Package ‘mlmi’

August 2, 2019

Type Package
Title Maximum Likelihood Multiple Imputation
Version 1.0.0
Author Jonathan Bartlett
Maintainer Jonathan Bartlett <j.w.bartlett@bath.ac.uk>
Description Implements so called Maximum Likelihood Multiple Imputation as described by von Hippel (2018) <arXiv:1210.0870v9>. A number of different imputations are available, by utilising the 'norm', 'cat' and 'mix' packages. Inferences can be performed either using combination rules similar to Rubin's or using a likelihood score based approach based on theory by Wang and Robins (1998) <doi:10.1093/biomet/85.4.935>.
Depends R (>= 2.10)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports MASS, gsl, norm, cat, mix, Matrix, stats, utils
Suggests bootImpute, testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-02 10:20:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>catImp</td>
<td>2</td>
</tr>
<tr>
<td>mixImp</td>
<td>3</td>
</tr>
<tr>
<td>normImp</td>
<td>5</td>
</tr>
<tr>
<td>normUniImp</td>
<td>6</td>
</tr>
<tr>
<td>scoreBased</td>
<td>7</td>
</tr>
<tr>
<td>withinBetween</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 11
Description

This function performs multiple imputation under a log-linear model as described by Schafer (1997), using his cat package, either with or without posterior draws.

Usage

```r
catImp(obsData, M = 10, pd = FALSE, type = 1, margins = NULL, steps = 100, rseed)
```

Arguments

- `obsData`: The data frame to be imputed. Variables must be coded such that they take consecutive positive integer values, i.e. 1,2,3,...
- `M`: Number of imputations to generate.
- `pd`: Specify whether to use posterior draws (TRUE) or not (FALSE).
- `type`: An integer specifying what type of log-linear model to impute using. `type=1`, the default, allows for all two-way associations in the log-linear model. `type=2` allows for all three-way associations (plus lower). `type=3` fits a saturated model.
- `margins`: An optional argument that can be used instead of `type` to specify the desired log-linear model. See the documentation for the `margins` argument in `ecm.cat` and Schafer (1997) on how to specify this.
- `steps`: If `pd=FALSE`, the `steps` argument specifies how many MCMC iterations to perform in order to generate the model parameter value for each imputation.
- `rseed`: The value to set the cat package’s random number seed to, using the `rngseed` function of cat. If the user wishes to set the seed using `rngseed` before calling `catImp`, set `rseed=NULL`.

Details

By default `catImp` will impute using a log-linear model allowing for all two-way associations, but not higher order associations. This can be modified through use of the `type` and `margins` arguments.

With `pd=FALSE`, all imputed datasets are generated conditional on the MLE of the model parameter, referred to as maximum likelihood multiple imputation by von Hippel (2018).

With `pd=TRUE`, regular ‘proper’ multiple imputation is used, where each imputation is drawn from a distinct value of the model parameter. Specifically, for each imputation, a single MCMC chain is run, iterating for `steps` iterations.

Imputed datasets can be analysed using `withinBetween`, `scoreBased`, or for example the `bootImpute` package.
mixImp

Value
A list of imputed datasets, or if M=1, just the imputed data frame.

References

Examples
#simulate a partially observed categorical dataset
set.seed(1234)
n <- 100

#for simplicity we simulate completely independent variables
temp <- data.frame(x1=ceiling(3*runif(n)), x2=ceiling(2*runif(n)), x3=ceiling(2*runif(n)))

#make some data missing
for (i in 1:3) {
 temp[(runif(n)<0.25),i] <- NA
}

#impute using catImp, assuming two-way associations in the log-linear model
imps <- catImp(temp, M=10, pd=FALSE, rseed=4423)

#impute assuming a saturated log-linear model
imps <- catImp(temp, M=10, pd=FALSE, type=3, rseed=4423)

mixImp

Imputation for a mixture of continuous and categorical variables using the general location model.

Description
This function performs multiple imputation under a general location model as described by Schafer (1997), using the mix package. Imputation can either be performed using posterior draws (pd=TRUE) or conditional on the maximum likelihood estimate of the model parameters (pd=FALSE), referred to as maximum likelihood multiple imputation by von Hippel (2018).

Usage
mixImp(obsData, nCat, M = 10, pd = FALSE, marginsType = 1, margins = NULL, designType = 1, design = NULL, steps = 100, rseed)
Arguments

obsData The data frame to be imputed. The categorical variables must be in the first nCat columns, and they must be coded using consecutive positive integers.
nCat The number of categorical variables in obsData.
M Number of imputations to generate.
pd Specify whether to use posterior draws (TRUE) or not (FALSE).
marginsType An integer specifying what type of log-linear model to use for the categorical variables. marginsType=1, the default, allows for all two-way associations in the log-linear model. marginsType=2 allows for all three-way associations (plus lower), marginsType=3 assumes a saturated log-linear model for the categorical variables.
margins If marginsType is not specified, margins must be supplied to specify the margins of the log-linear model for the categorical variable. See the help for ecm.mix for details on specifying margins.
designType An integer specifying how the continuous variables’ means should depend on the categorical variables. designType=1, the default, assumes the mean of each continuous variable is a linear function with main effects of the categorical variables. designType=2 assumes each continuous variables has a separate mean for each combination of the categorical variables.
design If designType is not specified, design must be supplied to specify how the mean of the continuous variables depends on the categorical variables. See the help for ecm.mix for details on specifying design.
steps If pd is TRUE, the steps argument specifies how many MCMC iterations to perform.
rseed The value to set the mix package’s random number seed to, using the rngseed function of mix. If the user wishes to set the seed using rngseed before calling mixImp, set rseed=NULL.

Details

See the descriptions for marginsType, margins, designType, design and the documentation in ecm.mix for details about how to specify the model.

Imputed datasets can be analysed using withinBetween, scoreBased, or for example the bootImpute package.

Value

A list of imputed datasets, or if M=1, just the imputed data frame.

References

Examples

#simulate a partially observed dataset with a mixture of categorical and continuous variables
set.seed(1234)

n <- 100

#for simplicity we simulate completely independent categorical variables
x1 <- ceiling(3*runif(n))
x2 <- ceiling(2*runif(n))
x3 <- ceiling(2*runif(n))
y <- 1+0.5*(x1==2)+1.5*(x1==3)+x2+x3+rnorm(n)

temp <- data.frame(x1=x1,x2=x2,x3=x3,y=y)

#make some data missing in all variables
for (i in 1:4) {
 temp[(runif(n)<0.25),i] <- NA
}

#impute conditional on MLE, assuming two-way associations in the log-linear model
#and main effects of categorical variables on continuous one (the default)
imps <- mixImp(temp, nCat=3, M=10, pd=FALSE, rseed=4423)

normImp

Multivariate normal model imputation

Description

This function performs multiple imputation under a multivariate normal model as described by Schafer (1997), using his norm package, either with or without posterior draws.

Usage

normImp(obsData, M = 10, pd = FALSE, steps = 100, rseed)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obsData</td>
<td>The data frame to be imputed.</td>
</tr>
<tr>
<td>M</td>
<td>Number of imputations to generate.</td>
</tr>
<tr>
<td>pd</td>
<td>Specify whether to use posterior draws (TRUE) or not (FALSE).</td>
</tr>
<tr>
<td>steps</td>
<td>If pd is TRUE, the steps argument specifies how many MCMC iterations to perform.</td>
</tr>
<tr>
<td>rseed</td>
<td>The value to set the norm package's random number seed to, using the rngseed function of norm. This function must be called at least once before imputing using norm. If the user wishes to set the seed using rngseed before calling normImp, set rseed=NULL.</td>
</tr>
</tbody>
</table>
This function imputes from a multivariate normal model with unstructured covariance matrix, as described by Schafer (1997). With pd=FALSE, all imputed datasets are generated conditional on the MLE of the model parameter, referred to as maximum likelihood multiple imputation by von Hippel (2018).

With pd=TRUE, regular 'proper' multiple imputation is used, where each imputation is drawn from a distinct value of the model parameter. Specifically, for each imputation, a single MCMC chain is run, iterating for steps iterations.

Imputed datasets can be analysed using withinBetween, scoreBased, or for example the bootImpute package.

Value

A list of imputed datasets, or if M=1, just the imputed data frame.

References

Examples

```r
# simulate a partially observed dataset from multivariate normal distribution
set.seed(1234)
n <- 100
temp <- MASS::mvrnorm(n=n,mu=rep(0,4),Sigma=diag(4))

# make some values missing
for (i in 1:4) {
  temp[(runif(n)<0.25),i] <- NA
}

# impute using normImp
imps <- normImp(data.frame(temp), M=10, pd=FALSE, rseed=4423)
```

simulate a partially observed dataset from multivariate normal distribution
set.seed(1234)
n <- 100
temp <- MASS::mvrnorm(n=n,mu=rep(0,4),Sigma=diag(4))

make some values missing
for (i in 1:4) {
 temp[(runif(n)<0.25),i] <- NA
}

impute using normImp
imps <- normImp(data.frame(temp), M=10, pd=FALSE, rseed=4423)

normUniImp

Normal regression imputation of a single variable

Description

Performs multiple imputation of a single continuous variable using a normal linear regression model. The covariates in the imputation model must be fully observed. By default normUniImp imputes every dataset using the maximum likelihood estimates of the imputation model parameters, which here coincides with the OLS estimates, referred to as maximum likelihood multiple imputation by von Hippel (2018). If pd=TRUE is specified, it instead performs posterior draw Bayesian imputation.
Usage

 normUniImp(obsData, impFormula, M = 5, pd = FALSE)

Arguments

 obsData The data frame to be imputed.
 impFormula The linear model formula.
 M Number of imputations to generate.
 pd Specify whether to use posterior draws (TRUE) or not (FALSE).

Details

 Imputed datasets can be analysed using withinBetween, scoreBased, or for example the bootImpute package.

Value

 A list of imputed datasets, or if M=1, just the imputed data frame.

References

Examples

 # simulate a dataset with one partially observed (conditionally) normal variable
 set.seed(1234)
 n <- 100
 x <- rnorm(n)
 y <- x + rnorm(n)
 x[runif(n)<0.25] <- NA
 temp <- data.frame(x=x, y=y)

 # impute using normImp
 imps <- normUniImp(temp, y~x, M=10, pd=FALSE)

scoreBased

Score based variance estimation for multiple imputation

Description

 This function implements the score based variance estimation approach described by von Hippel (2018), which is based on earlier work by Wang and Robins (1998).
Usage
scoreBased(imps, analysisFun, scoreFun, pd = NULL, dfComplete = NULL, ...)

Arguments
imps A list of imputed datasets produced by one of the imputation functions in mlmi or another package.
analysisFun A function to analyse the imputed datasets that when applied to a dataset returns a list containing a vector est.
scoreFun A function whose first argument is a dataset and whose second argument is a vector of parameter values. It should return a matrix of subject level scores evaluated at the parameter value passed to it.
pd If imps was not generated by one of the imputation functions in mlmi, this argument must be specified to indicate whether the imputations were generated using posterior draws (TRUE) or not (FALSE).
dfComplete The complete data degrees of freedom. If analysisFun returns a vector of parameter estimates, dfComplete should be a vector of the same length. If not specified, it is assumed that the complete data degrees of freedom is effectively infinite (1e+05).
... Other parameters that are to be passed through to analysisFun.

Value
A list containing the overall parameter estimates, its corresponding covariance matrix, and degrees of freedom for each parameter.

References

Examples
#simulate a partially observed dataset
set.seed(1234)
n <- 100
x <- rnorm(n)
y <- x+rnorm(n)
y[1:50] <- NA
temp <- data.frame(x,y)
#impute using normUniImp, without posterior draws
imps <- normUniImp(temp, y~x, M=10, pd=FALSE)

#define a function which performs our desired analysis on a dataset, returning #the parameter estimates
withinBetween <- function(inputData) {
 fitmod <- lm(y~x, data=inputData)
 list(est=c(fitmod$coef,sigma(fitmod)^2))
}

#define a function which when passed a dataset and parameter vector, calculates the likelihood score vector
myScore <- function(inputData, parm) {
 beta0 <- parm[1]
 beta1 <- parm[2]
 sigmasq <- parm[3]
 res <- inputData$y - beta0 - beta1*inputData$x
 cbind(res/sigmasq, (res*inputData$x)/sigmasq, res^2/(2*sigmasq^2)-1/(2*sigmasq))
}

#call scoreBased to perform variance estimation
scoreBased(imps, analysisFun=yonx, scoreFun=myScore)

withinBetween

Within between variance estimation

Description

This function implements the within-between variance estimation approach. If the imputations were generated using posterior draws, it implements the approach proposed by Barnard & Rubin (1999). If posterior draws were not used, it implements the WB approach described by von Hippel (2018).

Usage

withinBetween(imps, analysisFun, pd = NULL, dfComplete = NULL, ...)

Arguments

imps A list of imputed datasets produced by one of the imputation functions in mlmi or another package.

analysisFun A function to analyse the imputed datasets that when applied to a dataset returns a list containing a vector est and covariance matrix var.

pd If imps was not generated by one of the imputation functions in mlmi, this argument must be specified to indicate whether the imputations were generated using posterior draws (TRUE) or not (FALSE).

dfComplete The complete data degrees of freedom. If analysisFun returns a vector of parameter estimates, dfComplete should be a vector of the same length. If not specified, it is assumed that the complete data degrees of freedom is effectively infinite (1e+05).

... Other parameters that are to be passed through to analysisFun.
Value

A list containing the overall parameter estimates, its corresponding covariance matrix, and degrees of freedom for each parameter.

References

Examples

#simulate a partially observed dataset
set.seed(1234)
n <- 100
x <- rnorm(n)
y <- x+rnorm(n)
y[1:50] <- NA
temp <- data.frame(x,y)

#impute using normImp
imps <- normImp(temp, M=100, pd=TRUE, rseed=4423)

#define a function which analyses a dataset using our desired analysis model, returning the estimated parameters and their corresponding variance covariance matrix
analysisFun <- function(inputData) {
 mod <- lm(y~x, data=inputData)
 list(est=coef(mod), var=vcov(mod))
}

withinBetween(imps,analysisFun, dfComplete=c(n-2,n-2))
Index

catImp, 2
ecm.cat, 2
ecm.mix, 4
mixImp, 3
normImp, 5
normUniImp, 6
scoreBased, 2, 4, 6, 7, 7
withinBetween, 2, 4, 6, 7, 9