package
Title Mixture Models for Clustering and Classification
Version 2.0.4
Date 2021-04-14
Author Nik Pocuca [aut],
 Ryan P. Browne [aut],
 Paul D. McNicholas [aut, cre]
Maintainer Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
Repository CRAN
LazyLoad yes
NeedsCompilation yes
License GPL (>= 2)
Imports Rcpp (>= 1.0.2)
LinkingTo Rcpp, RcppArmadillo, BH, RcppGSL
Depends R (>= 3.5.0), lattice (>= 0.20)
SystemRequirements GNU GSL
Date/Publication 2021-04-19 14:50:13 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td>2</td>
</tr>
<tr>
<td>e_step</td>
<td>3</td>
</tr>
<tr>
<td>get_best_model</td>
<td>5</td>
</tr>
<tr>
<td>ghpcm</td>
<td>6</td>
</tr>
<tr>
<td>gpcm</td>
<td>9</td>
</tr>
</tbody>
</table>
ARI

Adjusted Rand Index

Description

Calculates an adjusted for chance Rand index.

Usage

ARI(x,y)

Arguments

x predictor class memberships
y true class memberships

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

Examples

x <- sample(1:10, size = 100, replace = TRUE)
y <- sample(1:10, size = 100, replace = TRUE)
ARI(x,y)
e_step

Expectation Step

Description

Calculates the expectation of class memberships, and imputes if missing values for a given dataset.

Usage

```r
e_step(data, model_obj, start=0, nu = 1.0)
```

Arguments

- **data**: A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data \(p > 1 \).
- **start**: Start values in this context are only used for imputation. Non-missing values have their expectation of class memberships calculated directly. If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If is.matrix then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.
- **model_obj**: A gpcm_best, vgpcm_best, stpcm_best, ghpcm_best, and salpcm_best object class.
- **nu**: Deterministic annealing for the class membership E-step.

Details

This will only work on a dataset with the same dimension as estimated in the model. `e_step` will also work for missing values, provided that there is at least one non-missing entry.

Value

Returns a list with the following components:

- **X**: A matrix of the original dataset plus imputed values if applicable.
- **origX**: A matrix of the original dataset including missing values.
- **map**: A vector of integers indicating the maximum *a posteriori* classifications for the best model.
- **z**: A matrix giving the raw values upon which `map` is based.
- **row_tags**: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.
Author(s)

Nik Pociuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:
# load dataset and perform model search.
data(x2)
data_in <- matrix(x2,ncol = 2)
mm <- mixture::gpcm(data = data_in,G = 1:7,
                   start = 0,
                   veo = FALSE,pprogress=FALSE)

# get best model
best = get_best_model(mm)
best

# lets try imputing some missing data.
x2NA <- x2
x2NA[5,1] <- NA
x2NA[140,2] <- NA
x2NA[99,1] <- NA

# calculate expectation
expect <- e_step(data=x2NA,start = 0,nu = 1.0,model_obj = best)

# plot imputed entries and compare with original
plot(x2,col = "grey")
points(expect$X[expect$row_tags+1,],col = "blue", pch = 20,cex = 2) # blue are imputed values.
points(x2[expect$row_tags+1,], col = "red", pch = 20,cex = 2) # red are original values.
legend(-2,2,legend = c("imputed","original"),col = c("blue","red"),pch = 20)

## End(Not run)
```
get_best_model

Best Model Extractor

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious Gaussian clustering models (GPCM).

Usage

```r
get_best_model(gpcm_model)
```

Arguments

- `gpcm_model` An input of class `gpcm`.

Details

Extracts the best model based on BIC.

Value

An object of class `gpcm_best` is a list with components:

- `model_type` A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
- `model_obj` An internal list containing all parameters returned from the C++ call.
- `BIC` Bayesian Index Criterion (positive scale, bigger is better).
- `loglik` Log likelihood from the estimated model.
- `nparam` Number of parameters in the model.
- `startobject` The type of object inputted into `start`.
- `G` An integer representing the number of groups.
- `cov_type` A string representing the type of covariance matrix (see 14 models).
- `status` Convergence status of EM algorithm according to Aitken’s Acceleration.
- `map` A vector of integers indicating the maximum *a posteriori* classifications for the best model.
- `row_tags` If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:

# load dataset and perform model search.
data(x2)
data_in <- matrix(x2, ncol = 2)
mm <- mixture::gpcm(data = data_in, G = 1:7,
                   start = 0,
                   veo = FALSE, pprogress=FALSE)

# get best model
best = get_best_model(mm)
best

## End(Not run)
```

ghpcm

Generalized Hyperbolic Parsimonious Clustering Models

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious Generalized Hyperbolic clustering models (GHPCM).

Usage

```r
ghpcm(data=NULL, G=1:3, mnames=NULL, start=2, label=NULL, 
      veo=FALSE, da=c(1.0),
      mmax=1000, atol=1e-8, mtol=1e-8, mmax=10, burn=5, 
      pprogress=FALSE, pwarning=FALSE, stochastic = FALSE)
```

Arguments

- **data** A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.
- **G** A sequence of integers giving the number of components to be used.
ghpcm

The models (i.e., covariance structures) to be used. If `NULL` then all 14 are fitted.

start

If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If `is.matrix` then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.

label

If `NULL` then the data has no known groups. If `is.integer` then some of the observations have known groups. If `label[i]=k` then observation belongs to group k. If `label[i]=0` then observation has no known group. See Examples.

veo

Stands for "Variables exceed observations". If `TRUE` then if the number variables in the model exceeds the number of observations the model is still fitted.

da

Stands for Determinstic Annealing. A vector of doubles.

nmax

The maximum number of iterations each EM algorithm is allowed to use.

atol

A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.

mtol

A number specifying the epsilon value for the convergence criteria used in the M-step in the GEM algorithms.

mmax

The maximum number of iterations each M-step is allowed in the GEM algorithms.

burn

The burn in period for imputing data. (Missing observations are removed and a model is estimated separately before placing an imputation step within the EM.)

pprogress

If `TRUE` print the progress of the function.

pwarning

If `TRUE` print the warnings.

stochastic

If `TRUE`, it will run stochastic E step variant.

Details

The data x are either clustered or classified using Generalized Hyperbolic mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.

Value

An object of class `ghpcm` is a list with components:

map

A vector of integers indicating the maximum a posteriori classifications for the best model.

model_objs

A list of all estimated models with parameters returned from the C++ call.
best_model
A class of `vgpcm_best` containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.

loglik
The log-likelihood values from fitting the best model.

z
A matrix giving the raw values upon which `map` is based.

BIC
A G by mnames by 3 dimensional array with values pertaining to BIC calculations. (legacy)

startobject
The type of object inputted into `start`.

gpar
A list object for each cluster pertaining to parameters. (legacy)

row_tags
If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Best Model: An object of class `ghpcm_best` is a list with components:

- **model_type**: A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
- **model_obj**: An internal list containing all parameters returned from the C++ call.
- **BIC**: Bayesian Information Criterion (positive scale, bigger is better).
- **loglik**: Log likelihood from the estimated model.
- **nparam**: Number of parameters in the mode.
- **startobject**: The type of object inputted into `start`.
- **G**: An integer representing the number of groups.
- **cov_type**: A string representing the type of covariance matrix (see 14 models).
- **status**: Convergence status of EM algorithm according to Aitken’s Acceleration
- **map**: A vector of integers indicating the maximum a posteriori classifications for the best model.
- **row_tags**: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Internal Objects: All classes contain an internal list called `model_obj` or `model_objs` with the following components:

- **zigs**: a posteriori matrix
- **G**: An integer representing the number of groups.
- **sigs**: A vector of covariance matrices for each group
- **mus**: A vector of location vectors for each group
- **alphas**: A vector containing skewness vectors for each group
- **gammas**: A vector containing estimated gamma parameters for each group

Note
Dedicated `print`, `plot` and `summary` functions are available for objects of class `ghpcm`.
Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:
data("sx2")

### use random soft initializations.
ax6 = ghpcm(sx2, G=1:3,start= 0)
summary(ax6)
ax6

### plot results
plot(sx2,col = ax6$map + 1)

### use deterministic annealing for starting values
axDA = ghpcm(sx2, G=1:3, start=0,da=c(0.3,0.5,0.8,1.0))
summary(axDA)
axDA

## End(Not run)
```

gpcm

Gaussian Parsimonious Clustering Models

Description
Carries out model-based clustering or classification using some or all of the 14 parsimonious Gaussian clustering models (GPCM).
Usage

gpcm(data=NULL, G=1:3, mnames=NULL, start=2, label=NULL, veo=FALSE, da=c(1.0),
 nmax=1000, atol=1e-8, mtol=1e-8, mmax=10, burn=5, pprogress=FALSE, pwarning=TRUE, stochastic = FALSE)

Arguments

data A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.

G A sequence of integers giving the number of components to be used.

mnames The models (i.e., covariance structures) to be used. If NULL then all 14 are fitted.

start If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If is.matrix then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.

label If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group. See Examples.

veo Stands for "Variables exceed observations". If TRUE then if the number variables in the model exceeds the number of observations the model is still fitted.

da Stands for Deterministic Annealing. A vector of doubles.

nmax The maximum number of iterations each EM algorithm is allowed to use.

atol A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.

mtol A number specifying the epsilon value for the convergence criteria used in the M-step in the GEM algorithms.

mmax The maximum number of iterations each M-step is allowed in the GEM algorithms.

burn The burn in period for imputing data. (Missing observations are removed and a model is estimated seperately before placing an imputation step within the EM.)

pprogress If TRUE print the progress of the function.

pwarning If TRUE print the warnings.

stochastic If TRUE, it will run stochastic E step variant.
Details

The data x are either clustered or classified using Gaussian mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.

Value

An object of class `gpcm` is a list with components:

- **map**: A vector of integers indicating the maximum a posteriori classifications for the best model.
- **model_objs**: A list of all estimated models with parameters returned from the C++ call.
- **best_model**: A class of `gpcm_best` containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.
- **loglik**: The log-likelihood values from fitting the best model.
- **z**: A matrix giving the raw values upon which `map` is based.
- **BIC**: A G by mnames by 3 dimensional array with values pertaining to BIC calculations. (legacy)
- **gpar**: A list object for each cluster pertaining to parameters. (legacy)
- **startobject**: The type of object inputted into `start`.
- **row_tags**: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Best Model: An object of class `gpcm_best` is a list with components:

- **model_type**: A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
- **model_obj**: An internal list containing all parameters returned from the C++ call.
- **BIC**: Bayesian Index Criterion (positive scale, bigger is better).
- **loglik**: Log likelihood from the estimated model.
- **nparam**: Number of parameters in the mode.
- **startobject**: The type of object inputted into `start`.
- **G**: An integer representing the number of groups.
- **cov_type**: A string representing the type of covariance matrix (see 14 models).
- **status**: Convergence status of EM algorithm according to Aitken’s Acceleration
- **labs**: A vector of integers indicating the maximum a posteriori classifications for the best model.
- **row_tags**: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Internal Objects: All classes contain an internal list called `model_obj` or `model_objs` with the following components:
zigs a posteriori matrix
G An integer representing the number of groups.
sigs A vector of covariance matrices for each group
mus A vector of mean vectors for each group

Note
Dedicated print, plot and summary functions are available for objects of class gpcm.

Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples
Not run:
data("x2")
use kmeans to find starting values
ax0 = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start=2, pprogress=TRUE, atol=1e-2)
summary(ax0)
ax0
use random soft initializations.
ax6 = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start= 0)
summary(ax6)
ax6
use deterministic annealing for starting values
axDA = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start=0, da=c(0.3, 0.5, 0.8, 1.0))
summary(axDA)
axDA
estimate all 14 covariance structures
ax = gpcm(x2, G=1:5, mnames=NULL, start=0)
summary(ax)
ax
model based classification
x2.label = numeric(nrow(x2))
x2.label[c(10,50, 110, 150, 210, 250)] = c(1,1,2,2,3,3)
axl = gpcm(x2, G=3, mnames=c("VVV", "EVE"), label=x2.label)
summary(axl)

plot(x2, col = axl$map + 1)

End(Not run)

main_loop

GPCM Internal C++ Call

Description

This function is the internal C++ function call within the gpcm function. This is a raw C++ function call, meaning it has no checks for proper inputs so it may fail to run without giving proper errors. Please ensure all arguments are valid. **main_loop** is useful for writing parallelizations of the gpcm function. All argument descriptions are given in terms of their corresponding C++ types.

Usage

```r
main_loop(X, G, model_id, model_type, in_zigs, in_nmax, in_l_tol, in_m_iter_max, in_m_tol, anneals, t_burn = 5L)
```

Arguments

- **X**: A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data $p > 1$.
- **G**: A single positive integer value representing number of groups.
- **model_id**: An integer representing the model_id, is useful for keeping track within parallelizations. Not to be confused with model_type.
- **model_type**: The type of covariance model you wish to run. Lexicon is given as follows: "0" = "EII", "1" = "VII", "2" = "EEI", "3" = "EVI", "4" = "VEI", "5" = "VVI", "6" = "EEE", "7" = "VEE", "8" = "EVE", "9" = "EEV", "10" = "VVE", "11" = "EVV", "12" = "VEV", "13" = "VVV"
- **in_zigs**: A $n \times G$ a posteriori matrix resembling the probability of observation i belonging to group G. Rows must sum to one, have the proper dimensions, and be positive.
- **in_nmax**: Positive integer value resembling the maximum amount of iterations for the EM.
- **in_l_tol**: A likelihood tolerance for convergence.
- **in_m_iter_max**: For certain models, where applicable, the number of iterations for the maximization step.
- **in_m_tol**: For certain models, where applicable, the tolerance for the maximization step.
anneals A vector of doubles representing the deterministic annealing settings.

t_burn A positive integer representing the number of burn steps if missing data (NAs) are detected.

Details

Be extremely careful running this function, it is known to crash systems without proper exception handling. Consider using the package `parallel` to estimate all possible models at the same time.

Value

zigs a posteriori matrix

G An integer representing the number of groups.

sigs A vector of covariance matrices for each group (note you may have to reshape this)

mus A vector of mean vectors for each group

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:
data("x2")
data_in = as.matrix(x2,ncol = 2)
n_iter = 1000

in_g = 3
n = dim(data_in)[1]
model_string <- "VVE"
in_model_type <- switch(model_string, "EII" = 0,"VII" = 1,
"EEI" = 2, "VEI" = 3, "VEE" = 4, "VII" = 5, "EEE" = 6,
"VEE" = 7, "EVE" = 8, "EEV" = 9, "VVE" = 10,
"EVV" = 11,"VEV" = 12,"VVV" = 13)

zigs_in <- z_ig_random_soft(n,in_g)
```

main_loop_gh

m2 = main_loop(X = data_in, # data in
 G = 3, # number of groups
 model_id = 1, # model id for parallelization later
 model_type = in_model_type,
 in_zigs = zigs_in, # initialization
 in_nmax = n_iter, # number of iterations
 in_l_tol = 1e-12, # likelihood tolerance
 in_m_iter_max = 20, # maximum iterations for matrices
 in_m_tol = 1e-8,
 anneals=c(0.5,0.7,0.9,1))

plot(data_in,col = MAP(m2$zigs) + 1)
End(Not run)

__main_loop_gh__

GHPCM Internal C++ Call

Description

This function is the internal C++ function call within the ghpcm function. This is a raw C++ function call, meaning it has no checks for proper inputs so it may fail to run without giving proper errors. Please ensure all arguments are valid. main_loop_gh is useful for writing parallelizations of the ghpcm function. All argument descriptions are given in terms of their corresponding C++ types.

Usage

```r
main_loop_gh(X, G, model_id,
    model_type, in_zigs,
    in_nmax, in_l_tol, in_m_iter_max,
    in_m_tol, anneals, t_burn = 5L)
```

Arguments

- **X**
 - A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.

- **G**
 - A single positive integer value representing number of groups.

- **model_id**
 - An integer representing the model_id, is useful for keeping track within parallelizations. Not to be confused with model_type.

- **model_type**
 - The type of covariance model you wish to run. Lexicon is given as follows: "0" = "EII", "1" = "VII", "2" = "EEI", "3" = "EVI", "4" = "VEI", "5" = "VVI", "6" = "EEE", "7" = "VEE", "8" = "EVE", "9" = "EEV", "10" = "VVE", "11" = "EVV", "12" = "VEV", "13" = "VVV"

- **in_zigs**
 - A n times G a posteriori matrix resembling the probability of observation i belonging to group G. Rows must sum to one, have the proper dimensions, and be positive.
in_nmax Positive integer value resembling the maximum amount of iterations for the EM.
in_l_tol A likelihood tolerance for convergence.
in_m_iter_max For certain models, where applicable, the number of iterations for the maximization step.
in_m_tol For certain models, where applicable, the tolerance for the maximization step.
anneals A vector of doubles representing the deterministic annealing settings.
t_burn A positive integer representing the number of burn steps if missing data (NAs) are detected.

Details

Be extremely careful running this function, it is known to crash systems without proper exception handling. Consider using the package parallel to estimate all possible models at the same time. Or run several possible initializations with random seeds.

Value

zigs a postereori matrix
G An integer representing the number of groups.
sigs A vector of covariance matrices for each group (note you may have to reshape this)
mus A vector of locational vectors for each group
alphas A vector of skewness vectors for each group
omegas First set of gamma parameters for each group
lambdas Second set of gamma parameters for each group

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:
data("sx2")
data_in = as.matrix(sx2, ncol = 2)
n_iter = 300

in_g = 2
n = dim(data_in)[1]
model_string <- "VVV"
in_model_type <- switch(model_string, 
"EII" = 0, "VII" = 1,
"EEI" = 2, "VEI" = 3, "VEV" = 8, "EEV" = 9, "VVE" = 10,
"EVV" = 11, "VEV" = 12, "VVV" = 13)

zigs_in <- z_ig_random_soft(n, in_g)
m2 = main_loop_gh(X = t(data_in), # data in has to be in column major form
                   G = 2, # number of groups
                   model_id = 1, # model id for parallelization later
                   model_type = in_model_type,
in_zigs = zigs_in, # initialization
                   in_nmax = n_iter, # number of iterations
                   in_l_tol = 1e-8, # tolerance
                   in_m_iter_max = 20, # maximum iterations for matrices
                   in_m_tol = 1e-8,
                   anneals = c(0.5, 0.7, 0.9, 1))

plot(sx2, col = MAP(m2$zigs) + 1, cex = 0.5, pch = 20)
## End(Not run)
```

main_loop_st

STPCM Internal C++ Call

Description

This function is the internal C++ function call within the stpcm function. This is a raw C++ function call, meaning it has no checks for proper inputs so it may fail to run without giving proper errors. Please ensure all arguments are valid. main_loop_st is useful for writing parallizations of the stpcm function. All argument descriptions are given in terms of their corresponding C++ types.

Usage

```r
main_loop_st(X, G, model_id,
              model_type, in_zigs,
in_nmax, in_l_tol, in_m_iter_max,
in_m_tol, anneals, t_burn = 5L)
```
Arguments

\(X \)
A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data \(p > 1 \).

\(G \)
A single positive integer value representing number of groups.

\(\text{model_id} \)
An integer representing the model_id, is useful for keeping track within parallelizations. Not to be confused with model_type.

\(\text{model_type} \)
The type of covariance model you wish to run. Lexicon is given as follows: "0" = "EII", "1" = "VII", "2" = "EEI", "3" = "EVI", "4" = "VEI", "5" = "VVI", "6" = "EEE", "7" = "VEE", "8" = "EVE", "9" = "EEV", "10" = "VVE", "11" = "EVV", "12" = "VEV", "13" = "VVV"

\(\text{in_zigs} \)
A \(n \times G \) a posteriori matrix resembling the probability of observation \(i \) belonging to group \(G \). Rows must sum to one, have the proper dimensions, and be positive.

\(\text{in_nmax} \)
Positive integer value resembling the maximum amount of iterations for the EM.

\(\text{in_l_tol} \)
A likelihood tolerance for convergence.

\(\text{in_m_iter_max} \)
For certain models, where applicable, the number of iterations for the maximization step.

\(\text{in_m_tol} \)
For certain models, where applicable, the tolerance for the maximization step.

\(\text{anneals} \)
A vector of doubles representing the deterministic annealing settings.

\(\text{t_burn} \)
A positive integer representing the number of burn steps if missing data (NAs) are detected.

Details

Be extremely careful running this function, it is known to crash systems without proper exception handling. Consider using the package \texttt{parallel} to estimate all possible models at the same time. Or run several possible initializations with random seeds.

Value

\(\text{zigs} \)
a posteriori matrix

\(G \)
An integer representing the number of groups.

\(\text{sigs} \)
A vector of covariance matrices for each group (note you may have to reshape this)

\(\text{mus} \)
A vector of locational vectors for each group

\(\text{alphas} \)
A vector of skewness vectors for each group

\(\text{vgs} \)
Gamma parameters for each group

Author(s)

Nik Pociuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
References

Examples

```r
## Not run:
data("sx2")
data_in = as.matrix(sx2,ncol = 2)
n_iter = 300

in_g = 2
n = dim(data_in)[1]
model_string <- "VEI"
in_model_type <- switch(model_string, "EII" = 0,"VII" = 1,
                          "EEI" = 2, "EVI" = 3, "VEI" = 4, "VVI" = 5, "EEE" = 6,
                          "VEE" = 7, "EVE" = 8, "EEV" = 9, "VVE" = 10,
                          "EVV" = 11,"VEV" = 12,"VVV" = 13)

zigs_in <- z_ig_random_soft(n,in_g)

m2 = main_loop_st(X = t(data_in), # data in has to be in column major form
                     G = 2, # number of groups
                     model_id = 1, # model id for parallelization later
                     model_type = in_model_type,
                     in_zigs = zigs_in, # initialization
                     in_nmax = n_iter, # number of iterations
                     in_l_tol = 0.5, # likelihood tolerance
                     in_m_iter_max = 20, # maximum iterations for matrices
                     anneals=c(1),
                     in_m_tol = 1e-8)

plot(sx2,col = MAP(m2$zigs) + 1, cex = 0.5, pch = 20)

## End(Not run)
```
main_loop_t

TPCM Internal C++ Call

Description
This function is the internal C++ function call within the stpcm function. This is a raw C++ function call, meaning it has no checks for proper inputs so it may fail to run without giving proper errors. Please ensure all arguments are valid. main_loop_st is useful for writing parallelizations of the stpcm function. All argument descriptions are given in terms of their corresponding C++ types.

Usage
main_loop_t(X, G, model_id,
 model_type, in_zigs,
 in_nmax, in_l_tol, in_m_iter_max,
 in_m_tol, anneals, t_burn = 5L)

Arguments

X A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.

G A single positive integer value representing number of groups.

model_id An integer representing the model_id, is useful for keeping track within parallelizations. Not to be confused with model_type.

model_type The type of covariance model you wish to run. Lexicon is given as follows: "0" = "EII", "1" = "VII", "2" = "EEI", "3" = "EVI", "4" = "VEI", "5" = "VVI", "6" = "EEE", "7" = "VEE", "8" = "EVE", "9" = "EEV", "10" = "VEV", "11" = "EVV", "12" = "VEV", "13" = "VVV"

in_zigs A n times G a posteriori matrix resembling the probability of observation i belonging to group G. Rows must sum to one, have the proper dimensions, and be positive.

in_nmax Positive integer value resembling the maximum amount of iterations for the EM.

in_l_tol A likelihood tolerance for convergence.

in_m_iter_max For certain models, where applicable, the number of iterations for the maximization step.

in_m_tol A vector of doubles representing the deterministic annealing settings.

anneals A positive integer representing the number of burn steps if missing data (NAs) are detected.

t_burn A positive integer representing the number of burn steps if missing data (NAs) are detected.

Details
Be extremley careful running this function, it is known to crash systems without proper exception handling. Consider using the package parallel to estimate all possible models at the same time. Or run several possible initializations with random seeds.
Value

- **zigs**: a postereori matrix
- **G**: An integer representing the number of groups.
- **sigs**: A vector of covariance matrices for each group (note you may have to reshape this)
- **mus**: A vector of locational vectors for each group
- **vgs**: Gamma parameters for each group

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
## Not run:
data("x2")
data_in = as.matrix(x2,ncol = 2)
n_iter = 300

in_g = 3
n = dim(data_in)[1]
model_string <- "VEI"
in_model_type <- switch(model_string, "EII" = 0,"VII" = 1,
"EEI" = 2, "EVI" = 3, "VEI" = 4, "VVI" = 5, "EEE" = 6,
"VEE" = 7, "EVE" = 8, "EEV" = 9, "VVE" = 10,
"EVV" = 11,"VEV" = 12,"VVV" = 13)

zigs_in <- z_ig_random_soft(n,in_g)

m2 = main_loop_t(X = data_in,
                 G = 3, # number of groups
                 model_id = 1, # model id for parallelization later
                 model_type = in_model_type,
                 in_zigs = zigs_in, # initialization
```
main_loop_vg

```
in_nmax = n_iter, # number of iterations
in_l_tol = 0.5, # likelihood tolerance
in_m_iter_max = 20, # maximum iterations for matrices
anneals=c(1),
in_m_tol = 1e-8)
```

```
plot(x2,col = MAP(m2$zigs) + 1, cex = 0.5, pch = 20)
```

End(Not run)

main_loop_vg
VGPCM Internal C++ Call

Description

This function is the internal C++ function call within the `vgpcm` function. This is a raw C++ function call, meaning it has no checks for proper inputs so it may fail to run without giving proper errors. Please ensure all arguments are valid. `main_loop_vg` is useful for writing parallelizations of the `stpcm` function. All argument descriptions are given in terms of their corresponding C++ types.

Usage

```
main_loop_vg(X, G, model_id,  
model_type, in_zigs,  
in_nmax, in_l_tol, in_m_iter_max,  
in_m_tol, anneals, t_burn = 5L)
```

Arguments

- **X**: A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data $p > 1$.

- **G**: A single positive integer value representing number of groups.

- **model_id**: An integer representing the model_id, is useful for keeping track within parallelizations. Not to be confused with `model_type`.

- **model_type**: The type of covariance model you wish to run. Lexicon is given as follows: "0" = "EI", "1" = "VII", "2" = "EEI", "3" = "EVI", "4" = "VEI", "5" = "VVI", "6" = "EEE", "7" = "VEE", "8" = "EVE", "9" = "EEV", "10" = "VVE", "11" = "EVV", "12" = "VEV", "13" = "VVV"

- **in_zigs**: A n times G a posteriori matrix resembling the probability of observation i belonging to group G. Rows must sum to one, have the proper dimensions, and be positive.

- **in_nmax**: Positive integer value resembling the maximum amount of iterations for the EM.

- **in_l_tol**: A likelihood tolerance for convergence.

- **in_m_iter_max**: For certain models, where applicable, the number of iterations for the maximization step.
in_m_tol For certain models, where applicable, the tolerance for the maximization step.
anneals A vector of doubles representing the deterministic annealing settings.
t_burn A positive integer representing the number of burn steps if missing data (NAs)
are detected.

Details
Be extremely careful running this function, it is known to crash systems without proper exception
handling. Consider using the package parallel to estimate all possible models at the same time.
Or run several possible initializations with random seeds.

Value
zigs a postereori matrix
G An integer representing the number of groups.
sigs A vector of covariance matrices for each group (note you may have to reshape
this)
mus A vector of locational vectors for each group
alphas A vector of skewness vectors for each group
gammas Gamma parameters for each group

Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References
Press
of Statistics* 37, 612-631.
28(5), 781-793.

Examples
Not run:
data("sx2")
data_in = as.matrix(sx2, ncol = 2)
n_iter = 300

in_g = 2
n = dim(data_in)[1]
model_string <- "VVV"
in_model_type <- switch(model_string, "EII" = 0,"VII" = 1,
 "EEI" = 2, "EVI" = 3, "VEI" = 4, "VVI" = 5, "EEE" = 6,
 "VEE" = 7, "EVE" = 8, "EEV" = 9, "VVE" = 10,
 "EVV" = 11,"VEV" = 12,"VVV" = 13)

zigs_in <- z_ig_random_soft(n,in_g)
m2 = main_loop_vg(X = t(data_in), # data in has to be in column major form
 G = 2, # number of groups
 model_id = 1, # model id for parallelization later
 model_type = in_model_type,
 in_zigs = zigs_in, # initialization
 in_nmax = n_iter, # number of iterations
 in_l_tol = 0.5, # likelihood tolerance
 in_m_iter_max = 20, # maximum iterations for matrices
 anneals=c(1),
 in_m_tol = 1e-8)

plot(sx2,col = MAP(m2$zigs) + 1, cex = 0.5, pch = 20)
End(Not run)

MAP

Maximum a posteriori

Description

Generates labels from a classification matrix z

Usage

MAP(z_ig)

Arguments

- **z_ig**
 A classification matrix of positive numbers in which all rows must sum to one.

Value

A numeric matrix is returned of size n times g, with row sums adding up to 1.

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
Examples

```r
## Not run:

# Simple example.
MAP(z_ig_random_soft(100,2))

# import dataset.
data(x2)
mm <- gpcm(data = as.matrix(x2),G = 1:7,
            start = 2,
            veo = FALSE,p.progress=FALSE)

best = get_best_model(mm)
# You can get labels using the internal object with MAP.
labs <- MAP(best$model_obj[[1]]$zigs)
# or you can just get labels directly.
labs2 <- best$map

## End(Not run)
```

mixture

Mixture Models for Clustering and Classification

Description

An implementation of 14 parsimonious clustering models for finite mixtures with components that are Gaussian, generalized hyperbolic, variance-gamma, Student’s t, or skew-t, for model-based clustering and model-based classification, even with missing data.

Details

Package: mixture
Type: Package
Version: 2.0.4
Date: 2021-04-14
License: GPL (>=2)

This package contains the functions gpcm, tpcm, ghpcm, vgpcm, stpcm, e_step, ARI, and get_best_model, plus three simulated data sets.

This package also contains advanced functions for large system use which are: main_loop main_loop_vg , main_loop_gh, main_loop_t, main_loop_st, z_ig_random_soft, z_ig_random_hard, z_ig_kmeans.

Author(s)

Nik Pocuca, Ryan P. Browne, and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
See Also

Details, examples, and references are given under gpcm, tpcm, ghpcm, stpcm, and vgpcm.

pcm

Parsimonious Clustering Models

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious settings with any one of the GPCM,STPCM,VGPCM, or GHPCM families.

Usage

```r
pcm(data=NULL, G=1:3, pcmfamily=c(gpcm,vgpcm,tpcm),
   mnames=NULL, start=2, label=NULL,
   veo=FALSE, da=c(1.0),
   nmax=1000, atol=1e-8, mtol=1e-8, mmax=10, burn=5,
   pprogress=FALSE, pwarning=FALSE)
```

Arguments

data A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.

G A sequence of integers giving the number of components to be used.

pcmfamily The family of models to be used. If NULL then all are fitted.

mnames The models (i.e., covariance structures) to be used. If NULL then all 14 are fitted.

start If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If is.matrix then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.

label If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group. See Examples.

veo Stands for "Variables exceed observations". If TRUE then if the number variables in the model exceeds the number of observations the model is still fitted.

da Stands for Determinstic Annealing. A vector of doubles.

nmax The maximum number of iterations each EM algorithm is allowed to use.

atol A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.
A number specifying the epsilon value for the convergence criteria used in the M-step in the EM algorithms.

The maximum number of iterations each M-step is allowed in the GEM algorithms.

The burn in period for imputing data. (Missing observations are removed and a model is estimated separately before placing an imputation step within the EM.)

If TRUE print the progress of the function.

If TRUE print the warnings.

Details

The data \(x \) are either clustered or classified using Skew-t mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.

Value

An object of class \(pcm \) is a list with components:

- \(gpcm \): If applicable, the output of running the Gaussian Parsimonious Family.
- \(vgpcm \): If applicable, the output of running the Variance-Gamma Parsimonious Family.
- \(stpcm \): If applicable, the output of running the Skew-T Parsimonious Family.
- \(ghpcm \): If applicable, the output of running the Generalized Hyperbolic Parsimonious Family.
- \(best_model \): An object of corresponding to the output of the best performing family.

Note

Dedicated \(print \), and \(summary \) functions are available for objects of class \(pcm \), \(gpcm \), \(ghpcm \), \(stpcm \), or \(vgpcm \).

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

data("x2")

Not run:
estimate "VVV" "EVE"
ax = stpcm(sx3, G=1:3, mnames=c("VVV","EVE"), start=0)
summary(ax)
print(ax)

End(Not run)

stpcm
Skew-t Parsimonious Clustering Models

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious Skew-t clustering models (STPCM).

Usage

```r
stpcm(data=NULL, G=1:3, mnames=NULL, start=2, label=NULL, veo=FALSE, da=c(1.0), nmax=1000, atol=1e-8, mtol=1e-8, mmax=10, burn=5, pprogress=FALSE, pwarning=FALSE, stochastic = FALSE)
```

Arguments

- **data**
 A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data $p > 1$.

- **G**
 A sequence of integers giving the number of components to be used.

- **mnames**
 The models (i.e., covariance structures) to be used. If NULL then all 14 are fitted.
start
If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If is.matrix then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.

label
If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group. See Examples.

veo
Stands for "Variables exceed observations". If TRUE then if the number variables in the model exceeds the number of observations the model is still fitted.

da
Stands for Deterministic Annealing. A vector of doubles.

mmax
The maximum number of iterations each EM algorithm is allowed to use.

atol
A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.

mtol
A number specifying the epsilon value for the convergence criteria used in the M-step in the EM algorithms.

mmax
The maximum number of iterations each M-step is allowed in the GEM algorithms.

burn
The burn in period for imputing data. (Missing observations are removed and a model is estimated seperately before placing an imputation step within the EM.)

pprogress
If TRUE print the progress of the function.

pwarning
If TRUE print the warnings.

stochastic
If TRUE, it will run stochastic E step variant.

Details
The data \(x \) are either clustered or classified using Skew-t mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.

Value
An object of class vgpclm is a list with components:

map
A vector of integers indicating the maximum \(a_{posteriori} \) classifications for the best model.

model_objs
A list of all estimated models with parameters returned from the C++ call.

best_model
A class of vgpclm_best containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.

loglik
The log-likelihood values from fitting the best model.
z A matrix giving the raw values upon which map is based.
BIC A G by mnames by 3 dimensional array with values pertaining to BIC calculations. (legacy)
gpar A list object for each cluster pertaining to parameters. (legacy)
startobject The type of object inputted into start.
row_tags If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Best Model: An object of class stpcm_best is a list with components:

model_type A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
model_obj An internal list containing all parameters returned from the C++ call.
BIC Bayesian Index Criterion (positive scale, bigger is better).
loglik Log likelihood from the estimated model.
nparam Number of parameters in the model.
startobject The type of object inputted into start.
G An integer representing the number of groups.
cov_type A string representing the type of covariance matrix (see 14 models).
status Convergence status of EM algorithm according to Aitken’s Acceleration
map A vector of integers indicating the maximum a posteriori classifications for the best model.
row_tags If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Internal Objects: All classes contain an internal list called model_obj or model_objs with the following components:

zigs a posteriori matrix
G An integer representing the number of groups.
sigs A vector of covariance matrices for each group
mus A vector of location vectors for each group
alphas A vector containing skewness vectors for each group
gammas A vector containing estimated gamma parameters for each group

Note

Dedicated print, plot and summary functions are available for objects of class vgpcm.

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
References

Examples

data("sx3")

Not run:
estimate "VVV" "EVE"
ax = stpcm(sx3, G=1:3, mnames=c("VVV","EVE"), start=0)
summary(ax)
ax

estimate all 14 covariance structures
ax = stpcm(sx3, G=1:3, mnames=NULL, start=0)
summary(ax)
ax

model based classification
sx3.label = c(rep(1,1000),rep(2,1000))
plot(sx3, col=sx3.label)
axl = stpcm(sx3, G=2, mnames=c("VVV","EVE"), label=sx3.label)
summary(axl)

End(Not run)

sx2 Skewed Simulated Data 1

Description

Simulated data, with two variables and two groups, used to illustrate ghpcm, stpcm, vgpcm.

Usage

data(sx2)
Format
A data frame with 2000 observations and 2 columns.

Source
These data were simulated using R.

sx3
Skewed Simulated Data 2

Description
Simulated data, with two variables and two groups, that are close together, used to illustrate ghpcm, stpcm, vgpcm.

Usage
data(sx3)

Format
A data frame with 2000 observations and 2 columns.

Source
These data were simulated using R.

tpcm
Student T Parsimonious Clustering Models

Description
Carries out model-based clustering or classification using some or all of the 14 parsimonious Student T clustering models (TPCM).

Usage
tpcm(data=NULL, G=1:3, mnames=NULL, start=2, label=NULL, veo=FALSE, da=c(1.0), nmax=1000, atol=1e-8, mtol=1e-8, mmax=10, burn=5, progress=FALSE, pwarning=FALSE, stochastic=FALSE, constrained = FALSE)
Arguments

- **data**: A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data \(p > 1 \).
- **G**: A sequence of integers giving the number of components to be used.
- **mnames**: The models (i.e., covariance structures) to be used. If `NULL` then all 14 are fitted.
- **start**: If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If `is.matrix` then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.
- **label**: If `NULL` then the data has no known groups. If `is.integer` then some of the observations have known groups. If `label[i]=k` then observation belongs to group \(k \). If `label[i]=0` then observation has no known group. See Examples.
- **veo**: Stands for "Variables exceed observations". If `TRUE` then if the number variables in the model exceeds the number of observations the model is still fitted.
- **da**: Stands for Deterministic Annealing. A vector of doubles.
- **nmax**: The maximum number of iterations each EM algorithm is allowed to use.
- **atol**: A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.
- **mtol**: A number specifying the epsilon value for the convergence criteria used in the M-step in the EM algorithms.
- **mmax**: The maximum number of iterations each M-step is allowed in the GEM algorithms.
- **burn**: The burn in period for imputing data. (Missing observations are removed and a model is estimated seperately before placing an imputation step within the EM.)
- **pprogress**: If `TRUE` print the progress of the function.
- **pwarning**: If `TRUE` print the warnings.
- **stochastic**: If `TRUE`, it will run stochastic E step variant.
- **constrained**: If `TRUE`, it will constrain the degrees of freedom for student-t to be the same for all clusters.

Details

The data \(x \) are either clustered or classified using Skew-t mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.
Value

An object of class `tpcm` is a list with components:

- `map` A vector of integers indicating the maximum *a posteriori* classifications for the best model.
- `model_objs` A list of all estimated models with parameters returned from the C++ call.
- `best_model` A class of `vgpcm_best` containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.
- `loglik` The log-likelihood values from fitting the best model.
- `z` A matrix giving the raw values upon which `map` is based.
- `BIC` A G by mnames by 3 dimensional array with values pertaining to BIC calculations. (legacy)
- `gpar` A list object for each cluster pertaining to parameters. (legacy)
- `startobject` The type of object inputted into `start`.
- `row_tags` If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Best Model: An object of class `stpcm_best` is a list with components:

- `model_type` A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
- `model_obj` An internal list containing all parameters returned from the C++ call.
- `BIC` Bayesian Index Criterion (positive scale, bigger is better).
- `loglik` Log likelihood from the estimated model.
- `nparam` Number of parameters in the model.
- `startobject` The type of object inputted into `start`.
- `G` An integer representing the number of groups.
- `cov_type` A string representing the type of covariance matrix (see 14 models).
- `status` Convergence status of EM algorithm according to Aitken’s Acceleration
- `map` A vector of integers indicating the maximum *a posteriori* classifications for the best model.
- `row_tags` If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Internal Objects: All classes contain an internal list called `model_obj` or `model_objs` with the following components:

- `zigs` a posteriori matrix
- `G` An integer representing the number of groups.
- `sigs` A vector of covariance matrices for each group
- `mus` A vector of location vectors for each group
- `vgs` A vector containing estimated gamma parameters for each group
Note

Dedicated print, plot and summary functions are available for objects of class vgpcm.

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Press
Andrews, J.L. and McNicholas, P.D. (2012), 'Model-based clustering, classification, and discrim-
inant analysis via mixtures of multivariate t-distributions', Statistics and Computing 22(5), 1021-
1029.

Examples

data("x2")

```r
## Not run:
### estimate "VVV" "EVE"
ax = tpcm(x2, G=1:3, mnames=c("VVV","EVE"), start=0)
summary(ax)
ax

### estimate all 14 covariance structures
ax = tpcm(x2, G=1:3, mnames=NULL, start=0)
summary(ax)
ax

## End(Not run)
```

vgpcm

| Variance Gamma Parsimonious Clustering Models |

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious Vari-
ance Gamma clustering models (VGPCM).
Usage

vgpcm(data=NULL, G=1:3, mnames=NULL,
start=2, label=NULL,
veo=FALSE, da=c(1.0),
mm=1000, atol=1e-8, mtol=1e-8, mm=10, burn=5,
pprogress=FALSE, pwarning=FALSE, stochastic = FALSE)

Arguments

data A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data \(p > 1 \).

G A sequence of integers giving the number of components to be used.
mnames The models (i.e., covariance structures) to be used. If NULL then all 14 are fitted.
start If 0 then the random soft function is used for initialization. If 1 then the random hard function is used for initialization. If 2 then the kmeans function is used for initialization. If is.matrix then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit.
label If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group. See Examples.
veo Stands for "Variables exceed observations". If TRUE then if the number variables in the model exceeds the number of observations the model is still fitted.
da Stands for Deterministic Annealing. A vector of doubles.
mmax The maximum number of iterations each EM algorithm is allowed to use.
atol A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.
mtol A number specifying the epsilon value for the convergence criteria used in the M-step in the EM algorithms.
mm The maximum number of iterations each M-step is allowed in the GEM algorithms.
burn The burn in period for imputing data. (Missing observations are removed and a model is estimated seperately before placing an imputation step within the EM.)
pprogress If TRUE print the progress of the function.
pwarning If TRUE print the warnings.
stochastic If TRUE, it will run stochastic E step variant.
Details

The data x are either clustered or classified using Variance Gamma mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2014). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.

Value

An object of class `vgpcm` is a list with components:

- `map`: A vector of integers indicating the maximum a posteriori classifications for the best model.
- `model_objs`: A list of all estimated models with parameters returned from the C++ call.
- `best_model`: A class of `vgpcm_best` containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.
- `loglik`: The log-likelihood values from fitting the best model.
- `z`: A matrix giving the raw values upon which `map` is based.
- `BIC`: A G by mnames by 3 dimensional array with values pertaining to BIC calculations. (legacy)
- `startobject`: The type of object inputted into `start`.
- `gpar`: A list object for each cluster pertaining to parameters. (legacy)
- `row_tags`: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Best Model: An object of class `vgpcm_best` is a list with components:

- `model_type`: A string containing summarized information about the type of model estimated (Covariance structure and number of groups).
- `model_obj`: An internal list containing all parameters returned from the C++ call.
- `BIC`: Bayesian Index Criterion (positive scale, bigger is better).
- `loglik`: Log likelihood from the estimated model.
- `nparam`: Number of parameters in the model.
- `startobject`: The type of object inputted into `start`.
- `G`: An integer representing the number of groups.
- `cov_type`: A string representing the type of covariance matrix (see 14 models).
- `status`: Convergence status of EM algorithm according to Aitken’s Acceleration
- `map`: A vector of integers indicating the maximum a posteriori classifications for the best model.
- `row_tags`: If there were NAs in the original dataset, a vector of indices referencing the row of the imputed vectors is given.

Internal Objects: All classes contain an internal list called `model_obj` or `model_objs` with the following components:
zigs a posteriori matrix
G An integer representing the number of groups.
sigs A vector of covariance matrices for each group
mus A vector of location vectors for each group
alphas A vector containing skewness vectors for each group
gammas A vector containing estimated gamma parameters for each group

Note
Dedicated print, plot and summary functions are available for objects of class vgpcm.

Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples
Not run:
data("sx2")
use kmeans to find starting values
ax0 = vgpcm(sx2, G=1:3, mnames=c("VVV", "EVE"), start=2, pprogress=TRUE, atol=1e-2)
summary(ax0)
ax0
use random soft initializations.
ax6 = vgpcm(sx2, G=1:3, mnames=c("VVV", "EVE"), start=0)
summary(ax6)
ax6
use deterministic annealing for starting values
axDA = vgpcm(sx2, G=1:3, mnames=c("VVV", "EVE"), start=0, da=c(0.3,0.5,0.8,1.0))
summary(axDA)
axDA
estimate all 14 covariance structures
ax = vgpcm(sx2, G=1:3, mnames=NULL, start=0)
summary(ax)
ax
model based classification
sx2.label = c(rep(1,1000),rep(2,1000))
plot(sx2, col=sx2.label)
axl = vgpcm(sx2, G=2, mnames=c("VVV", "EVE"), label=sx2.label)
summary(axl)

End(Not run)

x2

Simulated Data

Description

Simulated data, with two variables with three groups, used to illustrate `gpcm`.

Usage

data(x2)

Format

A data frame with 300 observations and 2 columns.

Source

These data were simulated using R.

z_ig_kmeans

K-means Initialization

Description

Generates an initialization matrix for a dataset X using k-means.

Usage

`z_ig_kmeans(X,g)`

Arguments

- **X**
 A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1. Note. NO NAS allowed.

- **g**
 An integer representing the number of groups.
Value
A numeric matrix is returned of size n times g, with row sums adding up to 1.

Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples
```r
#data("x2")
#z_init <- z_ig_kmeans(x2,g=3)
```

z_ig_random_hard

Random Hard Initialization

Description
Generates an initialization matrix of size n times g using random hard.

Usage
```
z_ig_random_hard(n, g)
```

Arguments
- **n**
 Number of rows, must be positive.
- **g**
 Number of columns, must be positive.

Author(s)
Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.
Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>
References

Examples

```r
z_init <- z_ig_random_hard(100, 3)
```

z_ig_random_soft

Random Soft Initialization

Description

Generates an initialization matrix of size \(n \times g \) using random soft.

Usage

```
z_ig_random_soft(n, g)
```

Arguments

- `n` Number of rows, must be positive.
- `g` Number of columns, must be positive.

Author(s)

Nik Pocuca, Ryan P. Browne and Paul D. McNicholas.

Maintainer: Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

References

Examples

```r
z_init <- z_ig_random_soft(100, 3)
```
Index

* classif
 ARI, 2
 e_step, 3
 get_best_model, 5
 ghpcm, 6
 gpcm, 9
 main_loop, 13
 main_loop_gh, 15
 main_loop_st, 17
 main_loop_t, 20
 main_loop_vg, 22
 MAP, 24
 pcm, 26
 stpcm, 28
 tpcm, 32
 vgpcm, 35
 z_ig_kmeans, 39
 z_ig_random_hard, 40
 z_ig_random_soft, 41

* cluster
 ARI, 2
 e_step, 3
 get_best_model, 5
 ghpcm, 6
 gpcm, 9
 main_loop, 13
 main_loop_gh, 15
 main_loop_st, 17
 main_loop_t, 20
 main_loop_vg, 22
 MAP, 24
 pcm, 26
 stpcm, 28
 tpcm, 32
 vgpcm, 35
 z_ig_kmeans, 39
 z_ig_random_hard, 40
 z_ig_random_soft, 41

* datasets
 sx2, 31
 sx3, 32
 x2, 39

* multivariate
 ARI, 2
 e_step, 3
 get_best_model, 5
 ghpcm, 6
 gpcm, 9
 main_loop, 13
 main_loop_gh, 15
 main_loop_st, 17
 main_loop_t, 20
 main_loop_vg, 22
 MAP, 24
 pcm, 26
 stpcm, 28
 tpcm, 32
 vgpcm, 35
 z_ig_kmeans, 39
 z_ig_random_hard, 40
 z_ig_random_soft, 41

ARI, 2

e_step, 3

get_best_model, 5
ghpcm, 6, 26, 31, 32
gpcm, 9, 26, 39

main_loop, 13
main_loop_gh, 15
main_loop_st, 17
main_loop_t, 20
main_loop_vg, 22
MAP, 24
pcm, 26

stpcm, 28
tpcm, 32
vgpcm, 35

z_ig_kmeans, 39
z_ig_random_hard, 40
z_ig_random_soft, 41

mixture, 25

pcm, 26
INDEX

stpcm, 26, 28, 31, 32
sx2, 31
sx3, 32
tpcm, 26, 32
vgpcm, 26, 31, 32, 35
x2, 39
z_ig_kmeans, 39
z_ig_random_hard, 40
z_ig_random_soft, 41