Package ‘mlica2’

February 20, 2015

Type Package

Title Independent Component Analysis using Maximum Likelihood

Version 2.1

Date 2012-11-02

Author Andrew Teschendorff

Maintainer Thomas Nelson <tnelson1@k-state.edu>

Description An R code implementation of the maximum likelihood (fixed point) algorithm of Hyvaerinen, Karhuna, and Oja for independent component analysis.

License GPL-2

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2012-11-03 07:00:09

NeedsCompilation no

R topics documented:

 mlica2-package .. 2
 CheckStability .. 2
 mlica ... 5
 mlicaMAIN .. 7
 PriorNormPCA ... 10
 proposeNCP ... 11
 simMAdata ... 13
 SortModes ... 13

Index 16
CheckStability

| mlica2-package | Maximum likelihood implementation of independent component analysis |

Description

An R code implementation of the maximum likelihood (fixed point) algorithm of Hyvaerinen, Karhuna, and Oja for independent component analysis.

Details

- **Package**: mlica2
- **Type**: Package
- **Version**: 1.0
- **Date**: 2012-07-17
- **License**: GPL-2

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk (ported to R > 2.10 by Thomas Nelson)

Maintainer: Thomas Nelson

References

CheckStability

Test stability of inferred ICA modes
CheckStability

Description

Performs a correlation test to see which of the inferred ICA modes are reproducible across multiple runs using different random initialisations. Returns a set of consensus ICA modes and stability scores for each following the algorithm of Chiappetta,...et.al (2004)

Usage

```
CheckStability(a.best.l, corr.th = 0.7)
```

Arguments

- `a.best.l`: List of 'a.best' objects from 'mlica' runs.
- `corr.th`: Correlation threshold to use to decide whether a mode is reproducible.

Value

A list with the following components:

- `consS`: Consensus source matrix with columns labeling the consensus ICA modes. Has same number of rows as 'a.best$S'.
- `consA`: Consensus mixing matrix with rows labeling the consensus ICA modes.
- `stabM`: Vector of same length as 'consM' giving the stability measures of each consensus ICA mode. Stability or reproducibility measures are given as fractions, that is, the number of times the ICA mode correlates with one of the other runs at threshold level `corr.th` divided by the number of runs (length of `a.best.l`).

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```r
## The function is currently defined as
function (a.best.l, corr.th = 0.7)
{
```
nIruns <- length(a.best.1)
if (nIruns < 2) {
 print("Argument must be list of at least two a.best objects")
 stop
}
for (i in 2:nIruns) {
 if (a.best.1[[1]][i]$ncp != a.best.1[[i]]$ncp) {
 print("Stopping: the objects in list must have same number of ICA modes")
 stop
 }
 ncp <- a.best.1[[1]]$ncp
 X <- a.best.1[[1]]$X
 nConn.v <- vector(length = nIruns * ncp)
 Adj.a <- array(rep(0, nIruns * ncp * nIruns * ncp), dim = c(nIruns, ncp, nIruns, ncp))
 v <- 1
 for (j1 in 1:nIruns) {
 selrun <- setdiff(1:nIruns, j1)
 for (j2 in selrun) {
 for (i1 in 1:ncp) {
 cor.v <- as.vector(abs(cor(a.best.1[[j1]][$X, i1], a.best.1[[j2]][$X]))
 i2 <- which.max(cor.v)
 Adj.a[j1, i1, j2, i2] <- 1
 }
 }
 for (i in 1:ncp) {
 nConn <- 0
 for (j2 in selrun) {
 if (sum(Adj.a[j1, i, j2,]) > 0) {
 nConn <- nConn + 1
 }
 }
 nConn.v[v] <- nConn
 v <- v + 1
 }
 }
 selmodes.idx <- 1:(nIruns * ncp)
 consS.lv <- list()
 StabScore.lv <- list()
 c <- 1
 while (c <= ncp) {
 max.idx <- which.max(nConn.v)
 j1.max <- as.integer(max.idx/(ncp + 1)) + 1
 i1.max <- max.idx - (j1.max - 1) * ncp
 selrun <- setdiff(1:nIruns, j1.max)
 consS <- a.best.1[[j1.max]]$S[, i1.max]
 corr.idx <- vector()
 for (j2 in selrun) {
 i2 <- which(Adj.a[j1.max, i1.max, j2,] == 1)
 if (length(i2) > 0) {
 corr.idx <- c(corr.idx, (j2 - 1) * ncp + i2)}
mlica

Maximum likelihood implementation of independent component analysis

Description

This function performs ICA using a maximum likelihood framework and takes as arguments parameters to control the number of algorithm runs and convergence criteria.

Usage

mlica(prNCP, nruns = 10, tol = 1e-04, maxit = 300, fail.th = 5, learn.mu = 1)

Arguments

- prNCP: The output object from `proposeNCP`.
- nruns: The number of converged algorithm runs sought (function returns the best solution according to the log-likelihood value).
- tol: Tolerance level for establishing convergence of run.
- maxit: Maximum number of iterations to allow per run.
- fail.th: A threshold on the number of consecutive runs that fail to converge.
- learn.mu: Learning parameter for fixed point algorithm (note that this need not be changed since it has already been optimised).
Value

A list with following components:
A: Estimate of the mixing matrix.
B: Estimate of the inverse mixing matrix.
S: Estimate of the source matrix.
X: Normalised data matrix.
ncp: Number of independent components.
NC: Binary number specifying whether best run converged or not.(=1 indicates convergence,=0 indicates no convergence).
LL: Log likelihood value of best run.

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```r
## Not run:
data(simMAdData);
dataX <- simMAdData[[1]];
prPCA <- PriorNormPCA(dataX);
prNCP <- proposeNCP(prPCA,0.1);
a.best.1 <- list();
for( i in 1:5){
a.best.1[[i]] <- mlica(prNCP,nruns=5);
}
checkICA <- CheckStability(a.best.1,0.7);
sourceS <- simMAdData[[3]];
print(cor(a.best.1[[1]]$S,sourceS));
sModes <- SortModes(a.best.1[[1]],c.val=0.5);

## End(Not run)
```

The function is currently defined as

function (prNCP, nruns = 10, tol = 1e-04, maxit = 300, fail.th = 5,
mlicaMAIN

Main engine function that implements the fixed point algorithm for maximum likelihood of ICA modes

Description

See references for detailed description.

Usage

mlicaMAIN(prNCP, tol = 1e-04, maxit = 300, mu = 1)
Arguments

prNCP The output object of `proposeNCP`.
tol Tolerance level for convergence.
maxit Maximum number of iterations to allow for convergence.
mu Learning parameter for fixed point algorithm. This has already been optimised.

Value

A list with following components:
A: Estimate of the mixing matrix.
B: Estimate of the inverse mixing matrix.
S: Estimate of the source matrix.
X: Normalised data matrix.
ncp: Number of independent components.
NC: Binary number specifying whether best run converged, 0, or not, 1.
LL: Log likelihood value of best run.

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```R
## The function is currently defined as
function (prNCP, tol = 1e-04, maxit = 300, mu = 1)
{
  print("Entered MLica")
  X <- prNCP$X
  x <- prNCP$x
  pEx <- prNCP$pEx
  pCorr <- prNCP$pCorr
  ntp <- dim(X)[1]
  ndim <- dim(X)[2]
  ncp <- ncol(x)
  Sest <- matrix(nrow = ntp, ncol = ncp)
  B.old <- matrix(runif(ncp * ncp, 0, 1), nrow = ncp, ncol = ncp)
  ```
B.o <- B.old
icount <- 0
not.conv <- c(1, 2)
y <- matrix(nrow = ntp, ncol = ncp)
tmp <- matrix(nrow = ncp, ncol = ncp)
beta <- vector(length = ncp)
alpha <- vector(length = ncp)
while ((length(not.conv) > 0) && (icount < maxit)) {
 print(c("Entering iteration loop ", icount))
 Cy <- B.old %*% t(B.old)
 svds <- eigen(Cy, symmetric = TRUE)
 D <- diag(svds$values)
 E <- svds$vectors
 Dinv <- solve(D)
 V <- E %*% sqrt(Dinv) %*% t(E)
 B.old <- V %*% B.old
 for (g in 1:ntp) {
 y[g,] <- B.old %*% x[g,]
 }
 for (c in 1:ncp) {
 beta[c] <- 2 * sum(y[, c] * tanh(y[, c]))/ntp
 alpha[c] <- -(beta[c] - 2 + 2 * sum(tanh(y[, c]) * tanh(y[, c])))/ntp
 for (c2 in 1:ncp) {
 tmp[c, c2] <- -2 * sum(tanh(y[, c]) * y[, c2])/ntp
 }
 }
 print("Checkpt1")
 tmp <- diag(beta) + tmp
 B <- B.old + mu * diag(alpha) %*% tmp %*% B.old
 Dev <- abs(B - B.o)
 AvDev <- sum(Dev)/(ncp * ncp)
 print(c("AvDev=", AvDev))
 not.conv <- vector()
 not.conv <- as.vector(Dev[Dev > tol])
 B.old <- B
 B.o <- B
 icount <- icount + 1
 for (g in 1:ntp) {
 Sest[g,] <- B %*% x[g,]
 }
 logL <- -2 * sum(log(cosh(Sest))) + ntp * log(abs(det(B)))+
 print("iterated logL")
 print(logL)
}
Cy <- B %*% t(B)
svds <- eigen(Cy, symmetric = TRUE)
D <- diag(svds$values)
E <- svds$vectors
Dinv <- solve(D)
V <- E %*% sqrt(Dinv) %*% t(E)
B <- V %*% B
for (g in 1:ntp) {
Sest[g,] <- B %*% x[g,]
}
Aest <- t(pEx %*% sqrt(pCorr) %*% t(B))
if (length(not.conv) > 0) {
 NotConv <- 1
} else {
 NotConv <- 0
}
logl <- -2 * sum(log(cosh(Sest))) + ntp * log(abs(det(B)))
return(list(A = Aest, B = B, S = Sest, X = X, ncp = dim(Sest)[2],
 NC = NotConv, LL = logl))

PriorPCA

Prior PCA analysis for threshold setting and noise removal

Description

This function performs a simple PCA analysis to aid in threshold setting and noise removal.

Usage

```r
PriorNormPCA(X)
```

Arguments

- `X`: Data Matrix (need not be normalised). Subsequent ICA seeks independent
 modes as independent distributions with values "down the rows".

Details

This function performs a simple PCA analysis and is used prior to application of the main ICA
algorithm. The objective of the prior PCA is to help determine the dimensionality of a subspace
on which the further ICA converges. The convention used here is that the rows of 'X' label the
space over which independent components are sought. For a typical microarray application in
which ICA is being used as a generative model for gene expression, rows should label genes and
columns should label samples. If, however, ICA is to be used as an unsupervised projection pursuit
algorithm, rows should label samples and columns genes. For the latter application, the number of
genes should be less than the number of samples.

Value

A list with following components:

- `X`: Normalised data matrix with the mean of each column set to zero.
- `Dx`: Eigenvalues in a diagonal matrix.
- `Ex`: Eigenvectors
proposeNCP

Author(s)
Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```r
## The function is currently defined as
function (X)
{
  ndim <- ncol(X)
  ntp <- nrow(X)
  for (s in 1:ndim) {
    X[, s] <- X[, s] - mean(X[, s])
  }
  print("Performing SVD")
  svd.o <- svd(X, LINPACK = TRUE)
  Dx <- diag(svd.o$d) * svd.o$d)/ntp
  Ex <- svd.o$v
  barplot(Dx, main = "Singular values")
  return(list(X = X, Dx = Dx, Ex = Ex))
}
```

proposeNCP | Number of independent components proposal function

Description

This function takes the output of 'PriorNormPCA' and returns for a given threshold the number of components to be inferred for subsequent ICA.

Usage

`proposeNCP(prPCA, thresh = 0.1)`

Arguments

- **prPCA** The output object from 'PriorNormPCA'.
- **thresh** Threshold on eigenvalues.
Value

A list with following components:
X: Normalised data matrix.
x: Normalised data matrix projected onto selected subspace.
pEx: Selected eigenvectors defining subspace for projection.
pCorr: Projected correlation matrix.
ncp: The dimension of the selected subspace (=number of independent components to be inferred with subsequent ICA).

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```r
## The function is currently defined as
function (prPCA, thresh = 0.1)
{
X <- prPCA$X
eigenvals.v <- diag(prPCA$Dx)
Ex <- prPCA$Ex
ntp <- nrow(X)
ndim <- ncol(X)
print("About to find ncp")
p.cpts <- eigenvals.v[eigenvals.v > thresh]
ncp <- length(p.cpts)
pCorr <- diag(eigenvals.v[1:ncp])
pEx <- Ex[, 1:ncp]
x <- matrix(nrow = ntp, ncol = ncp)
for (g in 1:ntp) {
    for (c in 1:ncp) {
        x[g, c] <- sum(X[g, ] * Ex[, c]) / sqrt(diag(pCorr)[c])
    }
}
return(list(X = X, x = x, pEx = pEx, pCorr = pCorr, ncp = ncp))
}
```
Description

This data set contains a mock microarray data set of 1000 genes and 60 samples where the data has been generated from an underlying Independent Component Analysis model of 5 supergaussian modes.

Usage

```r
data(simMAdata)
```

Value

A list with the components:

A list with three components. First, second and third components are the data matrix, mixing matrix and source matrix, respectively.

References

SortModes

Sorting of ICA Modes

Description

Sorts inferred ICA modes using two criteria: Relative data power or the Liebermeister criterion, which is based on a measure that is a weighted linear combination of non-gaussianity and data variance measures.

Usage

```r
SortModes(a.best,c.val = 0.25)
```

Arguments

- `a.best`: The output object of 'mlica'.
- `c.val`: A parameter to control the relative weight of the two measures when using the Liebermeister criterion. Should be between 0 (pure data variance measure) and 1 (pure non-gaussianity).
Value

A list with the components:
- a.best: The output of 'mlica'.
- rdp: The relative data power values obtained for each independent component.
- lbm: The Liebermeister contrast value for each component.

Author(s)

Andrew Teschendorff a.teschendorff@ucl.ac.uk

References

Examples

```r
# This function is currently defined as
function(a.best,c.val=0.25){

ncp <- ncol(a.best$);
Ng <- nrow(a.best$);

# SORTING CRITERION

# A) Computation of relative data power. Store values in vector of size H=ncp. Could use different criterion here.
# need squared entries
Ssq <- a.best$ * a.best$ ;
Asq <- a.best$A * a.best$A ;
Xsq <- a.best$X * a.best$X ;
rdp <- rep(0, times=ncp);
for ( k in 1:ncp ) {
    rdp[k] <- sum(Ssq[,k]) * sum(Asq[k,]) / sum(Xsq) ;
}
rdp.s <- sort(rdp, na.last=NA, decreasing=TRUE, index.return=TRUE);

# B) sorting with mixture of contrast and data variance (Liebermeister)
JG <- rep(0, times=ncp);
JA <- rep(0, times=ncp);
# generate values from std. normal distribution
nu <- rnorm(10000,0,1);
G0 <- mean(log(cosh(nu)));
```
for (k in 1:ncp){
 # compute contrast for mode using logcosh
 G1 <- mean(log(cosh(a.best$S[,k])));
 JG[k] <- abs(G1-G0);
 JA[k] <- sum(Asq[k,]);
}
sumJG <- sum(JG) ; sumJA <- sum(JA) ;
J <- JG*(c.val/sumJG)+JA*(1-c.val)/sumJA ;
J.s <- sort(J, na.last=NA, decreasing=TRUE, index.return=TRUE);
return(list(a.best=a.best, rdp=rdp.s, lmb=J.s));
}
Index

*Topic ICA
 CheckStability, 2
 simMADATA, 13
 SortModes, 13
*Topic correlation
 CheckStability, 2
 simMADATA, 13
 SortModes, 13
*Topic package
 mllica2-package, 2

mlica, 5
mllica2 (mllica2-package), 2
mllica2-package, 2
mllicaMAIN, 7

PriorNormPCA, 10
proposeNCP, 11

simMADATA, 13
SortModes, 13