Package ‘mlVAR’

August 26, 2018

Type Package
Title Multi-Level Vector Autoregression
Version 0.4.1
Depends R (>= 3.3.0)
Imports lme4, arm, qgraph, dplyr, clusterGeneration, mvtnorm, corpcor,
 plyr, abind, methods, parallel, MplusAutomation, graphicalVAR
Author Sacha Epskamp, Marie K. Deserno and Laura F. Bringmann
Maintainer Sacha Epskamp <mail@sachaepskamp.com>
Description Estimates the multi-level vector autoregression model on time-series data.
 Three network structures are obtained: temporal networks, contemporaneous
 networks and between-subjects networks.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-26 15:10:03 UTC

R topics documented:

getNet ... 2
importMplus 2
mlVAR ... 3
mlVAR-effects 6
mlVAR0 ... 7
mlVAR0-methods 10
mlVARcompare 11
mlVARsample 12
mlVARsim 12
mlVARsim0 13
plot.mlVAR 14
plot.mlVAR0 15
simulateVAR 16
summary.mlVAR 17
getNet

Gets a network structure

Description

This function is simply a wrapper around the plotting method for mlVAR objects, that extracts the network structure rather than plotting them.

Usage

```r
getNet(x, ...)
```

Arguments

- `x`: An ‘mlVAR’ or ‘mlVARsim0’ object.
- `...`: Arguments sent to `plot.mlVAR`

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

importMplus

Import output from Mplus

Description

This function imports the output from an Mplus model that has been generated by mlVAR. It can be used to make manual changes to the input file.

Usage

```r
importMplus(outfile)
```

Arguments

- `outfile`: Location of Mplus output file.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>
mlVAR

Multilevel VAR Estimation for Multiple Time Series

Description

The function mlVAR computes estimates of the multivariate vector autoregression model. This model returns three structures: temporal effects (e.g., lag-1 regression weights), contemporaneous relationships (correlations or partial correlations) and between-subject effects (correlations and partial correlations). See details.

Usage

mlVAR(data, vars, idvar, lags = 1, dayvar, beepvar, estimator = c("default", "lmer", "lm", "Mplus"), contemporaneous = c("default", "correlated", "orthogonal", "fixed", "unique"), temporal = c("default", "correlated", "orthogonal", "fixed", "unique"), nCores = 1, verbose = TRUE, compareToLags, scale = TRUE, scaleWithin = FALSE, AR = FALSE, MplusSave = TRUE, MplusName = "mlVAR", iterations = "(2000)", chains = nCores, signs, orthogonal

Arguments

data
Vectors of variables to include in the analysis

estimator
String indicating the subject ID

lags
Vector indicating the lags to include

dayvar
String indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.

beepvar
String indicating assessment beep per day (if missing, is added). Adding this argument will cause non-consecutive beeps to be treated as missing!

estimator
The estimator to be used. "lmer" for sequential univariate multi-level estimation, "Mplus" for multivariate Bayesian estimation (requires Mplus), and "lm" for fixed effects estimation.

contemporaneous
How should the contemporaneous networks be estimated? These networks are always estimated post-hoc by investigating the residuals of the temporal models. "correlated" and "orthogonal" run second multi-level models in which the networks are estimated using node-wise estimation. "fixed" and "unique" simply correlate the residuals, either by computing one network for all subjects (fixed) or a single network per per subject.
temporal How should the temporal effects be estimated? "correlated" estimates correlated random effects, "orthogonal" estimates non-correlated random effects and "fixed" estimates a model in which only the intercept is random. Defaults to "correlated" when the number of variables is less than 6 and "orthogonal" otherwise. "unique" uses lm to estimate an unique model for each subject.

nCores Number of cores to use in computation

verbose Logical indicating if console messages and the progress bar should be shown.

scale Logical, should variables be standardized before estimation?

scaleWithin Logical, should variables be scaled within-person (set to FALSE to only center within-person)

compareToLags A vector indicating which lags to base the data on. If the model is to be compared with a model with multiple lags using mlVARcompare, this argument must be used to make sure the number of observations is the same in both models (e.g., a lag 1 model can model the second observation of a day and a lag-2 model can’t, causing different number of observations and incomparable models). It is suggested to not use this argument unless you want to compare models, and always run mlVAR without using this argument afterwards in the selected model.

AR Logical, should an auto-regression only model be fitted?

MplusSave Logical, should the Mplus model file and output be saved?

MplusName Name of the Mplus model file and output (without extensions)

iterations The string used to define the number of iterations in Mplus

chains Number of Mplus chains

signs Optional matrix fixing the signs of contemporaneous correlations. Is estimated by running mlVAR with estimator = "lmer" if missing.

orthogonal Deprecated argument only added for backward compatibility. Ignore.

Details

This function estimates the multi-level VAR model to obtain temporal, contemporaneous and between-subject effects using nodewise estimation. Temporal and between-subject effects are obtained directly from the models and contemporaneous effects are estimated post-hoc by correlating the residuals. See arxiv.org/abs/1609.04156 for details.

Setting estimator = "Mplus" will generate a Mplus model, run the analysis and read the results into R. Mplus 8 is required for this estimation. It is recommended to set contemporaneous = "fixed", though not required. For the estimation of contemporaneous random effects, the signs of contemporaneous "correlations" (not partial correlations) need be set (or estimated) via the signs argument.

Value

An mlVAR object

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)
mlVAR

References

See Also

mlVARcompare, summary.mlVAR, plot.mlVAR

Examples

```r
## Not run:
### Small example ###
# Simulate data:
Model <- mlVARSim(nPerson = 50, nNode = 3, nTime = 50, lag=1)

# Estimate using correlated random effects:
fit1 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1, temporal = "correlated")

# Print some pointers:
print(fit1)

# Summary of all parameter estimates:
summary(fit1)

# Compare temporal relationships:
layout(t(1:2))
plot(Model, "temporal", title = "True temporal relationships", layout = "circle")
plot(fit1, "temporal", title = "Estimated temporal relationships", layout = "circle")

# Compare contemporaneous partial correlations:
layout(t(1:2))
plot(Model, "contemporaneous", title = "True contemporaneous relationships", layout = "circle")
plot(fit1, "contemporaneous", title = "Estimated contemporaneous relationships", layout = "circle")

# Compare between-subjects partial correlations:
layout(t(1:2))
plot(Model, "between", title = "True between-subjects relationships", layout = "circle")
plot(fit1, "between", title = "Estimated between-subjects relationships", layout = "circle")

# Run same model with non-correlated temporal relationships and fixed-effect model:
fit2 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1, temporal = "orthogonal")
fit3 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1,
```
temporal = "fixed")

Compare models:
mlVARcompare(fit1, fit2, fit3)

Inspect true parameter correlation matrix:
Model$Omega$cor$mean
Even though correlations are high, orthogonal model works well often!

Large example
Model <- mlVARsim(nPerson = 100, nNode = 10, nTime = 100, lag=1)

Correlated random effects no longer practical. Use orthogonal or fixed:
fit4 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1,
temporal = "orthogonal")
fit5 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1,
temporal = "fixed")

Compare models:
mlVARcompare(fit4, fit5)

Compare temporal relationships:
layout(t(1:2))
plot(Model, "temporal", title = "True temporal relationships", layout = "circle")
plot(fit4, "temporal", title = "Estimated temporal relationships", layout = "circle")

Compare contemporaneous partial correlations:
layout(t(1:2))
plot(Model, "contemporaneous", title = "True contemporaneous relationships",
layout = "circle")
plot(fit4, "contemporaneous", title = "Estimated contemporaneous relationships",
layout = "circle")

Compare between-subjects partial correlations:
layout(t(1:2))
plot(Model, "between", title = "True between-subjects relationships", layout = "circle")
plot(fit4, "between", title = "Estimated between-subjects relationships",
layout = "circle")

End(Not run)

mlVAR-effects

Fixed and random effects

Description

These functions return a table of the fixed and random effects.

FUNCTIONS ARE DEPRECATED AND WILL BE REMOVED SOON.
mlVAR0

Usage

fixedEffects(object, digits = 5)
randomEffects(object, digits = 5)

Arguments

object A mlVAR object
digits Number of digits to output

Author(s)

Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)

mlVAR0 Multilevel VAR Estimation for Multiple Time Series

Description

The function mlVAR0 computes estimates of the multivariate vector autoregression model as introduced by Bringmann et al. (2013) which can be extended through treatment effects, covariates and pre- and post assessment effects.

FUNCTION IS DEPRECATED AND WILL BE REMOVED SOON.

Usage

mlVAR0(data, vars, idvar, lags = 1, dayvar, beepvar,
periodvar, treatmentvar, covariates, timevar,
maxTimeDiff, control = list(optimizer = "bobyqa"),
verbose = TRUE, orthogonal, estimator = c("lmer",
"lmlasso"), method = c("default", "stepwise",
"movingWindow"), laginteractions = c("none", "mains",
"interactions"), critFun = BIC, lambda = 0,
center = c("inSubject", "general", "none")

Arguments

data Data frame
vars Vectors of variables to include in the analysis
idvar String indicating the subject ID
lags Vector indicating the lags to include
dayvar String indicating assessment day (if missing, every assessment is set to one day)
beepvar String indicating assessment beep per day (if missing, is added)
periodvar String indicating the period (baseline, treatment period, etc.) of assessment (if missing, every assessment is set to one period)
mlVAR0 has been built to extract individual network dynamics by estimating a multilevel vector autoregression model that models the time dynamics of selected variables both within an individual and on group level. For example, in a lag-1-model each variable at time point t is regressed to a lagged version of itself at time point t-1 and all other variables at time point t-1. In psychological research, for example, this analysis can be used to relate the dynamics of symptoms on one day (as assessed by experience sampling methods) to the dynamics of these symptoms on the consecutive day.

Value

mlVAR0 returns a `mlVAR0` object containing

- **fixedEffects**: A matrix that contains all fixed effects coefficients with dependent variables as rows and the lagged independent variables as columns.
- **se.fixedEffects**: A matrix that contains all standard errors of the fixed effects.
- **randomEffects**: A list of matrices that contain the random effects coefficients.
- **randomEffectsVariance**: A matrix containing the estimated variances between the random-effects terms.
- **pvals**: A matrix that contains p-values for all fixed effects.
- **pseudologlik**: The pseudo log-likelihood.
- **BIC**: Bayesian Information Criterion, i.e. the sum of all univariate models’ BICs.
- **input**: List containing the names of variables used in the analysis.
Author(s)
Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)

References

See Also
fixedEffects, fixedEffects

Examples
```r
## Not run:
### Small network ###
nVar <- 3
nPerson <- 25
nTime <- 25

# Simulate model and data:
Model <- mlVARsim(nPerson,nVar,nTime,sparsity = 0.5)

# Run mlVAR0:
Res <- mlVAR0(Model)

# Compare true fixed model with significant edges of estimated fixed model:
layout(t(1:2))
plot(Model,"fixed", title = "True model", layout="circle", edge.labels = TRUE)
plot(Res,"fixed", title = "Estimated model", layout = "circle", onlySig = TRUE,
     alpha = 0.05, edge.labels = TRUE)

# Compare true and estimated individual differences in parameters:
layout(t(1:2))
plot(Model,"fixed", title = "True model", layout="circle", edge.color = "blue",
     edge.labels = TRUE)
plot(Res,"fixed", title = "Estimated model", layout = "circle", edge.color = "blue",
     edge.labels = TRUE)

# Compare networks of subject 1:
layout(t(1:2))
plot(Model,"subject",subject = 1, title = "True model",layout="circle",
     edge.labels = TRUE)
plot(Res,"subject",subject = 1,title = "Estimated model", layout = "circle",
     edge.labels = TRUE)

### Large network ###
nVar <- 10
```
mlVAR0-methods

print and summary functions for mlVAR0 objects

Description

Create a short summary of an object created by mlVAR0.
FUNCTION IS DEPRECATED AND WILL BE REMOVED SOON.

Usage

S3 method for class 'mlVAR0'
print(x, ...)
S3 method for class 'mlVAR0'
summary(object, ...)

Arguments

- **object**: A "mlVAR0" object
- **x**: A "mlVAR0" object
- **...**: Not used
Author(s)
Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)

mlVARcompare

Compare mlVAR model fit

Description
This function compares the fit of several mlVAR models. Since an mlVAR model is a combination of univariate models this function will compare the fits for each univariate model.

Usage
mlVARcompare(...)

Arguments
... Any number of objects obtained from mlVAR

Details
Important to note is that the number of observations must be equal to make models comparable. If the lags are different and compareToLags was not used in mlVAR this function will stop with an informative error message.

Author(s)
Sacha Epskamp (mail@sachaepskamp.com)

Examples
Not run:
Small example
Simulate data:
Model <- mlVARsim(nPerson = 50, nNode = 3, nTime = 50, lag=1)

Estimate using different methods:
fit1 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1, temporal = "correlated")
fit2 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1, temporal = "orthogonal")
fit3 <- mlVAR(Model$Data, vars = Model$vars, idvar = Model$idvar, lags = 1, temporal = "fixed")

Compare models:
mlVARcompare(fit1,fit2,fit3)

End(Not run)
mlVARsample

Simulator function given an mlVAR object

Description

Simulates data based on an mlVAR object

Usage

```r
mlVARsample(object, nTime = c(25, 50, 100, 200), nReps = 100, nCores = 1, ...)
```

Arguments

- `object`: mlVAR object
- `nTime`: Vector with number of time points to test
- `nReps`: Number of repetitions for each condition
- `nCores`: Number of cores to use
- `...`: Arguments sent to mlVAR

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

mlVARsim

Simulates an mlVAR model and data

Description

Simulates an mlVAR model and data with a random variance-covariance matrix for the random effects.

Usage

```r
mlVARsim(nPerson = 10, nNode = 5, nTime = 100, lag = 1, thetaVar = rep(1, nNode),
          DF_theta = nNode * 2, mu_SD = c(1, 1), init_beta_SD = c(0.1, 1),
          fixedMuSD = 1, shrink_fixed = 0.9, shrink_deviation = 0.9)
```
Arguments

nperson Number of subjects
nnode Number of variables
ntime Number of observations per person
lag The maximum lag to be used
thetavar Contemporaneous fixed effect variances
DF_theta Degrees of freedom in simulating person-specific contemporaneous covariances (e.g., the individual differences in contemporaneous effects)
mu_SD Range of standard deviation for the means
init_beta_SD Initial range of standard deviations for the temporal effects
fixedmusd Standard deviation used in sampling the fixed effects
shrink_fixed Shrinkage factor for shrinking the fixed effects if the VAR model is not stationary
shrink_deviation Shrinkage factor for shrinking the random effects variance if the VAR model is not stationary

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

Description

FUNCTION IS DEPRECATED AND WILL BE REMOVED SOON.

Usage

mlVARsim0(nperson = 10, nNode = 5, nTime = 100, sparsity = 0, parRange = c(0.22, 0.4),
propPositive = 0.5, diagPositive = TRUE, diagIncluded = TRUE, sdRange = c(0.01, 0.2),
shrinkFactor = 0.95, residualStyle = c("full", "diag"), residualShared = TRUE,
residualSDrange = c(0.05, 0.1), verbose = TRUE)

Arguments

nperson
nNode
nTime
sparsity
parRange
plot.mlVAR

Plot Method for mlVAR

Description

The function plot.mlVAR plots estimated model coefficients as networks using qgraph. These can be three networks: temporal, contemporaneous and between-subjects effects, of which the latter two can be plotted as a correlation or a partial correlation network.

Usage

S3 method for class 'mlVAR'
plot(x, type = c("temporal", "contemporaneous", "between"),
 lag = 1, partial = TRUE, SD = FALSE, subject, order,
 nonsig = c("default", "show", "hide", "dashed"), rule
 = c("or", "and"), alpha = 0.05, onlySig = FALSE,
 layout = "spring", verbose = TRUE, ...)

S3 method for class 'mlVARsim'
plot(x, ...)

Arguments

x An mlVAR object.
type What network to plot?
lag The lag to use when type = "temporal"
partial Logical. Should partial correlation matrices be plotted instead of correlation methods? Only used if type is "contemporaneous" or "between". Defaults to TRUE.
SD Logical. Plot the standard-deviation of random effects instead of the fixed effect estimate?
subject Subject number. If not missing, will plot the network of a specific subject instead.
Description

The function plot.mlVAR0 plots estimated model coefficients as a network using qgraph. FUNCTION IS DEPRECATED AND WILL BE REMOVED SOON.

Usage

```r
## S3 method for class 'mlVAR0'
plot(x, type = c("fixed", "SD", "subject"), lag = 1, subject, order, onlySig = FALSE, alpha, ...)
## S3 method for class 'mlVARsim0'
plot(x, type = c("fixed", "SD", "subject"), lag = 1, subject, order, ...)
```

Arguments

- `x`: A mlVAR0 object obtained through the mlVAR0-function
- `type`: Indicates whether to plot a network of fixed effects coefficients ("fixed"), the standard deviations of the random effect terms ("SD") or an individual subject’s random effects network ("subject").
- `lag`: Vector indicating the lags to include
- `subject`: If type="subject", vector indicating the ID subject number
- `order`: Order of nodes
onlySig Logical. Set to TRUE to only plot significant fixed effects.
alpha Significance level to test edges at if onlySig == TRUE. Defaults to Bonferroni corrected alpha level of 0.05 divided by the number of fixed effects.
... Arguments sent to qgraph

Author(s)
Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)

simulateVAR Simulate data from VAR model

Description
Simulates a timeseries using VAR parameters

Usage
```r
simulateVAR(pars, means = 0, lags = 1, Nt = 100, init, residuals = 0.1, burnin)
```

Arguments
- **pars** A square matrix or a list of square matrices indicating the VAR parameters
- **means** A vector of means.
- **lags** The lags to which the 'pars' argument parameters correspond. If 'pars' is a list then this argument should be a vector indicating which lags are represented by each element of the 'pars' list.
- **Nt** Number of time points
- **init** Initial setup. Must be a matrix of the first lags with rows corresponding to time points and columns corresponding to variables (e.g., if only two lags are used then the matrix must have two rows indicating the first two time points.)
- **residuals** Standard deviation of the residuals or a residual covariance matrix
- **burnin** Initial simulations not returned. Defaults to \(\min(\text{round}(Nt/2), 100) \).

Author(s)
Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)
Summary of mlVAR results

Description

Prints tables with fit indices and parameter estimates.

Usage

```r
## S3 method for class 'mlVAR'
summary(object, show = c("fit", "temporal", "contemporaneous", "between"),
         round = 3, ...)
## S3 method for class 'mlVAR'
print(x, ...)```

**Arguments**

- `object`: An mlVAR object.
- `show`: Which tables to show?
- `round`: Number of digits.
- `x`: An mlVAR object.
- `...`: Not used

**Author(s)**

Sacha Epskamp (mail@sachaepskamp.com), Marie K. Deserno (m.k.deserno@uva.nl) and Laura F. Bringmann (laura.bringmann@ppw.kuleuven.be)
Index

fixedEffects, 9
fixedEffects(mlVAR-effects), 6

getNet, 2
importMplus, 2
lmerControl, 8

mlVAR, 3, 11
mlVAR-effects, 6
mlVAR0, 7, 10, 15
mlVAR0-methods, 10
mlVARcompare, 4, 5, 11
mlVARsample, 12
mlVARsim, 12
mlVARsim0, 13

plot.mlVAR, 2, 5, 14
plot.mlVAR0, 15
plot.mlVARsim(plot.mlVAR), 14
plot.mlVARsim0(plot.mlVAR0), 15
print.mlVAR(summary.mlVAR), 17
print.mlVAR0(mlVAR0-methods), 10

qgraph, 15, 16

randomEffects(mlVAR-effects), 6

simulateVAR, 16
summary.mlVAR, 5, 17
summary.mlVAR0(mlVAR0-methods), 10