Package ‘mlbstats’

March 16, 2018

Type Package
Title Major League Baseball Player Statistics Calculator
Version 0.1.0
Author Philip D. Waggoner <philip.waggoner@gmail.com>
Maintainer Philip D. Waggoner <philip.waggoner@gmail.com>
Description Computational functions for player metrics in major league baseball including batting, pitching, fielding, base-running, and overall player statistics. This package is actively maintained with new metrics being added as they are developed.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-16 09:15:57 UTC

R topics documented:

ab_hr .. 2
aera ... 3
ba ... 4
baa .. 4
babip .. 5
bb9 .. 6
bb_k ... 6
BsR ... 7
dice ... 7
EqA .. 8
era ... 9
erc ... 9
fip ... 10
fp ... 11
ab_hr

Calculates at bats per home run

Description
Takes number of at bats and divides by number of home runs

Usage

`ab_hr(ab, hr)`

Arguments

- `ab` Number of at bats
- `hr` Number of home runs
Value

ab_hr

Examples

ab_hr(400, 25)

aera
Calculates adjusted earned run average (ERA+)

Description

Computes adjusted earned run average accounting for park factor and league era (compare with "era" which is the traditional formula for earned run average, "erc" which is the component earned run average, or "dice" which is the defense-independent component earned run average).

Usage

aera(er, ip, lera, home_rs, home_ra, home_r, road_rs, road_ra, road_r)

Arguments

- **er**: Number of runs that did not occur as a result of errors or passed balls
- **ip**: Number of innings pitched
- **lera**: Average league ERA
- **home_rs**: Number of pitcher's team runs scored at home park
- **home_ra**: Number of pitcher's team runs allowed at home park
- **home_r**: Total number of runs scored at home park
- **road_rs**: Number of pitcher's team runs scored at away park
- **road_ra**: Number of pitcher's team runs allowed at away park
- **road_r**: Total number of runs scored at away park

Value

aera

Examples

aera(10, 5.5, 2.5, 8, 7, 15, 6, 4, 10) # for a pair of games (one away, one home)
Calculates batting average

Description
Takes number of hits and divides by at bats. 1.000 (read “one-thousand” is perfect)

Usage
ba(h, ab)

Arguments
h Number of hits
ab Number of at bats

Value
ba

Examples
ba(200, 525)

Calculates batting average against

Description
Computes pitcher’s ability to prevent hits, based on h, bfp, bb, hbp, sf, sh, and ci (catcher’s interference)

Usage
baa(h, bfp, bb, hbp, sh, sf, ci)

Arguments
h Number of hits allowed
bfp Number of batters facing pitcher
bb Number of bases on balls
hbp Number of hit batters
sh Number of sacrifice hits
sf Number of sacrifice flies
ci Number of catcher’s interference
babip

Value

Value

Examples

Examples

Calculates batting average on balls in play

Description

Generates the frequency a batter reaches a base after putting the ball in play (normal around .300)

Usage

Usage

Arguments

Arguments

Value

Value

Examples

Examples
Calculates bases on balls per nine innings pitched (W/9)

Description
Computes bases on balls (walks) per nine innings pitched

Usage
```
bb9(bb, ip)
```

Arguments
- **bb**: Number of bases on balls
- **ip**: Number of innings pitched

Value
```
bb9
```

Examples
```
bb9(35, R10)
```

bb_k

Calculates walk to strikeout ratio (batting)

Description
Takes the number of bases on balls and divides by number of strikeouts (for pitching version, see "k_bb")

Usage
```
bb_k(bb, k)
```

Arguments
- **bb**: Number of bases on balls
- **k**: Number of strikeouts

Value
```
bb_k
```

Examples
```
bb_k(65, 125)
```
BsR

Calculates the base runs estimator

Description

Takes the number of hits, bases on balls, home runs, total bases, and at bats to compute the base runs estimator, which is similar to runs created.

Usage

\[
\text{BsR}(h, \ bb, \ hr, \ tb, \ ab)
\]

Arguments

\[
\begin{align*}
 h & : \text{Number of hits} \\
 \bb & : \text{Number of bases on balls} \\
 \hr & : \text{Number of home runs} \\
 \tb & : \text{Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)} \\
 \ab & : \text{Number of at bats}
\end{align*}
\]

Value

BsR

Examples

\[
\text{BsR}(135, 22, 12, 155, 330)
\]

dice

Calculates defense-independent component earned run average

Description

Computes earned run average from hits and walks (compare with "era" which is the traditional formula for earned run average, "aera" which is a pitcher’s adjusted earned run average, or "erc" which is the component earned run average).

Usage

\[
\text{dice}(\bb, \ hbp, \ hr, \ k, \ ip)
\]
Arguments

- `bb`: Number of bases on balls
- `hbp`: Number of hit batters
- `hr`: Number of home runs
- `k`: Number of strikeouts
- `ip`: Number of innings pitched

Value

dice

Examples

dice(45, 10, 60, 130, 400)

dice(45, 10, 60, 130, 400)

EqA

Calculates equivalent average

Description

Takes the number of hits, total bases, bases on balls, hits by pitch, stolen bases, sacrifice hits, sacrifice flies, at bats, and caught stealing to compute the base runs, which is a player's batting average absent park and league effects.

Usage

`EqA(h, tb, bb, hbp, sb, sh, sf, ab, cs)`

Arguments

- `h`: Number of hits
- `tb`: Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
- `bb`: Number of bases on balls
- `hbp`: Number of hits by pitch
- `sb`: Number of stolen bases
- `sh`: Number of sacrifice hits (typically bunts)
- `sf`: Number of sacrifice flies
- `ab`: Number of at bats
- `cs`: Number of caught stealing

Value

`EqA`

Examples

`EqA(135, 155, 22, 3, 15, 4, 2, 365, 1)`
Calculates earned run average

Description

Computes a pitcher’s earned run average (compare with "erc" which is the component earned run average, "aera" which is a pitcher’s adjusted earned run average, or "dice" which is the defense-independent component earned run average)

Usage

\[\text{era}(\text{er}, \text{ip}) \]

Arguments

- \(\text{er} \) Number of runs that did not occur as a result of errors or passed balls
- \(\text{ip} \) Number of innings pitched

Value

\[\text{era} \]

Examples

\[\text{era}(150, 400) \]

Calculates component earned run average

Description

Computes earned run average from hits and walks (compare with "era" which is the traditional formula for earned run average, "aera" which is a pitcher’s adjusted earned run average, or "dice" which is the defense-independent component earned run average)

Usage

\[\text{erc}(h, \text{bb}, \text{hbp}, \text{hr}, \text{ibb}, \text{bfp}, \text{ip}) \]
Arguments

- `h`: Number of hits allowed
- `bb`: Number of bases on balls
- `hbp`: Number of hit batters
- `hr`: Number of home runs
- `ibb`: Number of intentional bases on balls
- `bfp`: Number of batters faced by pitcher
- `ip`: Number of innings pitched

Value

- `erc`

Examples

```python
erc(110, 45, 10, 70, 5, 400, R15)
```

fip

Calculates fielding independent pitching

Description

Computes pitching performance statistic similar to ERA, but based on factors within the pitcher’s control (compare with “dice” which is the defense-independent component earned run average)

Usage

`fip(hr, bb, k, ip)`

Arguments

- `hr`: Number of home runs
- `bb`: Number of bases on balls
- `k`: Number of strikeouts
- `ip`: Number of innings pitched

Value

- `fip`

Examples

```python
fip(65, 50, 100, 175)
```
Calculates fielding percentage

Description

Computes the fielding percentage (aka, fielding average), which reflects the percentage of proper ball handling.

Usage

```
fp(p, a, e)
```

Arguments

- `p`: Number of putouts
- `a`: Number of assists
- `e`: Number of errors

Value

`fp`

Examples

```
fp(13, 4, 2)
```

Calculates ground outs-fly outs ratio (GO/AO)

Description

Takes the number of ground ball outs and divides by number of fly ball outs to compute the GO/AO ratio.

Usage

```
go_ao(go, ao)
```

Arguments

- `go`: Number of ground ball outs
- `ao`: Number of fly ball outs

Value

`go_ao`
Examples

 go_ao(150, 88)

gpa

Calculates gross production average

Description

Computes the gross production average, which is 1.8 times on-base percentage (OBP) plus slugging percentage (SLG), divided by four

Usage

 gpa(h, bb, hbp, ab, sf, b1, b2, b3, hr)

Arguments

- **h**: Number of hits
- **bb**: Number of bases on balls
- **hbp**: Number of hits by pitch
- **ab**: Number of at bats
- **sf**: Number of sacrifice flies
- **b1**: Number of singles
- **b2**: Number of doubles
- **b3**: Number of triples
- **hr**: Number of home runs

Value

 gpa

Examples

 gpa(150, 40, 2, 400, 5, 100, 40, 3, 7)
h9
Calculates hits per nine innings pitched (H/9IP)

Description

Calculates hits per nine innings pitched

Usage

```
h9(h, ip)
```

Arguments

- `h` Number of hits allowed
- `ip` Number of innings pitched

Value

h9

Examples

```
h9(150, 175)
```

iso
Calculates isolated power

Description

Calculates isolated power, which is a player’s ability to obtain extra bases from a hit. The statistic subtracts a hitter’s batting average from the slugging percentage, with the maximum ISO being 3.000.

Usage

```
iso(b1, b2, b3, hr, ab, h)
```

Arguments

- `b1` Number of singles
- `b2` Number of doubles
- `b3` Number of triples
- `hr` Number of home runs
- `ab` Number of at bats
- `h` Number of hits
k9

Calculates strikeouts per nine innings pitched (K/9)

Description

Computes strikeouts per nine innings pitched

Usage

\[k9(k, ip) \]

Arguments

- \(k \) Number of strikeouts
- \(ip \) Number of innings pitched

Value

\(k9 \)

Examples

\[k9(105, 175) \]

k_bb

Calculates strikeout to walk ratio (pitching)

Description

Computes strikeouts to walk ratio, based on number of strikeouts and number of walks (for batting version, see "bb_k")

Usage

\[k_bb(k, bb) \]
Arguments

k Number of strikeouts

bb Number of bases on balls

Value

k_bb

Examples

k_bb(105, 40)

obp \textit{Calculates on-base percentage}

Description

Computes the on-base percentage based on number of hits, bases on balls, hits by pitch, at bats, and sacrifice flies

Usage

\texttt{obp(h, bb, hbp, ab, sf)}

Arguments

h Number of hits

bb Number of bases on balls

hbp Number of hits by pitch

ab Number of at bats

sf Number of sacrifice flies

Value

obp

Examples

\texttt{obp(150, 40, 2, 400, 5)}
ops

Calculates on-base plus slugging

Description

Computes the on-base percentage plus slugging average (OPS) based on number of hits, bases on balls, hits by pitch, at bats, sacrifice flies, and total weighted bases (represented individually, as in SLG and GPA calculations)

Usage

ops(h, bb, hbp, ab, sf, b1, b2, b3, hr)

Arguments

- h: Number of hits
- bb: Number of bases on balls
- hbp: Number of hits by pitch
- ab: Number of at bats
- sf: Number of sacrifice flies
- b1: Number of singles
- b2: Number of doubles
- b3: Number of triples
- hr: Number of home runs

Value

ops

Examples

ops(200, 18, 4, 401, 4, 50, 20, 3, 13)

pafa

Calculates park factor

Description

Computes the runs a team scores at home versus away (it is often used in other metrics, e.g., adjusted era (ERA+) for pitchers; see "aera")

Usage

pafa(home_rs, home_ra, home_r, road_rs, road_ra, road_r)
pa_so

Arguments

- `home_rs` Number of pitcher’s team runs scored at home park
- `home_ra` Number of pitcher’s team runs allowed at home park
- `home_r` Total number of runs scored at home park
- `road_rs` Number of pitcher’s team runs scored at away park
- `road_ra` Number of pitcher’s team runs allowed at away park
- `road_r` Total number of runs scored at away park

Value

`pafa`

Examples

`pafa(5, 6, 11, 4, 8, 1R)` # for a pair of games (one home, one away)

\[\text{Calculates plate appearances per strikeout (PA/SO)}\]

Description

Computes the number of times a hitter strikes out in relation to their plate appearances

Usage

`pa_so(pa, so)`

Arguments

- `pa` Number of plate appearances
- `so` Number of strikeouts

Value

`pa_so`

Examples

`pa_so(450, 120)`
pfr
Calculates power finesse ratio

Description
Computes pitcher’s performance either by game or overall, based on k, bb, and ip

Usage
pfr(k, bb, ip)

Arguments
- k Number of strikeouts
- bb Number of bases on balls
- ip Number of innings pitched

Value
pfr

Examples
pfr(115, 30, 400)

ra
Calculates run average

Description
Computes pitcher’s run average based on number of runs allowed and innings pitched

Usage
ra(r, ip)

Arguments
- r Number of runs allowed
- ip Number of innings pitched

Value
ra

Examples
ra(75, 400)
Calculates runs created

Description

Computes the basic version of the estimated runs a hitter creates or contributes (see also "rc2" for the 'stolen base' iteration and "rc3" for the technical iteration of the rc statistic)

Usage

\[rc(h, bb, tb, ab) \]

Arguments

- **h**: Number of hits
- **bb**: Number of bases on balls
- **tb**: Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
- **ab**: Number of at bats

Examples

\[rc(150, 35, 165, 400) \]

Calculates runs created accounting for stolen bases

Description

Computes the estimated runs a hitter creates or contributes, accounting for base stealing (see also "rc" for the basic iteration and "rc3" for the technical iteration of the rc statistic)

Usage

\[rc2(h, bb, tb, ab, cs, sb) \]

Arguments

- **h**: Number of hits
- **bb**: Number of bases on balls
- **tb**: Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
- **ab**: Number of at bats
- **cs**: Number of stolen bases caught
- **sb**: Number of stolen bases
Value

rc2

Examples

rc2(150, 35, 165, 400, 7, 9)

rc3

Calculates runs created accounting for all offensive indicators

Description

Computes the technical iteration of estimated runs a hitter creates or contributes accounting for virtually all offensive indicators (see also "rc" for the basic iteration and "rc2" for the 'stolen base' iteration of the rc statistic)

Usage

rc3(h, bb, ibb, tb, ab, cs, sb, hbp, gidp, sh, sf)

Arguments

- h Number of hits
- bb Number of bases on balls
- ibb Number of intentional bases on balls
- tb Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
- ab Number of at bats
- cs Number of stolen bases caught
- sb Number of stolen bases
- hbp Number of hits by pitch
- gidp Number of grounded into double play
- sh Number of sacrifice hits
- sf Number of sacrifice flies

Value

rc3

Examples

rc3(150, 35, 3, 165, 400, 7, 9, 5, 1, 6, 2)
rfa

Calculates range factor

Description
Computes the amount of the field covered by a player

Usage
rfa(p, a, ip)

Arguments
- **p**: Number of putouts
- **a**: Number of assists
- **ip**: Number of innings played in a defensive position

Value
rfa

Examples
rfa(20, 5, 450)

risp

Calculates batting average with runners in scoring position

Description
Computes batting average accounting for runners in scoring position

Usage
risp(hrisp, abrisp)

Arguments
- **hrisp**: Number of hits with runners in scoring position (on either 2nd or 3rd base)
- **abrisp**: Number of at bats with runners in scoring position (on either 2nd or 3rd base)

Value
risp

Examples
risp(35, 120)
rp
Calculates runs produced

Description
Computes the number of runs contributed by a hitter, based on runs, runs batted in, and home runs

Usage
\[rp(r, rbi, hr) \]

Arguments
- \(r \)
 Number of runs
- \(rbi \)
 Number of runs batted in
- \(hr \)
 Number of home runs

Examples
\[rp(70, 41, 22) \]

sba
Calculates stolen base attempts

Description
Computes total attempts to steal a base, by adding \(sb \) and \(cs \)

Usage
\[sba(sb, cs) \]

Arguments
- \(sb \)
 Number of stolen bases
- \(cs \)
 Number of caught stealing

Examples
\[sba(20, 4) \]
sbsr
Calculates stolen base success rate

Description
Computes percentage of bases successfully stolen

Usage
`sbsr(sb, cs)`

Arguments
- **sb**: Number of stolen bases
- **cs**: Number of caught stealing

Value
`sbsr`

Examples
`sbsr(20, 4)`

slg
Calculates slugging percentage

Description
Computes the slugging percentage (SLG), based on the weighted number of singles, doubles, triples, home runs, and at bats

Usage
`slg(b1, b2, b3, hr, ab)`

Arguments
- **b1**: Number of singles
- **b2**: Number of doubles
- **b3**: Number of triples
- **hr**: Number of home runs
- **ab**: Number of at bats
Value

slg

Examples

slg(100, 40, 3, 7, 350)

taxa

Calculates total average

Description

Computes overall offensive contribution of a single player

Usage

taxa(tb, hbp, bb, sb, ab, h, cs, gidp)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tb</td>
<td>Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)</td>
</tr>
<tr>
<td>hbp</td>
<td>Number of hits by pitch</td>
</tr>
<tr>
<td>bb</td>
<td>Number of bases on balls</td>
</tr>
<tr>
<td>sb</td>
<td>Number of stolen bases</td>
</tr>
<tr>
<td>ab</td>
<td>Number of at bats</td>
</tr>
<tr>
<td>h</td>
<td>Number of hits</td>
</tr>
<tr>
<td>cs</td>
<td>Number of caught stealing</td>
</tr>
<tr>
<td>gidp</td>
<td>Number of grounded into double play</td>
</tr>
</tbody>
</table>

Value

taxa

Examples

taxa(125, 11, 40, 10, 400, 105, 2, 6)
tc
Calculates total chances

Description
Computes the opportunities for defensive ball handling

Usage
`tc(p, a, e)`

Arguments
- `p` Number of putouts
- `a` Number of assists
- `e` Number of errors

Value
`tc`

Examples
`tc(11, 5, 5)`

tob
Calculates times on base

Description
Computes total times a player reaches a base by adding `h`, `hbp`, and `bb`

Usage
`tob(h, hbp, bb)`

Arguments
- `h` Number of hits
- `hbp` Number of hits by pitch
- `bb` Number of bases on balls

Value
`tob`
vorp \textit{Calculates value over replacement player (pitching)}

\textbf{Description}

Computes a pitcher’s marginal utility

\textbf{Usage}

\texttt{vorp(ip, lr, lg, r)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{ip} \quad \text{Number of innings pitched}
 \item \texttt{lr} \quad \text{Number of league runs}
 \item \texttt{lg} \quad \text{Number of league games played}
 \item \texttt{r} \quad \text{Number of runs}
\end{itemize}

\textbf{Value}

\texttt{vorp}

\textbf{Examples}

\texttt{vorp(400, 98, 20, 110)}

\textit{whip} \textit{Calculates walks plus hits per innings pitched (WHIP)}

\textbf{Description}

Computes walks plus hits per innings pitched, which reflects the number of baserunners allowed by a pitcher over a given period

\textbf{Usage}

\texttt{whip(bb, h, ip)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{bb} \quad \text{Number of bases on balls}
 \item \texttt{h} \quad \text{Number of hits allowed}
 \item \texttt{ip} \quad \text{Number of innings pitched}
\end{itemize}
wr

Value

\text{whip}

Examples

\text{whip(50, 110, 425)}

\text{wr} \quad \textit{Calculates whiff rate}

Description

Computes pitcher’s ability to get a batter to swing and miss pitches over any period of time (e.g., in a single game, single season, career, etc.)

Usage

\text{wr(sw, \; tp)}

Arguments

\begin{itemize}
 \item \textit{sw} \quad \text{Number of swings and misses}
 \item \textit{tp} \quad \text{Total pitches thrown}
\end{itemize}

Value

\text{wr}

Examples

\text{wr(300, 750)}

\text{wra} \quad \textit{Calculates win ratio}

Description

Computes a team’s win ratio, which is used in the so-called "Pythagorean expectation"

Usage

\text{wra(rs, \; ra)}

Arguments

\begin{itemize}
 \item \textit{rs} \quad \text{Number of runs scored}
 \item \textit{ra} \quad \text{Number of runs allowed}
\end{itemize}
Value

wra

Examples

wra(400, 301)

xbh

Calculates extra base hits

Description

Computes total hits by a player greater than singles (1B) by adding 2B, 3B, and hr

Usage

xbh(b2, b3, hr)

Arguments

- b2: Number of doubles
- b3: Number of triples
- hr: Number of home runs

Value

xbh

Examples

xbh(20, 18, 4)
Index

ab_hr, 2 rp, 22
aera, 3

ba, 4 sba, 22
baa, 4 sbsr, 23
babip, 5 slg, 23
bb9, 6 ta, 24
ta, 24 tc, 25
tob, 25 vorp, 26
bb_k, 6 whip, 26
BsR, 7 wr, 27

dice, 7 wra, 27

EqA, 8 xbh, 28
era, 9
erc, 9

fip, 10 go_ao, 11
fp, 11 gpa, 12

h9, 13
iso, 13

k9, 14
k_bb, 14

obp, 15 pa_so, 17
ops, 16 pafa, 16

pa_so, 17 pfr, 18

ra, 18 rfa, 21
rc, 19
rc2, 19
rc3, 20
risp, 21