Package ‘mlr’

March 15, 2017

Title Machine Learning in R

Description Interface to a large number of classification and regression
techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and
general, example-specific cost-sensitive learning. Generic resampling,
including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

URL https://github.com/mlr-org/mlr

BugReports https://github.com/mlr-org/mlr/issues

License BSD_2_clause + file LICENSE

Encoding UTF-8

Depends R (>= 3.0.2), ParamHelpers (>= 1.10)

Imports BBmisc (>= 1.11), backports, ggplot2, stats, stringi,
checkmate (>= 1.8.2), data.table, methods, parallelMap (>= 1.3), survival, utils

Suggests ada, adabag, bartMachine, batchtools, brnn, bst, C50, care,
caret (>= 6.0-57), class, clue, cluster, clusterSim (>= 0.44-5), clValid, cmaes, CoxBoost, crs, Cubist, deepnet,
DiceKriging, DiceOptim, DiscrMiner, e1071, earth, elasticnet,
elmNN, emoa, evtree, extraTrees, flare, fields, FNN, fpc, frbs,
FSector, gbm, GenSA, ggvis, glmnet, h2o (>= 3.6.0.8), GPlfit,
Hmisc, ipred, irace (>= 2.0), kernlab, kknn, klaR, knitr,
kohonen, laGP, LiblineaR, lqa, MASS, mboost, mco, mda, mlbench,
mlr, mlrMBO, modeltools, mRMR, met, nodeHarvest (>= 0.7-3),
neuralnet, numDeriv, pamr, party, penalized (>= 0.9-47), pls,
PMCMR (>= 4.1), pROC (>= 1.8), randomForest, randomForestSRC
(>= 2.2.0), ranger (>= 0.6.0), RCurl, Rfast, rFerns, rjson,
rknn, rmarkdown, robustbase, ROCR, rotationForest, rpart, RRF,
rlda, rsm, RSNNS, RWeka, sda, shiny, smoot, sparsediscrim,
sparseLDA, stepPlr, SwarmSVM, svglite, testhat, tgp, TH.data,
xgboost (>= 0.6-2), XML
LazyData yes
ByteCompile yes
Version 2.11
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation yes
Author Bernd Bischl [aut, cre],
 Michel Lang [aut],
 Lars Kotthoff [aut],
 Julia Schiffner [aut],
 Jakob Richter [aut],
 Zachary Jones [aut],
 Giuseppe Casalicchio [aut],
 Mason Gallo [aut],
 Jakob Bossek [ctb],
 Erich Studerus [ctb],
 Leonard Judt [ctb],
 Tobias Kuehn [ctb],
 Pascal Kerschke [ctb],
 Florian Fendt [ctb],
 Philipp Probst [ctb],
 Xudong Sun [ctb],
 Janek Thomas [ctb],
 Bruno Vieira [ctb],
 Laura Beggel [ctb],
 Quay Au [ctb],
 Martin Binder [ctb],
 Florian Pfisterer [ctb],
 Stefan Coors [ctb]
Maintainer Bernd Bischl <bernd_bischl@gmx.net>
Repository CRAN
Date/Publication 2017-03-15 08:49:11

R topics documented:

addRRMeasure .. 7
Aggregation .. 8
aggregations ... 9
agri.task ... 11
analyzeFeatSelResult .. 11
asROCRPrediction ... 12
batchmark ... 12
bc.task .. 13
benchmark ... 14
BenchmarkResult .. 15
R topics documented:

- bh.task
- calculateConfusionMatrix
- calculateROCMeasures
- capLargeValues
- classif.featureless
- configureMlr
- ConfusionMatrix
- convertBMRToRankMatrix
- convertMLBenchObjToTask
- costiris.task
- createDummyFeatures
- crossover
- downsample
- dropFeatures
- estimateRelativeOverfitting
- estimateResidualVariance
- FailureModel
-FeatSelControl
-FeatSelResult
- filterFeatures
- friedmanPostHocTestBMR
- friedmanTestBMR
- generateCalibrationData
- generateCritDifferencesData
- generateFeatureImportanceData
- generateFilterValuesData
- generateFunctionalANOVAData
- generateHyperParsEffectData
- generateLearningCurveData
- generatePartialDependenceData
- generateThreshVsPerfData
- getBMRAggrPerformances
- getBMRFeatSelResults
- getBMRFilteredFeatures
- getBMRLearnerIds
- getBMRLearners
- getBMRLearnerShortNames
- getBMRMMeasureIds
- getBMRMMeasures
- getBMRMModels
- getBMRPredictions
- getBMRTaskDescriptions
- getBMRTaskDescs
- getBMRTaskIds
- getBMRTuneResults
- getCaretParamSet
- getClassWeightParam
R topics documented:

- `getConfMatrix` .. 68
- `getDefaultMeasure` ... 69
- `getFailureModelDump` ... 70
- `getFailureModelMsg` .. 70
- `getFeatSelResult` .. 71
- `getFeatureImportance` .. 71
- `getFilteredFeatures` .. 72
- `getFilterValues` ... 73
- `getHomogeneousEnsembleModels` 74
- `getHyperPars` .. 74
- `getLearnerId` .. 75
- `getLearnerModel` ... 76
- `getLearnerPackages` .. 76
- `getLearnerParamSet` .. 77
- `getLearnerParVals` .. 77
- `getLearnerPredictType` .. 78
- `getLearnerShortName` .. 79
- `getLearnerType` .. 79
- `getMlrOptions` ... 80
- `getMultilabelBinaryPerformances` 80
- `getNestedTuneResultsOptPathDf` 81
- `getNestedTuneResultsX` .. 82
- `getOOBPreds` .. 83
- `getParamSet` .. 83
- `getPredictionDump` ... 84
- `getPredictionProbabilities` 84
- `getPredictionResponse` .. 85
- `getProbabilities` .. 86
- `getRRDump` .. 87
- `getRRPredictionList` ... 87
- `getRRPredictions` ... 88
- `getRRTaskDesc` .. 89
- `getRRTaskDescription` .. 89
- `getStackedBaseLearnerPredictions` 90
- `getTaskClassLevels` .. 90
- `getTaskCosts` ... 91
- `getTaskData` ... 92
- `getTaskDesc` .. 93
- `getTaskDescription` .. 94
- `getTaskFeatureNames` ... 94
- `getTaskFormula` ... 95
- `getTaskId` .. 95
- `getTaskNFeats` .. 96
- `getTaskSize` ... 97
- `getTaskTargetNames` ... 97
- `getTaskTargets` .. 98
- `getTaskType` .. 99
- `getTuneResult` .. 99
R topics documented:

- `hasProperties` ... 100
- `imputations` .. 100
- `impute` ... 102
- `iris.task` ... 104
- `isFailureModel` ... 104
- `joinClassLevels` ... 105
- `learnerArgsToControl` ... 105
- `LearnerProperties` .. 106
- `learners` ... 107
- `listFilterMethods` ... 107
- `listLearnerProperties` ... 108
- `listLearners` ... 108
- `listMeasureProperties` ... 110
- `listMeasures` ... 110
- `listTaskTypes` .. 111
- `lung.task` .. 111
- `makeAggregation` ... 112
- `makeBaggingWrapper` .. 113
- `makeClassifTask` ... 114
- `makeConstantClassWrapper` 116
- `makeCostMeasure` ... 117
- `makeCostSensClassifWrapper` 118
- `makeCostSensRegrWrapper` 119
- `makeCostSensWeightedPairsWrapper` 120
- `makeCustomResampledMeasure` 121
- `makeDownsampleWrapper` 122
- `makeDummyFeaturesWrapper` 123
- `makeFeatSelWrapper` .. 124
- `makeFilter` .. 125
- `makeFilterWrapper` ... 128
- `makeFixedHoldoutInstance` 129
- `makeImputeMethod` ... 130
- `makeImputeWrapper` .. 130
- `makeLearner` .. 132
- `makeLearners` .. 133
- `makeMeasure` .. 134
- `makeModelMultiplexer` .. 136
- `makeModelMultiplexerParamSet` 138
- `makeMulticlassWrapper` ... 139
- `makeMultilabelBinaryRelevanceWrapper` 140
- `makeMultilabelClassifierChainsWrapper` 141
- `makeMultilabelDBRWrapper` 143
- `makeMultilabelNestedStackingWrapper` 144
- `makeMultilabelStackingWrapper` 145
- `makeOverBaggingWrapper` 147
- `makePreprocWrapper` ... 148
- `makePreprocWrapperCaret` 149
- `makeRemoveConstantFeaturesWrapper` 150
R topics documented:

makeResampleDesc .. 151
makeResampleInstance ... 153
makeSMOTETWrapper ... 154
makeStackedLearner .. 155
makeTuneControlCMAES ... 157
makeTuneControlDesign ... 159
makeTuneControlGenSA .. 160
makeTuneControlGrid .. 162
makeTuneControlIrace ... 163
makeTuneControlMBO ... 165
makeTuneControlRandom ... 167
makeTuneWrapper .. 168
makeUndersampleWrapper 170
makeWeightedClassesWrapper 171
makeWrappedModel ... 172
MeasureProperties ... 173
measures .. 174
mergeBenchmarkResults ... 180
mergeSmallFactorLevels ... 181
mlrFamilies ... 182
mtcars.task ... 183
normalizeFeatures ... 184
oversample ... 185
parallelization .. 186
performance ... 186
pid.task .. 188
plotBMRBoxplots ... 188
plotBMRRanksAsBarChart .. 189
plotBMRSummary ... 190
plotCalibration .. 192
plotCritDifferences .. 193
plotFilterValues ... 194
plotFilterValuesGGVIS .. 195
plotHyperParsEffect .. 196
plotLearnerPrediction .. 198
plotLearningCurve ... 200
plotLearningCurveGGVIS .. 201
plotPartialDependence .. 202
plotPartialDependenceGGVIS 203
plotResiduals .. 204
plotROCCurves .. 205
plotThreshVsPerf .. 206
plotThreshVsPerfGGVIS ... 207
plotTuneMultiCritResult .. 208
plotTuneMultiCritResultGGVIS 209
plotViperCharts ... 210
predict.WrappedModel ... 211
predict.Learner .. 212
addRRMeasure

Description

Adds new measures to an existing ResampleResult.
Usage

addRRMeasure(res, measures)

Arguments

res [ResampleResult]
The result of resample run with keep.pred = TRUE.

measures [Measure | list of Measure]
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

Value

ResampleResult.

See Also

Other resample: ResamplePrediction, ResampleResult, getRRPredictionList, getRRPredictions, getRRTaskDescription, getRRTaskDesc, makeResampleDesc, makeResampleInstance, resample

Description

An aggregation method reduces the performance values of the test (and possibly the training sets) to a single value. To see all possible implemented aggregations look at aggregations.

The aggregation can access all relevant information of the result after resampling and combine them into a single value. Though usually something very simple like taking the mean of the test set performances is done.

Object members:

id [character] Name of the aggregation method.

name [character] Long name of the aggregation method.

properties [character] Properties of the aggregation.

fun [function(task, perf.test, perf.train, measure, group, pred)] Aggregation function.

See Also

makeAggregation
Description

- **test.mean**
 Mean of performance values on test sets.

- **test.sd**
 Standard deviation of performance values on test sets.

- **test.median**
 Median of performance values on test sets.

- **test.min**
 Minimum of performance values on test sets.

- **test.max**
 Maximum of performance values on test sets.

- **test.sum**
 Sum of performance values on test sets.

- **train.mean**
 Mean of performance values on training sets.

- **train.sd**
 Standard deviation of performance values on training sets.

- **train.median**
 Median of performance values on training sets.

- **train.min**
 Minimum of performance values on training sets.

- **train.max**
 Maximum of performance values on training sets.

- **train.sum**
 Sum of performance values on training sets.

- **b632**
 Aggregation for B632 bootstrap.

- **b632plus**
 Aggregation for B632+ bootstrap.

- **testgroup.mean**
 Performance values on test sets are grouped according to resampling method. The mean for every group is calculated, then the mean of those means. Mainly used for repeated CV.

- **test.join**
 Performance measure on joined test sets. This is especially useful for small sample sizes where unbalanced group sizes have a significant impact on the aggregation, especially for cross-validation. test.join might make sense now. For the repeated CV, the performance is calculated on each repetition and then aggregated with the arithmetic mean.
aggregations

Usage

test.mean
test.sd
test.median
test.min
test.max
test.sum
test.range
test.rmse
train.mean
train.sd
train.median
train.min
train.max
train.sum
train.range
train.rmse
b632
b632plus
testgroup.mean
test.join

Format

None

See Also

Aggregation
agri.task

Description

Contains the task (agri.task).

References

See [agriculture](#).

analyzeFeatSelResult
Show and visualize the steps of feature selection.

Description

This function prints the steps `selectFeatures` took to find its optimal set of features and the reason why it stopped. It can also print information about all calculations done in each intermediate step. Currently only implemented for sequential feature selection.

Usage

```r
analyzeFeatSelResult(res, reduce = TRUE)
```

Arguments

- `res`
 The result of `selectFeatures`.

- `reduce`
 `[logical(1)]`
 Per iteration: Print only the selected feature (or all features that were evaluated)? Default is `TRUE`.

Value

`invisible(NULL)`.

See Also

Other featsel: `FeatSelControl`, `getFeatSelResult`, `makeFeatSelWrapper`, `selectFeatures`
asROCRPrediction
Converts predictions to a format package ROCR can handle.

Description
Converts predictions to a format package ROCR can handle.

Usage
asROCRPrediction(pred)

Arguments
pred
[Prediction]
Prediction object.

See Also
Other roc: calculateROCMeasures, plotViperCharts
Other predict: getPredictionProbabilities, getPredictionResponse, plotViperCharts, predict.WrappedModel, setPredictThreshold, setPredictType

batchmark
Run machine learning benchmarks as distributed experiments.

Description
This function is a very parallel version of benchmark using batchtools. Experiments are created in the provided registry for each combination of learners, tasks and resamplings. The experiments are then stored in a registry and the runs can be started via submitJobs. A job is one train/test split of the outer resampling. In case of nested resampling (e.g. with makeTuneWrapper), each job is a full run of inner resampling, which can be parallelized in a second step with ParallelMap.
For details on the usage and support backends have a look at the batchtools tutorial page: https://github.com/mlg/batchtools.

The general workflow with batchmark looks like this:

1. Create an ExperimentRegistry using makeExperimentRegistry.
2. Call batchmark(...) which defines jobs for all learners and tasks in an expand.grid fashion.
4. Babysit the computation, wait for all jobs to finish using waitForJobs.
5. Call reduceBatchmarkResult() to reduce results into a BenchmarkResult.

If you want to use this with OpenML datasets you can generate tasks from a vector of dataset IDs easily with tasks = lapply(data.ids, function(x) convertOMLDataSetToMlr(getOMLDataSet(x))).
Usage

batchmark(learners, tasks, resamplings, measures, models = TRUE,
reg = batchtools::getDefaultRegistry())

Arguments

learners [(list of) Learner | character]
Learning algorithms which should be compared, can also be a single learner. If
you pass strings the learners will be created via makeLearner.

tasks [(list of) Task]
Tasks that learners should be run on.

resamplings [(list of) ResampleDesc]
Resampling strategy for each tasks. If only one is provided, it will be replicated
to match the number of tasks. If missing, a 10-fold cross validation is used.

measures [(list of) Measure]
Performance measures for all tasks. If missing, the default measure of the first
task is used.

models [logical(1)]
Should all fitted models be stored in the ResampleResult? Default is TRUE.

reg [Registry]
Registry, created by makeExperimentRegistry. If not explicitly passed, uses
the last created registry.

Value
data.table. Generated job ids are stored in the column “job.id”.

See Also

Other benchmark: BenchmarkResult, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR,
friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults,
getBMRFilteredFeatures, getBMR LearnerIds, getBMR LearnerShortNames, getBMR Learners,
getBMRMeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions,
getBMR TaskDescs, getBMR TaskIds, getBMR Tune Results, plotBMR Boxplots, plotBMR Ranks As Bar Chart,
plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

bc.task

Wisconsin Breast Cancer classification task.

Description

Contains the task (bc.task).

References

See BreastCancer. The column "Id" and all incomplete cases have been removed from the task.
benchmark
Benchmark experiment for multiple learners and tasks.

Description

Complete benchmark experiment to compare different learning algorithms across one or more tasks w.r.t. a given resampling strategy. Experiments are paired, meaning always the same training / test sets are used for the different learners. Furthermore, you can of course pass “enhanced” learners via wrappers, e.g., a learner can be automatically tuned using `makeTuneWrapper`.

Usage

```r
benchmark(learners, tasks, resamplings, measures, keep.pred = TRUE, models = TRUE, show.info = getMlrOption("show.info"))
```

Arguments

- **learners**
 [(list of) Learner | character]
 Learning algorithms which should be compared, can also be a single learner. If you pass strings the learners will be created via `makeLearner`.

- **tasks**
 [(list of) Task]
 Tasks that learners should be run on.

- **resamplings**
 [(list of) ResampleDesc | ResampleInstance]
 Resampling strategy for each tasks. If only one is provided, it will be replicated to match the number of tasks. If missing, a 10-fold cross validation is used.

- **measures**
 [(list of) Measure]
 Performance measures for all tasks. If missing, the default measure of the first task is used.

- **keep.pred**
 [logical(1)]
 Keep the prediction data in the pred slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. In this case you can set this argument to FALSE. Default is TRUE.

- **models**
 [logical(1)]
 Should all fitted models be stored in the ResampleResult? Default is TRUE.

- **show.info**
 [logical(1)]
 Print verbose output on console? Default is set via `configureMlr`.

Value

BenchmarkResult.
BenchmarkResult

See Also

Other benchmark: BenchmarkResult, batchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

Examples

```r
lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))
tasks = list(iris.task, sonar.task)
rdesc = makeResampleDesc("CV", iters = 2L)
meas = list(acc, ber)
bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rmat = convertBMRToRankMatrix(bmr)
print(rmat)
plotBMRSummary(bmr)
plotBMRRBoxplots(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")
friedmanTestBMR(bmr)
friedmanPostHocTestBMR(bmr, p.value = 0.05)
```

BenchmarkResult

BenchmarkResult object.

Description

Result of a benchmark experiment conducted by benchmark with the following members:

- **results** [list of ResampleResult] : A nested list of resample results, first ordered by task id, then by learner id.

- **measures** [list of Measure] : The performance measures used in the benchmark experiment.

- **learners** [list of Learner] : The learning algorithms compared in the benchmark experiment.

The print method of this object shows aggregated performance values for all tasks and learners. It is recommended to retrieve required information via the getBMR* getter functions. You can also convert the object using as.data.frame.

See Also

Other benchmark: batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults
bh.task

Boston Housing regression task.

Description

Contains the task (bh.task).

References

See BostonHousing.

calculateConfusionMatrix

Confusion matrix.

Description

Calculates the confusion matrix for a (possibly resampled) prediction. Rows indicate true classes, columns predicted classes. The marginal elements count the number of classification errors for the respective row or column, i.e., the number of errors when you condition on the corresponding true (rows) or predicted (columns) class. The last bottom right element displays the total amount of errors.

A list is returned that contains multiple matrices. If `relative = TRUE` we compute three matrices, one with absolute values and two with relative. The relative confusion matrices are normalized based on rows and columns respectively, if `FALSE` we only compute the absolute value matrix.

The print function returns the relative matrices in a compact way so that both row and column marginals can be seen in one matrix. For details see ConfusionMatrix.

Note that for resampling no further aggregation is currently performed. All predictions on all test sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated vs. y, as if both were computed on a single test set. This probably mainly makes sense when cross-validation is used for resampling.

Usage

```r
calculateConfusionMatrix(pred, relative = FALSE, sums = FALSE)
```

```r
## S3 method for class 'ConfusionMatrix'
print(x, both = TRUE, digits = 2, ...)```
Arguments

pred [Prediction]
Prediction object.

relative [logical(1)]
If TRUE two additional matrices are calculated. One is normalized by rows and one by columns.

sums logical(1)
If TRUE add absolute number of observations in each group.

x [ConfusionMatrix]
Object to print.

both [logical(1)]
If TRUE both the absolute and relative confusion matrices are printed.

digits [integer(1)]
How many numbers after the decimal point should be printed, only relevant for relative confusion matrices.

Value
ConfusionMatrix.

Methods (by generic)

• print:

See Also
Other performance: ConfusionMatrix, calculateROCMeasures, estimateRelativeOverfitting, makeCostMeasure, makeCustomResampledMeasure, makeMeasure, measures, performance

Examples

# get confusion matrix after simple manual prediction
allinds = 1:150
train = sample(allinds, 75)
test = setdiff(allinds, train)
mod = train("classif.lda", iris.task, subset = train)
pred = predict(mod, iris.task, subset = test)
print(calculateConfusionMatrix(pred))
print(calculateConfusionMatrix(pred, sums = TRUE))
print(calculateConfusionMatrix(pred, relative = TRUE))

# now after cross-validation
r = crossval("classif.lda", iris.task, iters = 2L)
print(calculateConfusionMatrix(r$pred))
**Description**

Calculate the relative number of correct/incorrect classifications and the following evaluation measures:

- tpr True positive rate (Sensitivity, Recall)
- fpr False positive rate (Fall-out)
- fnr False negative rate (Miss rate)
- tnr True negative rate (Specificity)
- ppv Positive predictive value (Precision)
- for False omission rate
- lrp Positive likelihood ratio (LR+)
- fdr False discovery rate
- npv Negative predictive value
- acc Accuracy
- lrm Negative likelihood ratio (LR-)
- dor Diagnostic odds ratio

For details on the used measures see [measures](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and also [https://en.wikipedia.org/wiki/Receiver_operating_characteristic](https://en.wikipedia.org/wiki/Receiver_operating_characteristic).

The element for the false omission rate in the resulting object is not called `for` but `fomr` since `for` should never be used as a variable name in an object.

**Usage**

```r
calculateROCMeasures(pred)
```

```r
S3 method for class 'ROCMeasures'
print(x, abbreviations = TRUE, digits = 2, ...)
```

**Arguments**

- **pred** ([Prediction](https://example.com/prediction))
 Prediction object.

- **x** ([ROCMeasures](https://example.com/rocm))
  Created by `calculateROCMeasures`.

- **abbreviations** ([logical(1)])
  If TRUE a short paragraph with explanations of the used measures is printed additionally.
capLargeValues

digits [integer(1)]
Number of digits the measures are rounded to.
...
[any]
Currently not used.

Value

ROCMeasures : A list containing two elements confusion.matrix which is the 2 times 2 confusion
matrix of relative frequencies and measures, a list of the above mentioned measures.

Methods (by generic)

• print:

See Also

Other roc: asROCRPrediction, plotViperCharts

Other performance: ConfusionMatrix, calculateConfusionMatrix, estimateRelativeOverfitting,
makeCostMeasure, makeCustomResampledMeasure, makeMeasure, measures, performance

Examples

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)

capLargeValues

Convert large/infinite numeric values in a data.frame or task.

Description

Convert numeric entries which large/infinite (absolute) values in a data.frame or task. Only nu-
meric/integer columns are affected.

Usage

capLargeValues(obj, target = character(0L), cols = NULL, threshold = Inf,
impute = threshold, what = "abs")
**Arguments**

- **obj** [data.frame | Task]
  Input data.

- **target** [character]
  Name of the column(s) specifying the response. Target columns will not be capped. Default is character(0).

- **cols** [character]
  Which columns to convert. Default is all numeric columns.

- **threshold** [numeric(1)]
  Threshold for capping. Every entry whose absolute value is equal or larger is converted. Default is Inf.

- **impute** [numeric(1)]
  Replacement value for large entries. Large negative entries are converted to ~impute. Default is threshold.

- **what** [character(1)]
  What kind of entries are affected? “abs” means \( \text{abs}(x) > \text{threshold} \), “pos” means \( \text{abs}(x) > \text{threshold} \land x > 0 \), “neg” means \( \text{abs}(x) > \text{threshold} \land x < 0 \). Default is “abs”.

**Value**

data.frame

**See Also**

Other eda_and_preprocess: `createDummyFeatures`, `dropFeatures`, `mergeSmallFactorLevels`, `normalizeFeatures`, `removeConstantFeatures`, `summarizeColumns`

**Examples**

capLargeValues(iris, threshold = 5, impute = 5)

---

**classif.featureless Featureless classification learner.**

**Description**

A very basic baseline method which is useful for model comparisons (if you don’t beat this, you very likely have a problem). Does not consider any features of the task and only uses the target feature of the training data to make predictions. Using observation weights is currently not supported.

Method “majority” predicts always the majority class for each new observation. In the case of ties, one randomly sampled, constant class is predicted for all observations in the test set. This method is used as the default. It is very similar to the ZeroR classifier from WEKA (see [https://weka.wikispaces.com/ZeroR](https://weka.wikispaces.com/ZeroR)). The only difference is that ZeroR always predicts the first class of the tied class values instead of sampling them randomly.
Method “sample-prior” always samples a random class for each individual test observation according to the prior probabilities observed in the training data.

If you opt to predict probabilities, the class probabilities always correspond to the prior probabilities observed in the training data.

configureMlr

Configures the behavior of the package.

Description

Configuration is done by setting custom options.

If you do not set an option here, its current value will be kept.

If you call this function with an empty argument list, everything is set to its defaults.

Usage

configureMlr(show.info, on.learner.error, on.learner.warning,
on.par.without.desc, on.par.out.of.bounds, on.measure.not.applicable,
show.learner.output, on.error.dump)

Arguments

show.info [logical(1)]

Some methods of mlr support a show.info argument to enable verbose output on the console. This option sets the default value for these arguments. Setting the argument manually in one of these functions will overwrite the default value for that specific function call. Default is TRUE.

on.learner.error [character(1)]

What should happen if an error in an underlying learning algorithm is caught:
“stop”: R exception is generated.
“warn”: A FailureModel will be created, which predicts only NAs and a warning will be generated.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

on.learner.warning [character(1)]

What should happen if a warning in an underlying learning algorithm is generated:
“warn”: The warning is generated as usual.
“quiet”: The warning is suppressed.
Default is “warn”.

on.par.without.desc [character(1)]

What should happen if a parameter of a learner is set to a value, but no parameter description object exists, indicating a possibly wrong name:
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

\textbf{on.par.out.of.bounds}

(character(1))
What should happen if a parameter of a learner is set to an out of bounds value.
“stop”: R exception is generated.
“warn”: Warning, but parameter is still passed along to learner.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

\textbf{on.measure.not.applicable}

(logical(1))
What should happen if a measure is not applicable to a learner.
“stop”: R exception is generated.
“warn”: Warning, but value of the measure will be NA.
“quiet”: Same as “warn” but without the warning.
Default is “stop”.

\textbf{show.learner.output}

(logical(1))
Should the output of the learning algorithm during training and prediction be shown or captured and suppressed? Default is TRUE.

\textbf{on.error.dump}

(logical(1))
Specify whether FailureModel models and failed predictions should contain an error dump that can be used with debugger to inspect an error. This option is only effective if on.learner.error is “warn” or “quiet”. If it is TRUE, the dump can be accessed using getFailureModelDump on the FailureModel, getPredictionDump on the failed prediction, and getRRDump on resample predictions. Default is FALSE.

\textbf{Value}

invisible(NULL).

\textbf{See Also}

Other configure: getMlrOptions

---

**ConfusionMatrix**

**Confusion matrix**

**Description**

The result of calculateConfusionMatrix.

Object members:
convertBMRToRankMatrix

result [matrix ] Confusion matrix of absolute values and marginals. Can also contain row and column sums of observations.
task.desc [TaskDesc ] Additional information about the task.
sums [logical(1) ] Flag if marginal sums of observations are calculated.
relative [logical(1) ] Flag if the relative confusion matrices are calculated.
relative.row [matrix ] Confusion matrix of relative values and marginals normalized by row.
relative.col [matrix ] Confusion matrix of relative values and marginals normalized by column.
relative.error [numeric(1) ] Relative error overall.

See Also

Other performance: calculateConfusionMatrix, calculateROCMeasures, estimateRelativeOverfitting, makeCostMeasure, makeCustomResampledMeasure, makeMeasure, measures, performance

convertBMRToRankMatrix

Convert BenchmarkResult to a rank-matrix.

Description

Computes a matrix of all the ranks of different algorithms over different datasets (tasks). Ranks are computed from aggregated measures. Smaller ranks imply better methods, so for measures that are minimized, small ranks imply small scores. for measures that are maximized, small ranks imply large scores.

Usage

convertBMRToRankMatrix(bmr, measure = NULL, ties.method = "average", aggregation = "default")

Arguments

bmr [BenchmarkResult] Benchmark result.
measure [Measure] Performance measure. Default is the first measure used in the benchmark experiment.
ties.method [character(1)] See rank for details.
aggregation [character(1)] “mean” or “default”. See getBMRAggrPerformances for details on “default”.

Value

matrix with measure ranks as entries. The matrix has one row for each learner, and one column for each task.
convertMLBenchObjToTask

See Also

Other benchmarks: BenchmarkResult, batchmark, benchmark, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner Short Names, getBMR Learners, getBMR MeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getBMR TaskIds, getBMR Tune Results, plotBMR Boxplots, plotBMR Ranks As Bar Chart, plotBMR Summary, plotCrit Differences, reduceBatchmarkResults

Examples

# see benchmark

convertMLBenchObjToTask

Convert a machine learning benchmark / demo object from package mlbench to a task.

Description

We auto-set the target column, drop any column which is called “Id” and convert logicals to factors.

Usage

cancelMLBenchObjToTask(x, n = 100L, ...)

Arguments

x [character(1)]
Name of an mlbench function or dataset.

n [integer(1)]
Number of observations for data simul functions. Note that for a few mlbench function this setting is not exactly respected by mlbench. Default is 100.

... [any]
Passed on to data simul functions.

Examples

print(convertMLBenchObjToTask("Ionosphere"))
print(convertMLBenchObjToTask("mlbench.spirals", n = 100, sd = 0.1))
costiris.task

Iris cost-sensitive classification task.

Description

Contains the task (costiris.task).

References

See iris. The cost matrix was generated artificially following

createdummyfeatures

Generate dummy variables for factor features.

Description

Replace all factor features with their dummy variables. Internally model.matrix is used. Non
factor features will be left untouched and passed to the result.

Usage

createdummyfeatures(obj, target = character(0L), method = "1-of-n",
cols = NULL)

Arguments

obj [data.frame | Task]
Input data.

target [character(1) | character(2) | character(n.classes)]
Name(s) of the target variable(s). Only used when obj is a data.frame, otherwise ignored. If survival analysis is applicable, these are the names of the survival
time and event columns, so it has length 2. For multilabel classification these
are the names of logical columns that indicate whether a class label is present
and the number of target variables corresponds to the number of classes.

method [character(1)]
Available are:
"1-of-n": For n factor levels there will be n dummy variables.
"reference": There will be n-1 dummy variables leaving out the first factor
level of each variable.
Default is “1-of-n”.

cols [character]
Columns to create dummy features for. Default is to use all columns.
**Value**

data.frame | Task. Same type as obj.

**See Also**

Other eda_and_preprocess: capLargeValues, dropFeatures, mergeSmallFactorLevels, normalizeFeatures, removeConstantFeatures, summarizeColumns

---

| crossover | Crossover |

**Description**

Takes two bit strings and creates a new one of the same size by selecting the items from the first string or the second, based on a given rate (the probability of choosing an element from the first string).

**Arguments**

- **x** [logical]
  
  First parent string.

- **y** [logical]

  Second parent string.

- **rate** [numeric(1)]

  A number representing the probability of selecting an element of the first string. Default is 0.5.

**Value**

crossover.

---

| downsample | Downsample (subsample) a task or a data.frame |

**Description**

Decrease the observations in a task or a ResampleInstance to a given percentage of observations.

**Usage**

downsample(obj, perc = 1, stratify = FALSE)
**dropFeatures**

**Arguments**

- **obj** [Task|ResampleInstance]
  Input data or a ResampleInstance.
- **perc** [numeric(1)]
  Percentage from [0, 1]. Default is 1.
- **stratify** [logical(1)]
  Only for classification: Should the downsampled data be stratified according to the target classes? Default is FALSE.

**Value**

data.frame | Task | ResampleInstance . Same type as obj.

**See Also**

- makeResampleInstance
  Other downsample: makeDownsampleWrapper

---

**dropFeatures**

*Drop some features of task.*

**Description**

Drop some features of task.

**Usage**

dropFeatures(task, features)

**Arguments**

- **task** [Task]
  The task.
- **features** [character]
  Features to drop.

**Value**

Task

**See Also**

Other eda_and_preprocess: capLargeValues, createDummyFeatures, mergeSmallFactorLevels, normalizeFeatures, removeConstantFeatures, summarizeColumns
estimateRelativeOverfitting

Estimate relative overfitting.

Description

Estimates the relative overfitting of a model as the ratio of the difference in test and train performance to the difference of test performance in the no-information case and train performance. In the no-information case the features carry no information with respect to the prediction. This is simulated by permuting features and predictions.

Usage

estimateRelativeOverfitting(rdesc, measures, task, learner)

## S3 method for class 'ResampleDesc'
estimateRelativeOverfitting(rdesc, measures, task, learner)

Arguments

- **rdesc**: [ResampleDesc] Resampling strategy.
- **measures**: [Measure | list of Measure] Performance measure(s) to evaluate. Default is the default measure for the task, see here `getDefaultMeasure`.
- **task**: [Task] The task.
- **learner**: [Learner | character(1)] The learner. If you pass a string the learner will be created via `makeLearner`.

Details

Currently only support for classification and regression tasks is implemented.

Value

data.frame. Relative overfitting estimate(s), named by measure(s), for each resampling iteration.

References

estimateResidualVariance

Estimate the residual variance.

Description

Estimate the residual variance of a regression model on a given task. If a regression learner is provided instead of a model, the model is trained (see train) first.

Usage

estimateResidualVariance(x, task, data, target)

Arguments

x           [Learner or WrappedModel]
            Learner or wrapped model.

task       [RegrTask]
            Regression task. If missing, data and target must be supplied.

data       [data.frame]
            A data frame containing the features and target variable. If missing, task must be supplied.

target     [character(1)]
            Name of the target variable. If missing, task must be supplied.

Examples

task = makeClassifTask(data = iris, target = "Species")
rdesc = makeResampleDesc("CV", iters = 2)
estimateRelativeOverfitting(rdesc, acc, task, makeLearner("classif.knn"))
estimateRelativeOverfitting(rdesc, acc, task, makeLearner("classif.lda"))
Description

A subclass of \texttt{WrappedModel}. It is created - if you set the respective option in \texttt{configureMLR} - when a model internally crashed during training. The model always predicts NAs.

The if mlr option \texttt{on.error.dump} is \texttt{TRUE}, the \texttt{FailureModel} contains the debug trace of the error. It can be accessed with \texttt{getFailureModelDump} and inspected with \texttt{debugger}.

Its encapsulated \texttt{learner.model} is simply a string: The error message that was generated when the model crashed. The following code shows how to access the message.

See Also

Other debug: \texttt{ResampleResult, getPredictionDump, getRRDump}

Examples

```
configureMLR(on.learner.error = "warn")
data = iris
data$newfeat = 1 # will make LDA crash
task = makeClassifTask(data = data, target = "Species")
m = train("classif.lda", task) # LDA crashed, but mlr catches this
print(m)
print(m$learner.model) # the error message
p = predict(m, task) # this will predict NAs
print(p)
print(performance(p))
configureMLR(on.learner.error = "stop")
```

Description

Feature selection method used by \texttt{selectFeatures}.

The methods used here follow a wrapper approach, described in Kohavi and John (1997) (see references).

The following optimization algorithms are available:

\textbf{FeatSelControlExhaustive} Exhaustive search. All feature sets (up to a certain number of features \texttt{max.features}) are searched.

\textbf{FeatSelControlRandom} Random search. Features vectors are randomly drawn, up to a certain number of features \texttt{max.features}. A feature is included in the current set with probability \texttt{prob}. So we are basically drawing (0,1)-membership-vectors, where each element is \texttt{Bernoulli(prob)} distributed.
**FeatSelControlSequential**  Deterministic forward or backward search. That means extending (forward) or shrinking (backward) a feature set. Depending on the given method different approaches are taken.

- **sfs** Sequential Forward Search: Starting from an empty model, in each step the feature increasing the performance measure the most is added to the model.
- **sbs** Sequential Backward Search: Starting from a model with all features, in each step the feature decreasing the performance measure the least is removed from the model.
- **sffs** Sequential Floating Forward Search: Starting from an empty model, in each step the algorithm chooses the best model from all models with one additional feature and from all models with one feature less.
- **sfbs** Sequential Floating Backward Search: Similar to sffs but starting with a full model.

**FeatSelControlGA**  Search via genetic algorithm. The GA is a simple \((\mu, \lambda)\) or \((\mu + \lambda)\) algorithm, depending on the comma setting. A comma strategy selects a new population of size \(\mu\) out of the \(\lambda > \mu\) offspring. A plus strategy uses the joint pool of \(\mu\) parents and \(\lambda\) offspring for selecting \(\mu\) new candidates. Out of those \(\mu\) features, the new \(\lambda\) features are generated by randomly choosing pairs of parents. These are crossed over and crossover rate represents the probability of choosing a feature from the first parent instead of the second parent. The resulting offspring is mutated, i.e., its bits are flipped with probability mutation rate. If max features is set, offspring are repeatedly generated until the setting is satisfied.

**Usage**

```r
makeFeatSelControlExhaustive(same.resampling.instance = TRUE,
 maxit = NA_integer_, max.features = NA_integer_, tune.threshold = FALSE,
 tune.threshold.args = list(), log.fun = "default")
makeFeatSelControlGA(same.resampling.instance = TRUE, impute.val = NULL,
 maxit = NA_integer_, max.features = NA_integer_, comma = FALSE,
 mu = 10L, lambda, crossover.rate = 0.5, mutation.rate = 0.05,
 tune.threshold = FALSE, tune.threshold.args = list(),
 log.fun = "default")
makeFeatSelControlRandom(same.resampling.instance = TRUE, maxit = 100L,
 max.features = NA_integer_, prob = 0.5, tune.threshold = FALSE,
 tune.threshold.args = list(), log.fun = "default")
makeFeatSelControlSequential(same.resampling.instance = TRUE,
 impute.val = NULL, method, alpha = 0.01, beta = -0.001,
 maxit = NA_integer_, max.features = NA_integer_, tune.threshold = FALSE,
 tune.threshold.args = list(), log.fun = "default")
```

**Arguments**

- `same.resampling.instance`  
  
  [logical(1)]
  
  Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.
maxit [integer(1)]
Maximal number of iterations. Note, that this is usually not equal to the number of function evaluations.

max.features [integer(1)]
Maximal number of features.

tune.threshold [logical(1)]
Should the threshold be tuned for the measure at hand, after each feature set evaluation, via tuneThreshold? Only works for classification if the predict type is "prob". Default is FALSE.

tune.threshold.args [list]
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun [function | character(1)]
Function used for logging. If set to "default" (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to "memory", the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

impute.val [numeric]
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

comma [logical(1)]
Parameter of the GA feature selection, indicating whether to use a (mu, lambda) or (mu + lambda) GA. The default is FALSE.

mu [integer(1)]
Parameter of the GA feature selection. Size of the parent population.

lambda [integer(1)]
Parameter of the GA feature selection. Size of the children population (should be smaller or equal to mu).

crossover.rate [numeric(1)]
Parameter of the GA feature selection. Probability of choosing a bit from the first parent within the crossover mutation.

mutation.rate [numeric(1)]
Parameter of the GA feature selection. Probability of flipping a feature bit, i.e. switch between selecting / deselecting a feature.
FeatSelResult

**prob**
[numERIC(1)]

**method**
[character(1)]
Parameter of the sequential feature selection. A character representing the method. Possible values are sfs (forward search), sbs (backward search), sffs (floating forward search) and sfbs (floating backward search).

**alpha**
[numERIC(1)]
Parameter of the sequential feature selection. Minimal required value of improvement difference for a forward / adding step. Default is 0.01.

**beta**
[numERIC(1)]
Parameter of the sequential feature selection. Minimal required value of improvement difference for a backward / removing step. Negative values imply that you allow a slight decrease for the removal of a feature. Default is -0.001.

**Value**

FeatSelControl . The specific subclass is one of FeatSelControlExhaustive, FeatSelControlRandom, FeatSelControlSequential, FeatSelControlGA.

**References**


**See Also**

Other featsel: analyzeFeatSelResult, getFeatSelResult, makeFeatSelWrapper, selectFeatures

---

**FeatSelResult**

*Result of feature selection.*

**Description**

Container for results of feature selection. Contains the obtained features, their performance values and the optimization path which lead there.

You can visualize it using analyzeFeatSelResult.

**Details**

Object members:

- **learner** [Learner ] Learner that was optimized.
- **control** [FeatSelControl ] Control object from feature selection.
- **x** [character ] Vector of feature names identified as optimal.
- **y** [numeric ] Performance values for optimal x.
**filterFeatures**

Filter features by thresholding filter values.

**Description**

First, calls `generateFilterValuesData`. Features are then selected via select and val.

**Usage**

```r
filterFeatures(task, method = "randomForestSRC.rfsrc", fval = NULL, perc = NULL, abs = NULL, threshold = NULL, mandatory.feat = NULL, ...)
```

**Arguments**

- **task** [Task]
  
  The task.

- **method** [character(1)]
  
  See `listFilterMethods`. Default is “randomForestSRC.rfsrc”.

- **fval** [FilterValues]
  
  Result of `generateFilterValuesData`. If you pass this, the filter values in the object are used for feature filtering. method and ... are ignored then. Default is NULL and not used.

- **perc** [numeric(1)]
  
  If set, select perc*100 top scoring features. Mutually exclusive with arguments abs and threshold.

- **abs** [numeric(1)]
  
  If set, select abs top scoring features. Mutually exclusive with arguments perc and threshold.

- **threshold** [numeric(1)]
  
  If set, select features whose score exceeds threshold. Mutually exclusive with arguments perc and abs.

- **mandatory.feat** [character]
  
  Mandatory features which are always included regardless of their scores

- **...** [any]
  
  Passed down to selected filter method.

**Value**

- **Task**
See Also

Other filter: generateFilterValuesData, getFilterValues, getFilteredFeatures, makeFilterWrapper, plotFilterValuesGgVIS, plotFilterValues

friedmanPostHocTestBMR

Perform a posthoc Friedman-Nemenyi test.

Description

Performs a posthoc.friedman.nemenyi.test for a BenchmarkResult and a selected measure. This means all pairwise comparisons of learners are performed. The null hypothesis of the post hoc test is that each pair of learners is equal. If the null hypothesis of the included ad hoc friedman.test can be rejected an object of class pairwise.htest is returned. If not, the function returns the corresponding friedman.test. Note that benchmark results for at least two learners on at least two tasks are required.

Usage

friedmanPostHocTestBMR(bmr, measure = NULL, p.value = 0.05, aggregation = "default")

Arguments

bmr [BenchmarkResult]
Benchmark result.

measure [Measure]
Performance measure. Default is the first measure used in the benchmark experiment.

p.value [numeric(1)]
p-value for the tests. Default: 0.05

aggregation [character(1)]
"mean" or "default". See getBMRAggrPerformances for details on "default".

Value

pairwise.htest: See posthoc.friedman.nemenyi.test for details. Additionally two components are added to the list:

f.rejnull [logical(1) ] Whether the according friedman.test rejects the Null hypothesis at the selected p.value

crit.difference [list(2) ] Minimal difference the mean ranks of two learners need to have in order to be significantly different
friedmanTestBMR

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Learners, getBMR MeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getBMR TaskIds, getBMR Tune Results, plotBMR Boxplots, plotBMR Ranks As Bar Chart, plotBMR Summary, plot Crit Differences, reduceBatchmarkResults

Examples

# see benchmark

friedmanTestBMR Perform overall Friedman test for a BenchmarkResult.

Description

Performs a friedman.test for a selected measure. The null hypothesis is that apart from an effect of the different [Task], the location parameter (aggregated performance measure) is the same for each Learner. Note that benchmark results for at least two learners on at least two tasks are required.

Usage

friedmanTestBMR(bmr, measure = NULL, aggregation = "default")

Arguments

bmr [BenchmarkResult] Benchmark result.
measure [Measure] Performance measure. Default is the first measure used in the benchmark experiment.
aggregation [character(1)] "mean" or "default". See getBMRAggrPerformances for details on "default".

Value

htest: See friedman.test for details.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Learners, getBMR MeasureIds, getBMR Measures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMR Tune Results, plotBMR Boxplots, plotBMR Ranks As Bar Chart, plotBMR Summary, plot Crit Differences, reduceBatchmarkResults
**generateCalibrationData**

*Generate classifier calibration data.*

**Description**

A calibrated classifier is one where the predicted probability of a class closely matches the rate at which that class occurs, e.g. for data points which are assigned a predicted probability of class A of .8, approximately 80 percent of such points should belong to class A if the classifier is well calibrated. This is estimated empirically by grouping data points with similar predicted probabilities for each class, and plotting the rate of each class within each bin against the predicted probability bins.

**Usage**

```r
generateCalibrationData(obj, breaks = "Sturges", groups = NULL, task.id = NULL)
```

**Arguments**

- `obj`:
  - `[list of] Prediction | [list of] ResampleResult | BenchmarkResult`
  - Single prediction object, list of them, single resample result, list of them, or a benchmark result. In case of a list probably produced by different learners you want to compare, then name the list with the names you want to see in the plots, probably learner shortnames or ids.

- `breaks`:
  - `[character(1) | numeric]`
  - If character(1), the algorithm to use in generating probability bins. See `hist` for details. If numeric, the cut points for the bins. Default is “Sturges”.

- `groups`:
  - `[integer(1)]`
  - The number of bins to construct. If specified, `breaks` is ignored. Default is NULL.

- `task.id`:
  - `[character(1)]`
  - Selected task in `BenchmarkResult` to do plots for, ignored otherwise. Default is first task.

**Value**

`CalibrationData`. A list containing:

- `proportion`:
  - `[data.frame]` with columns:
    - Learner Name of learner.
    - `bin` Bins calculated according to the `breaks` or `groups` argument.
    - `Class` Class labels (for binary classification only the positive class).
**generateCritDifferencesData**

- Proportion Proportion of observations from class Class among all observations with posterior probabilities of class Class within the interval given in bin.

**data** [data.frame] with columns:
- Learner Name of learner.
- truth True class label.
- Class Class labels (for binary classification only the positive class).
- Probability Predicted posterior probability of Class.
- bin Bin corresponding to Probability.

**task** [TaskDesc]
Task description.

**References**


**See Also**

Other generate_plot_data: generateCritDifferencesData, generateFeatureImportanceData, generateFilterValuesData, generateFunctionalANOVAData, generateLearningCurveData, generatePartialDependenceData, generateThreshVsPerfData, getFilterValues, plotFilterValues

Other calibration: plotCalibration

---

**generateCritDifferencesData**

*Generate data for critical-differences plot.*

**Description**

Generates data that can be used to plot a critical differences plot. Computes the critical differences according to either the "Bonferroni-Dunn" test or the "Nemenyi" test. "Bonferroni-Dunn" usually yields higher power as it does not compare all algorithms to each other, but all algorithms to a baseline instead.

Learners are drawn on the y-axis according to their average rank. For test = "nemenyi" a bar is drawn, connecting all groups of not significantly different learners. For test = "bd" an interval is drawn around the algorithm selected as baseline. All learners within this interval are not significantly different from the baseline.

Calculation:

\[
CD = q_{\alpha} \sqrt{\frac{k(k + 1)}{6N}}
\]

Where \(q_{\alpha}\) is based on the studentized range statistic. See references for details.
Usage

generateCritDifferencesData(bmr, measure = NULL, p.value = 0.05,
    baseline = NULL, test = "bd")

Arguments

bmr [BenchmarkResult]
Benchmark result.

measure [Measure]
Performance measure. Default is the first measure used in the benchmark experiment.

p.value [numeric(1)]
P-value for the critical difference. Default: 0.05

baseline [character(1)]: [learner.id]
Select a learner.id as baseline for the test = "bd" ("Bonferroni-Dunn") critical differences diagram. The critical difference interval will then be positioned around this learner. Defaults to best performing algorithm. For test = "nemenyi", no baseline is needed as it performs all pairwise comparisons.

test [character(1)]
Test for which the critical differences are computed.
"bd" for the Bonferroni-Dunn Test, which is comparing all classifiers to a baseline, thus performing a comparison of one classifier to all others. Algorithms not connected by a single line are statistically different. Then the baseline.
"nemenyi" for the posthoc.friedman.nemenyi.test which is comparing all classifiers to each other. The null hypothesis that there is a difference between the classifiers can not be rejected for all classifiers that have a single grey bar connecting them.

Value

critDifferencesData. List containing:

data [data.frame] containing the info for the descriptive part of the plot

friedman.nemenyi.test
[list] of class pairwise.htest contains the calculated posthoc.friedman.nemenyi.test

cd.info [list] containing info on the critical difference and its positioning

baseline baseline chosen for plotting

p.value p.value used for the posthoc.friedman.nemenyi.test and for computation of the critical difference
See Also
Other generate_plot_data: generateCalibrationData, generateFeatureImportanceData, generateFilterValuesData, generateFunctionalANOVAData, generateLearningCurveData, generatePartialDependenceData, generateThreshVsPerfData, getFilterValues, plotFilterValues
Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

generateFeatureImportanceData

Generate feature importance.

Description
Estimate how important individual features or groups of features are by contrasting prediction performances. For method “permutation.importance” compute the change in performance from permuting the values of a feature (or a group of features) and compare that to the predictions made on the unpermuted data.

Usage
generateFeatureImportanceData(task, method = "permutation.importance", learner, features = getTaskFeatureNames(task), interaction = FALSE, measure, contrast = function(x, y) x - y, aggregation = mean, nmc = 50L, replace = TRUE, local = FALSE)

Arguments
task [Task]
The task.
method [character(1)]
The method used to compute the feature importance. The only method available is “permutation.importance”. Default is “permutation.importance”.
learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.
features [character]
The features to compute the importance of. The default is all of the features contained in the Task.
interaction [logical(1)]
Whether to compute the importance of the features argument jointly. For method = “permutation.importance” this entails permuting the values of all features together and then contrasting the performance with that of the performance without the features being permuted. The default is FALSE.
**generateFeatureImportanceData**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>measure</strong></td>
<td>[Measure] Performance measure. Default is the first measure used in the benchmark experiment.</td>
</tr>
<tr>
<td><strong>contrast</strong></td>
<td>[function] A difference function that takes a numeric vector and returns a numeric vector of the same length. The default is element-wise difference between the vectors.</td>
</tr>
<tr>
<td><strong>aggregation</strong></td>
<td>[function] A function which aggregates the differences. This function must take a numeric vector and return a numeric vector of length 1. The default is mean.</td>
</tr>
<tr>
<td><strong>nmc</strong></td>
<td>[integer(1)] The number of Monte-Carlo iterations to use in computing the feature importance. If nmc == -1 and method = &quot;permutation.importance&quot; then all permutations of the features are used. The default is 50.</td>
</tr>
<tr>
<td><strong>replace</strong></td>
<td>[logical(1)] Whether or not to sample the feature values with or without replacement. The default is TRUE.</td>
</tr>
<tr>
<td><strong>local</strong></td>
<td>[logical(1)] Whether to compute the per-observation importance. The default is FALSE.</td>
</tr>
</tbody>
</table>

**Value**

`FeatureImportance` is a named list which contains the computed feature importance and the input arguments.

Object members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>res</strong></td>
<td>[data.frame] Has columns for each feature or combination of features (colon separated) for which the importance is computed. A row corresponds to importance of the feature specified in the column for the target.</td>
</tr>
<tr>
<td><strong>interaction</strong></td>
<td>[logical(1)] Whether or not the importance of the features was computed jointly rather than individually.</td>
</tr>
<tr>
<td><strong>measure</strong></td>
<td>[Measure] The measure used to compute performance.</td>
</tr>
<tr>
<td><strong>contrast</strong></td>
<td>[function] The function used to compare the performance of predictions.</td>
</tr>
<tr>
<td><strong>aggregation</strong></td>
<td>[function] The function which is used to aggregate the contrast between the performance of predictions across Monte-Carlo iterations.</td>
</tr>
<tr>
<td><strong>replace</strong></td>
<td>[logical(1)] Whether or not, when method = &quot;permutation.importance&quot;, the feature values are sampled with replacement.</td>
</tr>
</tbody>
</table>
generateFilterValuesData

- **nnmc**: [integer(1)]
  - The number of Monte-Carlo iterations used to compute the feature importance.
  - When `nnmc == -1` and `method = "permutation.importance"` all permutations are used.

- **local**: [logical(1)]
  - Whether observation-specific importance is computed for the features.

See Also

Other `generate_plot_data`: `generateCalibrationData`, `generateCritDifferencesData`, `generateFilterValuesData`, `generateFunctionalANOVAData`, `generateLearningCurveData`, `generatePartialDependenceData`, `generateThreshVsPerfData`, `getFilterValues`, `plotFilterValues`

Examples

```r
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, iris.task)
imp = generateFeatureImportanceData(iris.task, "permutation.importance",
 lrn, "Petal.Width", nnmc = 10L, local = TRUE)
```

Description

Calculates feature filter values.

Usage

```r
generateFilterValuesData(task, method = "randomForestSRC.rfsrc",
 nselect = getTaskNFeats(task), ..., more.args = list())
```

Arguments

- **task**: [Task]
  - The task.
- **method**: [character]
  - Filter method(s), see above. Default is “randomForestSRC.rfsrc”.
- **nselect**: [integer(1)]
  - Number of scores to request. Scores are getting calculated for all features per default.
- **...**: [any]
  - Passed down to selected method. Can only be use if `method` contains one element.

Calculates feature filter values.
**generateFunctionalANOVAData**

Generate a functional ANOVA decomposition

**Description**

Decompose a learned prediction function as a sum of components estimated via partial dependence.

**Usage**

```r
generateFunctionalANOVAData(obj, input, features, depth = 1L, fun = mean, bounds = c(qnorm(0.025), qnorm(0.975)), resample = "none", fmin, fmax, gridsize = 10L, ...)```
Arguments

obj

[WrappedModel]

Result of `train`.

input

[data.frame | Task]

Input data.

features

[character]

A vector of feature names contained in the training data. If not specified all features in the input will be used.

depth

[integer(1)]

An integer indicating the depth of interaction amongst the features to compute. Default 1.

fun

[function]

A function that accepts a numeric vector and returns either a single number such as a measure of location such as the mean, or three numbers, which give a lower bound, a measure of location, and an upper bound. Note if three numbers are returned they must be in this order. Two variables, data and newdata are made available to fun internally via a wrapper. 'data' is the training data from 'input' and 'newdata' contains a single point from the prediction grid for features along with the training data for features not in features. This allows the computation of weights based on comparisons of the prediction grid to the training data. The default is the mean.

bounds

[numeric(2)]

The value (lower, upper) the estimated standard error is multiplied by to estimate the bound on a confidence region for a partial dependence. Ignored if `predict.type` != "se" for the learner. Default is the 2.5 and 97.5 quantiles (-1.96, 1.96) of the Gaussian distribution.

resample

[character(1)]

Defines how the prediction grid for each feature is created. If “bootstrap” then values are sampled with replacement from the training data. If “subsample” then values are sampled without replacement from the training data. If “none” an evenly spaced grid between either the empirical minimum and maximum, or the minimum and maximum defined by `fmin` and `fmax`, is created. Default is “none”.

fmin

[numERIC]

The minimum value that each element of `features` can take. This argument is only applicable if `resample = NULL` and when the empirical minimum is higher than the theoretical minimum for a given feature. This only applies to numeric features and a NA should be inserted into the vector if the corresponding feature is a factor. Default is the empirical minimum of each numeric feature and NA for factor features.

fmax

[numERIC]

The maximum value that each element of `features` can take. This argument is only applicable if `resample = "none"` and when the empirical maximum is lower than the theoretical maximum for a given feature. This only applies to numeric features and a NA should be inserted into the vector if the corresponding feature is a factor. Default is the empirical maximum of each numeric feature and NA for factor features.
generateFunctionalANOVAData

feature is a factor. Default is the empirical maximum of each numeric feature
and NA for factor features.

gridsize [integer(1)]
The length of the prediction grid created for each feature. If resample = "bootstrap"
or resample = "subsample" then this defines the number of (possibly non-
unique) values resampled. If resample = NULL it defines the length of the
evenly spaced grid created. Default 10.

... additional arguments to be passed to predict.

Value

FunctionalANOVAData . A named list, which contains the computed effects of the specified depth
amongst the features.

Object members:

data [data.frame]
Has columns for the prediction: one column for regression and an additional two
if bounds are used. The “effect” column specifies which features the prediction
-corresponds to.

task.desc [TaskDesc]
Task description.

target The target feature for regression.

features [character]
Features argument input.

interaction [logical(1)]
Whether or not the depth is greater than 1.

References

Giles Hooker, “Discovering additive structure in black box functions.” Proceedings of the 10th
ACM SIGKDD international conference on Knowledge discovery and data mining (2004): 575-
580.

See Also

Other generate_plot_data: generateCalibrationData, generateCritDifferencesData, generateFeatureImportanceData,
generateFilterValuesData, generateLearningCurveData, generatePartialDependenceData,
genenerateThreshVsPerfData, getFilterValues, plotFilterValues

Examples

fit = train("regr.rpart", bh.task)
fa = generateFunctionalANOVAData(fit, bh.task, c("lstat", "crim"), depth = 2L)
plotPartialDependence(fa)
generateHyperParsEffectData

Generate hyperparameter effect data.

Description

Generate cleaned hyperparameter effect data from a tuning result or from a nested cross-validation tuning result. The object returned can be used for custom visualization or passed downstream to an out of the box mlr method, plotHyperParsEffect.

Usage

generateHyperParsEffectData(tune.result, include.diagnostics = FALSE, trafo = FALSE, partial.dep = FALSE)

Arguments

tune.result [TuneResult | ResampleResult]
Result of tuneParams (or resample ONLY when used for nested cross-validation). The tuning result (or results if the output is from nested cross-validation), also containing the optimizer results. If nested CV output is passed, each element in the list will be considered a separate run, and the data from each run will be included in the dataframe within the returned HyperParsEffectData.

include.diagnostics [logical(1)]
Should diagnostic info (eol and error msg) be included? Default is FALSE.

trafo [logical(1)]
Should the units of the hyperparameter path be converted to the transformed scale? This is only useful when trafo was used to create the path. Default is FALSE.

partial.dep [logical(1)]
Should partial dependence be requested based on converting to reg task? This sets a flag so that we know to use partial dependence downstream. This should most likely be set to TRUE if 2 or more hyperparameters were tuned simultaneously. Partial dependence should always be requested when more than 2 hyperparameters were tuned simultaneously. Setting to TRUE will cause plotHyperParsEffect to automatically plot partial dependence when called downstream. Default is FALSE.

Value

HyperParsEffectData Object containing the hyperparameter effects dataframe, the tuning performance measures used, the hyperparameters used, a flag for including diagnostic info, a flag for whether nested cv was used, a flag for whether partial dependence should be generated, and the optimization algorithm used.
Examples

```r
## Not run:
# 3-fold cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
res = tuneParams("classif.ksvm", task = pid.task, resampling = rdesc,
   par.set = ps, control = ctrl)
data = generateHyperParseffectData(res)
plt = plotHyperParseffect(data, x = "C", y = "mmce.test.mean")
plt + ylab("Misclassification Error")

# nested cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
   resampling = rdesc, par.set = ps)
res = resample(lrn, task = pid.task, resampling = cv2,
   extract = getTuneResult)
data = generateHyperParseffectData(res)
plotHyperParseffect(data, x = "C", y = "mmce.test.mean", plot.type = "line")

## End(Not run)
```

generateLearningCurveData

Generates a learning curve.

Description

Observe how the performance changes with an increasing number of observations.

Usage

```r
generateLearningCurveData(learners, task, resampling = NULL,
   percs = seq(0.1, 1, by = 0.1), measures, stratify = FALSE,
   show.info = getMlrOption("show.info"))
```

Arguments

- **learners** ([list of] `Learner`): Learning algorithms which should be compared.
- **task** ([Task]): The task.
- **resampling** ([ResampleDesc | ResampleInstance]): Resampling strategy to evaluate the performance measure. If no strategy is given a default "Holdout" will be performed.
generateLearningCurveData

percs

[numeric]
Vector of percentages to be drawn from the training split. These values represent
the x-axis. Internally `makeDownsampleWrapper` is used in combination with
`benchmark`. Thus for each percentage a different set of observations is drawn
resulting in noisy performance measures as the quality of the sample can differ.

measures

[(list of) Measure]
Performance measures to generate learning curves for, representing the y-axis.

stratify

[logical(1)]
Only for classification: Should the downsampled data be stratified according to
the target classes?

show.info

[logical(1)]
Print verbose output on console? Default is set via `configureMlr`.

Value

LearningCurveData. A list containing:

 task

 [Task]
The task.

 measures

 [(list of) Measure]
Performance measures.

 data

 [data.frame] with columns:

 • learner Names of learners.
 • percentage Percentages drawn from the training split.
 • One column for each Measure passed to `generateLearningCurveData`.

See Also

Other `generate_plot_data`: `generateCalibrationData`, `generateCritDifferencesData`, `generateFeatureImportanceData`,
`generateFilterValuesData`, `generateFunctionalANOVAData`, `generatePartialDependenceData`,
`generateThreshVsPerfData`, `getFilterValues`, `plotFilterValues`

Other learning_curve: `plotLearningCurveGGVIS`, `plotLearningCurve`

Examples

```r
r = generateLearningCurveData(list("classif.rpart", "classif.knn"),
  task = sonar.task, percs = seq(0.2, 1, by = 0.2),
  measures = list(tp, fp, tn, fn), resampling = makeResampleDesc(method = "Subsample", iters = 5),
  show.info = FALSE)
plotLearningCurve(r)
```
generatePartialDependenceData

Description

Estimate how the learned prediction function is affected by one or more features. For a learned function \(f(x) \) where \(x \) is partitioned into \(x_s \) and \(x_c \), the partial dependence of \(f \) on \(x_s \) can be summarized by averaging over \(x_c \) and setting \(x_s \) to a range of values of interest, estimating \(E_{(x_c)}(f(x_s, x_c)) \). The conditional expectation of \(f \) at observation \(i \) is estimated similarly. Additionally, partial derivatives of the marginalized function w.r.t. the features can be computed.

Usage

```r
generatePartialDependenceData(obj, input, features, interaction = FALSE, 
    derivative = FALSE, individual = FALSE, center = NULL, fun = mean, 
    bounds = c(qnorm(0.025), qnorm(0.975)), resample = "none", fmin, fmax, 
    gridsize = 10L, ...)
```

Arguments

- **obj**: [WrappedModel]
 Result of \texttt{train}.
- **input**: [data.frame | Task]
 Input data.
- **features**: [character]
 A vector of feature names contained in the training data. If not specified all features in the input will be used.
- **interaction**: [logical(1)]
 Whether the features should be interacted or not. If \texttt{TRUE} then the Cartesian product of the prediction grid for each feature is taken, and the partial dependence at each unique combination of values of the features is estimated. Note that if the length of \texttt{features} is greater than two, \texttt{plotPartialDependence} and \texttt{plotPartialDependenceGGVIS} cannot be used. If \texttt{FALSE} each feature is considered separately. In this case \texttt{features} can be much longer than two. Default is \texttt{FALSE}.
- **derivative**: [logical(1)]
 Whether or not the partial derivative of the learned function with respect to the features should be estimated. If \texttt{TRUE} \texttt{interaction} must be \texttt{FALSE}. The partial derivative of individual observations may be estimated. Note that computation time increases as the learned prediction function is evaluated at \texttt{gridsize} points * the number of points required to estimate the partial derivative. Additional arguments may be passed to \texttt{grad} (for regression or survival tasks) or \texttt{jacobian} (for classification tasks). Note that functions which are not smooth may result in estimated derivatives of 0 (for points where the function does not change...
within +/- epsilon) or estimates trending towards +/- infinity (at discontinuities). Default is FALSE.

individual [logical(1)]
Whether to plot the individual conditional expectation curves rather than the aggregated curve, i.e., rather than aggregating (using fun) the partial dependences of features, plot the partial dependences of all observations in data across all values of the features. The algorithm is developed in Goldstein, Kapelner, Bleich, and Pitkin (2015). Default is FALSE.

center [list]
A named list containing the fixed values of the features used to calculate an individual partial dependence which is then subtracted from each individual partial dependence made across the prediction grid created for the features: centering the individual partial dependence lines to make them more interpretable. This argument is ignored if individual != TRUE. Default is NULL.

fun [function]
For regression, a function that accepts a numeric vector and returns either a single number such as a measure of location such as the mean, or three numbers, which give a lower bound, a measure of location, and an upper bound. Note if three numbers are returned they must be in this order. For classification with predict.type = "prob" the function must accept a numeric matrix with the number of columns equal to the number of class levels of the target. For classification with predict.type = "response" (the default) the function must accept a character vector and output a numeric vector with length equal to the number of classes in the target feature. Two variables, data and newdata are made available to fun internally via a wrapper. ‘data’ is the training data from ‘input’ and ‘newdata’ contains a single point from the prediction grid for features along with the training data for features not in features. This allows the computation of weights based on comparisons of the prediction grid to the training data. The default is the mean, unless obj is classification with predict.type = "response" in which case the default is the proportion of observations predicted to be in each class.

bounds [numeric(2)]
The value (lower, upper) the estimated standard error is multiplied by to estimate the bound on a confidence region for a partial dependence. Ignored if predict.type != "se" for the learner. Default is the 2.5 and 97.5 quantiles (-1.96, 1.96) of the Gaussian distribution.

resample [character(1)]
Defines how the prediction grid for each feature is created. If “bootstrap” then values are sampled with replacement from the training data. If “subsample” then values are sampled without replacement from the training data. If “none” an evenly spaced grid between either the empirical minimum and maximum, or the minimum and maximum defined by fmin and fmax, is created. Default is “none”.

fmin [numeric]
The minimum value that each element of features can take. This argument is only applicable if resample = NULL and when the empirical minimum is higher than the theoretical minimum for a given feature. This only applies to numeric
features and a NA should be inserted into the vector if the corresponding feature is a factor. Default is the empirical minimum of each numeric feature and NA for factor features.

fmax

> [numeric]

The maximum value that each element of features can take. This argument is only applicable if resample = "none" and when the empirical maximum is lower than the theoretical maximum for a given feature. This only applies to numeric features and a NA should be inserted into the vector if the corresponding feature is a factor. Default is the empirical maximum of each numeric feature and NA for factor features.

gridsize

> [integer]

The length of the prediction grid created for each feature. If resample = "bootstrap" or resample = "subsample" then this defines the number of (possibly non-unique) values resampled. If resample = NULL it defines the length of the evenly spaced grid created.

... additional arguments to be passed to `predict`.

Value

PartialDependenceData. A named list, which contains the partial dependence, input data, target, features, task description, and other arguments controlling the type of partial dependences made.

Object members:

data

> [data.frame]

Has columns for the prediction: one column for regression and survival analysis, and a column for class and the predicted probability for classification as well as a column for each element of features. If individual = TRUE then there is an additional column idx which gives the index of the data that each prediction corresponds to.

task.desc

> [TaskDesc]

Task description.

target

Target feature for regression, target feature levels for classification, survival and event indicator for survival.

features

> [character]

Features argument input.

interaction

> [logical(1)]

Whether or not the features were interacted (i.e. conditioning).

derivative

> [logical(1)]

Whether or not the partial derivative was estimated.

individual

> [logical(1)]

Whether the partial dependences were aggregated or the individual curves are retained.

center

> [logical(1)]

If individual = TRUE whether the partial dependence at the values of the features specified was subtracted from the individual partial dependences. Only displayed if individual = TRUE.
References

See Also

Other partial_dependence: plotPartialDependenceGGVIS, plotPartialDependence

Other generate_plot_data: generateCalibrationData, generateCritDifferencesData, generateFeatureImportanceData, generateFilterValuesData, generateFunctionalANOVAData, generateLearningCurveData, generateThreshVsPerfData, getFilterValues, plotFilterValues

Examples

lrn = makeLearner("regr.svm")
fit = train(lrn, bh.task)
pd = generatePartialDependenceData(fit, bh.task, "lstat")
plotPartialDependence(pd, data = getTaskData(bh.task))

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, iris.task)
pd = generatePartialDependenceData(fit, iris.task, "Petal.Width")
plotPartialDependence(pd, data = getTaskData(iris.task))

simulated example with weights computed via the joint distribution
in practice empirical weights could be constructed by estimating the joint
density from the training data (the data arg to fun) and computing the probability
of the prediction grid under this estimated density (the newdata arg) or
by using something like data depth or outlier classification to weight the
unusualness of points in arg newdata.
sigma = matrix(c(1,.5,.5,1), 2, 2)
C = chol(sigma)
X = replicate(2, rnorm(100))
alpha = runif(2, -1, 1)
y = X %*% alpha
df = data.frame(y, X)
tsk = makeRegrTask(data = df, target = "y")
fit = train("regr.svm", tsk)

w.fun = function(x, newdata) {
 # compute multivariate normal density given sigma
 sigma = matrix(c(1,.5,.5,1), 2, 2)
 dec = chol(sigma)
 tmp = backsolve(dec, t(newdata), transpose = TRUE)
 rss = colSums(tmp^2)
 logretval = -sum(log(diag(dec))) - 0.5 * ncol(newdata) * log(2 * pi) - 0.5 * rss
 w = exp(logretval)
 # weight prediction grid given probability of grid points under the joint
 # density
generatethreshvsperfdata

\[
\text{sum}(w \times x) / \text{sum}(w)
\]

generatethreshvsperfdata

generatePartialDependenceData(fit, tsk, "X1", fun = w.fun)

generatethreshvsperfdata

Generate threshold vs. performance(s) for 2-class classification.

Description

Generates data on threshold vs. performance(s) for 2-class classification that can be used for plotting.

Usage

generatethreshvsperfdata(obj, measures, gridsize = 100L, aggregate = TRUE, task.id = NULL)

Arguments

- **obj**
 - [(list of) Prediction](|list of) ResampleResult | BenchmarkResult]
 - Single prediction object, list of them, single resample result, list of them, or a benchmark result. In case of a list probably produced by different learners you want to compare, then name the list with the names you want to see in the plots, probably learner shortnames or ids.

- **measures**
 - [Measure | list of Measure]
 - Performance measure(s) to evaluate. Default is the default measure for the task, see here [getDefaultMeasure](get_default_measure).

- **gridsize**
 - [integer(1)]
 - Grid resolution for x-axis (threshold). Default is 100.

- **aggregate**
 - [logical(1)]
 - Whether to aggregate [ResamplePredictions](resample_predictions) or to plot the performance of each iteration separately. Default is TRUE.

- **task.id**
 - [character(1)]
 - Selected task in [BenchmarkResult](benchmark_result) to do plots for, ignored otherwise. Default is first task.

Value

threshvsperfdata. A named list containing the measured performance across the threshold grid, the measures, and whether the performance estimates were aggregated (only applicable for (list of) ResampleResults).
getBMRAggrPerformances

Extract the aggregated performance values from a benchmark result.

Description

Either a list of lists of “aggr” numeric vectors, as returned by resample, or these objects are rbinded with extra columns “task.id” and “learner.id”.

Usage

getBMRAggrPerformances(bmr, task.ids = NULL, learner.ids = NULL, as.df = FALSE, drop = FALSE)

Arguments

bmr [BenchmarkResult] Benchmark result.
task.ids [character(1)] Restrict result to certain tasks. Default is all.
learner.ids [character(1)] Restrict result to certain learners. Default is all.

as.df [character(1)] Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop [logical(1)]
If drop is FALSE (the default), a nested list with the following structure is returned:
res[task.ids][learner.ids]. If drop is set to TRUE, it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding learner.
For an experiment with both one task and learner, the whole list structure is removed.
Note that the name of the task/learner will be dropped from the return object.

Value

list | data.frame. See above.
getBMRFeatSelResults

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRFeatSelResults, getBMRfilteredFeatures, getBMRLearnedIds, getBMRLearnedShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

getBMRFeatSelResults Extract the feature selection results from a benchmark result.

Description

Returns a nested list of FeatSelResults. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with "task.id", "learner.id", the resample iteration and the selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple rows for the same dataset-learner-iteration; one for each selected feature.

Usage

getBMRFeatSelResults(bmr, task.ids = NULL, learner.ids = NULL, as.df = FALSE, drop = FALSE)

Arguments

bmr [BenchmarkResult] Benchmark result.
task.ids [character(1)] Restrict result to certain tasks. Default is all.
learner.ids [character(1)] Restrict result to certain learners. Default is all.
as.df [character(1)] Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
drop [logical(1)] If drop is FALSE (the default), a nested list with the following structure is returned: res[task.ids][learner.ids]. If drop is set to TRUE, it is checked if the list structure can be simplified. If only one learner was passed, a list with entries for each task is returned. If only one task was passed, the entries are named after the corresponding learner. For an experiment with both one task and learner, the whole list structure is removed. Note that the name of the task/learner will be dropped from the return object.
getBMRFilteredFeatures

Extract the feature selection results from a benchmark result.

Description

Returns a nested list of characters. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. The list at the lowest level is the list of selected features. If `as.df` is TRUE, a data frame with “task.id”, “learner.id”, the resample iteration and the selected features is returned.

Note that if more than one feature is selected and a data frame is requested, there will be multiple rows for the same dataset-learner-iteration; one for each selected feature.

Usage

```r
getBMRFilteredFeatures(bmr, task.ids = NULL, learner.ids = NULL,
                        as.df = FALSE, drop = FALSE)
```

Arguments

- **bmr** [BenchmarkResult] Benchmark result.
- **task.ids** [character(1)] Restrict result to certain tasks. Default is all.
- **learner.ids** [character(1)] Restrict result to certain learners. Default is all.
- **as.df** [character(1)] Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
- **drop** [logical(1)] If drop is FALSE (the default), a nested list with the following structure is returned: `res[task.ids][learner.ids]`. If drop is set to TRUE, it is checked if the list structure can be simplified.
getBMRLearnerIds

If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

list | data.frame. See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMR LearnerIds, getBMR LearnerShortNames, getBMR Learners, getBMR MeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getBMR TaskIds, getBMR TuneResults, plotBMRR boxplots, plotBMRRanksAsBarChart, plotBMR Summary, plotCritDifferences, reduceBatchmarkResults

getBMRLearnerIds

Return learner ids used in benchmark.

Description

Gets the IDs of the learners used in a benchmark experiment.

Usage

generateCritDifferencesData(bmr)

Arguments

bmr

[BenchmarkResult]

Benchmark result.

Value

character.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMR FilteredFeatures, getBMR LearnerShortNames, getBMR Learners, getBMR MeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getBMR TaskIds, getBMR TuneResults, plotBMRRboxplots, plotBMRRanksAsBarChart, plotBMR Summary, plotCritDifferences, reduceBatchmarkResults
getBMRLearnerShortNames

Return learner short.names used in benchmark.

Description

Gets the learner short.names of the learners used in a benchmark experiment.

Usage

getBMRLearnerShortNames(bmr)

Arguments

bmr [BenchmarkResult]
Benchmark result.

Value

list.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRMergeIds, getBMRMergeMeasures, getBMRMergeModels, getBMRMergePerformances, getBMRMergePredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMROxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults
getBMRMeasureIds

Value

character.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRModelIds, getBMRMeasuresIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

getBMRMeasureIds Return measures IDs used in benchmark.

Description

Gets the IDs of the measures used in a benchmark experiment.

Usage

getBMRMeasureIds(bmr)

Arguments

bmr [BenchmarkResult] Benchmark result.

Value

list. See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRModelIds, getBMRMeasuresIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults
getBMRModels

getBMRMeasures return measures used in benchmark.

Description

Gets the measures used in a benchmark experiment.

Usage

getAddressBMRMeasures(bmr)

Arguments

bmr [BenchmarkResult] Benchmark result.

Value

list. See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Learners, getBMRMeasureIds, getBMRModels, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getB MRTaskIds, getBMR Tune Results, plotBMRBoxplots, plotBMR Ranks As Bar Chart, plotBMR Summary, plotCritDifferences, reduceBatchmarkResults

getBMRModels extract all models from benchmark result.

Description

A list of lists containing all WrappedModels trained in the benchmark experiment.

If models is FALSE in the call to benchmark, the function will return NULL.

Usage

getAddressBMRModels(bmr, task.ids = NULL, learner.ids = NULL, drop = FALSE)
getBMRPerformances

Arguments

- **bmr**: [BenchmarkResult] Benchmark result.
- **task.ids**: [character(1)] Restrict result to certain tasks. Default is all.
- **learner.ids**: [character(1)] Restrict result to certain learners. Default is all.
- **drop**: [logical(1)] If drop is FALSE (the default), a nested list with the following structure is returned:
 - `res[task.ids][learner.ids]`.
 - If drop is set to TRUE, it is checked if the list structure can be simplified.
 - If only one learner was passed, a list with entries for each task is returned.
 - If only one task was passed, the entries are named after the corresponding learner.
 - For an experiment with both one task and learner, the whole list structure is removed.
 - Note that the name of the task/learner will be dropped from the return object.

Value

- list

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner Short Names, getBMR Learners, getBMRM easureIds, getBMR Measures, getBMR Performances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMR RanksAsBarChart, plotBMRS ummary, plotCrit Differences, reduceBatchmarkResults

getBMRPerformances Extract the test performance values from a benchmark result.

Description

Either a list of lists of “measure.test” data.frames, as returned by resample, or these objects are rbind-ed with extra columns “task.id” and “learner.id”.

Usage

getBMRPerformances(bmr, task.ids = NULL, learner.ids = NULL, as.df = FALSE, drop = FALSE)
Arguments

- `bmr` ([BenchmarkResult]) Benchmark result.
- `task.ids` ([character(1)]) Restrict result to certain tasks. Default is all.
- `learner.ids` ([character(1)]) Restrict result to certain learners. Default is all.
- `as.df` ([character(1)]) Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
- `drop` ([logical(1)]) If drop is FALSE (the default), a nested list with the following structure is returned:

 `res[task.ids][learner.ids]`.

 If drop is set to TRUE, it is checked if the list structure can be simplified.

 If only one learner was passed, a list with entries for each task is returned.

 If only one task was passed, the entries are named after the corresponding learner.

 For an experiment with both one task and learner, the whole list structure is removed.

 Note that the name of the task/learner will be dropped from the return object.

Value

list | data.frame. See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMergeIds, getBMRMerge, getBMRFilters, getBMRFpvalues, getBMRFpredictions, getBMRFrankIndices, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRF-boxplots, plotBMRRankAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

getBMRPredictions

Extract the predictions from a benchmark result.

Description

Either a list of lists of `ResamplePrediction` objects, as returned by `resample`, or these objects are `rbind`-ed with extra columns “task.id” and “learner.id”.

If `predict.type` is “prob”, the probabilities for each class are returned in addition to the response.

If `keep.pred` is FALSE in the call to `benchmark`, the function will return NULL.
getBMRTaskDescriptions

Usage

getBMRPredictions(bmr, task.ids = NULL, learner.ids = NULL, as.df = FALSE, drop = FALSE)

Arguments

- bmr: Benchmark result.
- task.ids: Restrict result to certain tasks. Default is all.
- learner.ids: Restrict result to certain learners. Default is all.
- as.df: Return one data.frame as result - or a list of lists of objects?. Default is FALSE.
- drop: If drop is FALSE (the default), a nested list with the following structure is returned:
 res[task.ids][learner.ids].
 If drop is set to TRUE, it is checked if the list structure can be simplified.
 If only one learner was passed, a list with entries for each task is returned.
 If only one task was passed, the entries are named after the corresponding learner.
 For an experiment with both one task and learner, the whole list structure is removed.
 Note that the name of the task/learner will be dropped from the return object.

Value

list | data.frame . See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Learners, getBMRM easureIds, getBM RM easures, getBMR Models, getBMR Performances, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBM R Boxplots, plotBM RRanksAsBarChart, plotBM RSummary, plotCritDifferences, reduceBatchmarkResults

getBMRTaskDescriptions

Extract all task descriptions from benchmark result (DEPRECATED).

Description

A list containing all TaskDescs for each task contained in the benchmark experiment.
getBMRTaskDescs

Usage

getBMRTaskDescriptions(bmr)

Arguments

bmr [BenchmarkResult]
Benchmark result.

Value
list.

Description

A list containing all TaskDescs for each task contained in the benchmark experiment.

Usage

getBMRTaskDescs(bmr)

Arguments

bmr [BenchmarkResult]
Benchmark result.

Value
list.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskIds, getBRTuneResults, plotBMRRboxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults
getBMRTaskIds

Return task ids used in benchmark.

Description

Gets the task IDs used in a benchmark experiment.

Usage

getBMRTaskIds(bmr)

Arguments

bmr [BenchmarkResult] Benchmark result.

Value

character.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBM, friedmanTestBM, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnedIds, getBMRLearnedShortNames, getBMR Learners, getBMRMesures, getBMRMmodels, getBMRPredictions, getBMRTaskDescs, getBMRTuneResults, plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

getBMRTuneResults

Extract the tuning results from a benchmark result.

Description

Returns a nested list of TuneResults. The first level of nesting is by data set, the second by learner, the third for the benchmark resampling iterations. If as.df is TRUE, a data frame with the “task.id”, “learner.id”, the resample iteration, the parameter values and the performances is returned.

Usage

getBMRTuneResults(bmr, task.ids = NULL, learner.ids = NULL, as.df = FALSE, drop = FALSE)
getCaretParamSet

Arguments

bmr [BenchmarkResult]
BENCHMARK result.

task.ids [character(1)]
Restrict result to certain tasks. Default is all.

learner.ids [character(1)]
Restrict result to certain learners. Default is all.

as.df [character(1)]
Return one data.frame as result - or a list of lists of objects?. Default is FALSE.

drop [logical(1)]
If drop is FALSE (the default), a nested list with the following structure is re-
turned:
res[task.ids][learner.ids].
If drop is set to TRUE, it is checked if the list structure can be simplified.
If only one learner was passed, a list with entries for each task is returned.
If only one task was passed, the entries are named after the corresponding
learner.
For an experiment with both one task and learner, the whole list structure is re-
moved.
Note that the name of the task/learner will be dropped from the return object.

Value

list | data.frame . See above.

See Also

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, plotBMROxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

getcaretParamSet Get tuning parameters from a learner of the caret R-package.

Description

Constructs a grid of tuning parameters from a learner of the caret R-package. These values are
then converted into a list of non-tunable parameters (par.vals) and a tunable ParamSet (par.set),
which can be used by tuneParams for tuning the learner. Numerical parameters will either be
specified by their lower and upper bounds or they will be discretized into specific values.
Usage

```r
getectParamSet(learner, length = 3L, task, discretize = TRUE)
```

Arguments

- **learner** [character(1)]
 The name of the learner from caret (cf. https://topepo.github.io/caret/available-models.html). Note that the names in caret often differ from the ones in mlr.

- **length** [integer(1)]
 A length / precision parameter which is used by caret for generating the grid of tuning parameters. caret generates either as many values per tuning parameter / dimension as defined by length or only a single value (in case of non-tunable par.vals).

- **task** [Task]
 Learning task, which might be requested for creating the tuning grid.

- **discretize** [logical(1)]
 Should the numerical parameters be discretized? Alternatively, they will be defined by their lower and upper bounds. The default is TRUE.

Value

`list(2)`.

- `par.vals` contains a list of all constant tuning parameters
- `par.set` is a `ParamSet`, containing all the configurable tuning parameters

Examples

```r
if (requireNamespace("caret") && requireNamespace("mlbench")) {
  library(caret)
  classifTask = makeClassifTask(data = iris, target = "Species")

  # (1) classification (random forest) with discretized parameters
  getCaretParamSet("rf", length = 9L, task = classifTask, discretize = TRUE)

  # (2) regression (gradient boosting machine) without discretized parameters
  library(mlbench)
  data(BostonHousing)
  regrTask = makeRegrTask(data = BostonHousing, target = "medv")
  getCaretParamSet("gbm", length = 9L, task = regrTask, discretize = FALSE)
}
```
getConfMatrix

Confusion matrix.

description

getConfMatrix is deprecated. Please use calculateConfusionMatrix.

Calculates confusion matrix for (possibly resampled) prediction. Rows indicate true classes, columns predicted classes.

The marginal elements count the number of classification errors for the respective row or column, i.e., the number of errors when you condition on the corresponding true (rows) or predicted (columns) class. The last element in the margin diagonal displays the total amount of errors.

Note that for resampling no further aggregation is currently performed. All predictions on all test sets are joined to a vector yhat, as are all labels joined to a vector y. Then yhat is simply tabulated vs y, as if both were computed on a single test set. This probably mainly makes sense when cross-validation is used for resampling.
getDefaultMeasure

Usage

```
getConfMatrix(pred, relative = FALSE)
```

Arguments

- `pred` [Prediction] Prediction object.
- `relative` [logical(1)] If TRUE rows are normalized to show relative frequencies. Default is FALSE.

Value

matrix. A confusion matrix.

See Also

- `predict.WrappedModel`

getDescription

Description

Get the default measure for a task type, task, task description or a learner. Currently these are:

- classif mmce
- regr mse
- cluster db
- surv cindex
- costsens mcp
- multilabel multilabel.hamloss

Usage

```
getDefaultMeasure(x)
```

Arguments

- `x` [character(1) | Task | TaskDesc | Learner] Task type, task, task description, learner name, a learner, or a type of learner (e.g. "classif").

Value

Measure.
getFailureModelDump

Return the error dump of FailureModel.

Description

Returns the error dump that can be used with `debugger()` to evaluate errors. If `configureMlr` configuration on `.error.dump` is `FALSE`, this returns `NULL`.

Usage

`getFailureModelDump(model)`

Arguments

- `model`
 [WrappedModel]
 The model.

Value

`last.dump`.

getFailureModelMsg

Return error message of FailureModel.

Description

Such a model is created when one sets the corresponding option in `configureMlr`. If no failure occurred, `NA` is returned.

For complex wrappers this getter returns the first error message encountered in ANY model that failed.

Usage

`getFailureModelMsg(model)`

Arguments

- `model`
 [WrappedModel]
 The model.

Value

`character(1)`.
getFeatSelResult

Returns the selected feature set and optimization path after training.

Description

Returns the selected feature set and optimization path after training.

Usage

`getFeatSelResult(object)`

Arguments

- `object`
 WrappedModel
 Trained Model created with `makeFeatSelWrapper`.

Value

`FeatSelResult`.

See Also

Other featsel: `FeatSelControl, analyzeFeatSelResult, makeFeatSelWrapper, selectFeatures`

getFeatureImportance

Calculates feature importance values for trained models.

Description

For some learners it is possible to calculate a feature importance measure. `getFeatureImportance` extracts those values from trained models. See below for a list of supported learners.

- **boosting**
 Measure which accounts the gain of Gini index given by a feature in a tree and the weight of that tree.

- **cforest**
 Permutation principle of the 'mean decrease in accuracy' principle in randomForest. If auc=TRUE (only for binary classification), area under the curve is used as measure. The algorithm used for the survival learner is 'extremely slow and experimental; use at your own risk'. See `varimp` for details and further parameters.

- **gbm**
 Estimation of relative influence for each feature. See `relative.influence` for details and further parameters.
getFilteredFeatures

- randomForest
 For `type = 2` (the default) the 'MeanDecreaseGini' is measured, which is based on the Gini impurity index used for the calculation of the nodes. Alternatively, you can set `type` to 1, then the measure is the mean decrease in accuracy calculated on OOB data. Note, that in this case the learner’s parameter `importance` needs to be set to be able to compute feature importance values. See `importance` for details.

- RRF
 This is identical to randomForest.

- randomForestSRC
 This method can calculate feature importance for various measures. By default the Breiman-Cutler permutation method is used. See `vimp` for details.

- ranger
 Supports both measures mentioned above for the randomForest learner. Note, that you need to specifically set the learners parameter `importance`, to be able to compute feature importance measures. See `importance` and `ranger` for details.

- rpart
 Sum of decrease in impurity for each of the surrogate variables at each node.

- xgboost
 The value implies the relative contribution of the corresponding feature to the model calculated by taking each feature’s contribution for each tree in the model. The exact computation of the importance in xgboost is undocumented.

Usage

```r
getFeatureImportance(object, ...)  
```

Arguments

- `object` [WrappedModel]
 Wrapped model, result of `train`.
- `...` [any]
 Additional parameters, which are passed to the underlying importance value generating function.

Value

`FeatureImportance` An object containing a `data.frame` of the variable importances and further information.

getFilteredFeatures
`Returns the filtered features.`

Description

Returns the filtered features.
getFilterValues

Usage

calculatedFeatures(model)

Arguments

model [WrappedModel]
Trained Model created with makeFilterWrapper.

Value

character.

See Also

Other filter: filterFeatures, generateFilterValuesData, getFilterValues, makeFilterWrapper, plotFilterValuesGGVIS, plotFilterValues

generateFilterValues

Calculates feature filter values.

Description

Calculates numerical filter values for features. For a list of features, use listFilterMethods.

Usage

generateFilterValues(task, method = "randomForestSRC.rfsrc",
nselect = getTaskNFeats(task), ...)

Arguments

task [Task]
The task.

method [character(1)]
Filter method, see above. Default is “randomForestSRC.rfsrc”.

nselect [integer(1)]
Number of scores to request. Scores are getting calculated for all features per default.

Value

FilterValues.
Note

getFilterValues is deprecated in favor of `generateFilterValuesData`.

See Also

Other filter: `filterFeatures, generateFilterValuesData, getFilteredFeatures, makeFilterWrapper, plotFilterValuesGGVIS, plotFilterValues`

Other generate_plot_data: `generateCalibrationData, generateCritDifferencesData, generateFeatureImportanceData, generateFilterValuesData, generateFunctionalANOVAData, generateLearningCurveData, generatePartialDependenceData, generateThreshVsPerfData, plotFilterValues`

Other filter: `filterFeatures, generateFilterValuesData, getFilteredFeatures, makeFilterWrapper, plotFilterValuesGGVIS, plotFilterValues`

deprecated, use `getLearnerModel` instead.

deprecated, use `getLearnerModel` instead.

deprecated.
deprecated.

Get current parameter settings for a learner.

Retrieves the current hyperparameter settings of a learner.

getHyperPars(learner, for.fun = c("train", "predict", "both"))
getLearnerId

Arguments

learner [Learner | character(1)]
 The learner. If you pass a string the learner will be created via makeLearner.

for.fun [character(1)]
 Restrict the returned settings to hyperparameters corresponding to when they are used (see LearnerParam). Must be a subset of: “train”, “predict” or “both”. Default is c("train", "predict", "both").

Value

list. A named list of values.

See Also

Other learner: LearnerProperties, getClassWeightParam, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType,getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

getLearnerId Get the ID of the learner.

Description

Get the ID of the learner.

Usage

getLearnerId(learner)

Arguments

learner [Learner | character(1)]
 The learner. If you pass a string the learner will be created via makeLearner.

Value

character(1).

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType,getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType
getLearnerModel
Get underlying R model of learner integrated into mlr.

Description
Get underlying R model of learner integrated into mlr.

Usage
```
getLearnerModel(model, more.unwrap = FALSE)
```

Arguments
- `model`
 `[WrappedModel]`
 The model, returned by e.g., `train`.
- `more.unwrap`
 [logical(1)]
 Some learners are not basic learners from R, but implemented in mlr as metatechniques. Examples are everything that inherits from `HomogeneousEnsemble`. In these cases, the `learner.model` is often a list of mlr `WrappedModel`. This option allows to strip them further to basic R models. The option is simply ignored for basic learner models. Default is `FALSE`.

Value
any . A fitted model, depending the learner / wrapped package. E.g., a model of class `rpart` for learner “classif.rpart”.

getLearnerPackages
Get the required R packages of the learner.

Description
Get the R packages the learner requires.

Usage
```
getLearnerPackages(learner)
```

Arguments
- `learner`
 `[Learner | character(1)]`
 The learner. If you pass a string the learner will be created via `makeLearner`.

Value
character .
getLearnerParamSet

See Also
Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

getLearnerParamSet Get the parameter set of the learner.

Description
Alias for getParamSet.

Usage
getLearnerParamSet(learner)

Arguments
learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

Value
ParamSet.

See Also
Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

getLearnerParVals Get the parameter values of the learner.

Description
Alias for getHyperPars.

Usage
getLearnerParVals(learner, for.fun = c("train", "predict", "both"))
getLearnerPredictType

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

for.fun [character(1)]
Restrict the returned settings to hyperparameters corresponding to when they are used (see LearnerParam). Must be a subset of: “train”, “predict” or “both”. Default is c("train", "predict", "both").

Value
list. A named list of values.

See Also
Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

Description
Get the predict type of the learner.

Usage
getLearnerPredictType(learner)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

Value
character(1).

See Also
Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType
getLearnerShortName

getLearnerShortName
Get the short name of the learner.

Description

For an ordinary learner simply its short name is returned. For wrapped learners, the wrapper id is successively attached to the short name of the base learner. E.g: “rf.bagged.imputed”

Usage

```
getLearnerShortName(learner)
```

Arguments

- **learner**

 [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.

Value

character(1).

See Also

Other learner: `LearnerProperties`, `getClassWeightParam`, `getHyperPars`, `getLearnerId`, `getLearnerPackages`, `getLearnerParVals`, `getLearnerParamSet`, `getLearnerPredictType`, `getLearnerType`, `getParamSet`, `makeLearners`, `makeLearner`, `removeHyperPars`, `setHyperPars`, `setId`, `setLearnerId`, `setPredictThreshold`, `setPredictType`

getLearnerType

getLearnerType
Get the type of the learner.

Description

Get the type of the learner.

Usage

```
getLearnerType(learner)
```

Arguments

- **learner**

 [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.

Value

character(1).
getMultilabelBinaryPerformances

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

getMlrOptions

Returns a list of mlr's options.

Description

Gets the options for mlr.

Usage

getMlrOptions()

Value

list .

See Also

Other configure: configureMlr

getMultilabelBinaryPerformances

Retrieve binary classification measures for multilabel classification predictions.

Description

Measures the quality of each binary label prediction w.r.t. some binary classification performance measure.

Usage

getMultilabelBinaryPerformances(pred, measures)

Arguments

measures [Measure | list of Measure] Performance measure(s) to evaluate, must be applicable to binary classification performance. Default is mmce.
getNestedTuneResultsOptPathDf

Value

named matrix. Performance value(s), column names are measure(s), row names are labels.

See Also

Other multilabel: makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper

Examples

see makeMultilabelBinaryRelevanceWrapper

getCodeResultsOptPathDf

Get the opt.paths from each tuning step from the outer resampling.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(..., extract = getTuneResult) this helper returns a data.frame with all opt.paths combined by rbind. An additional column iter indicates to what resampling iteration the row belongs.

Usage

getCodeResultsOptPathDf(r, trafo = FALSE)

Arguments

r [ResampleResult] The result of resampling of a tuning wrapper.
trafo [logical(1)] Should the units of the hyperparameter path be converted to the transformed scale? This is only necessary when trafo was used to create the opt.paths. Note that opt.paths are always stored on the untransformed scale. Default is FALSE.

Value
data.frame. See above.

See Also

Other tune: TuneControl, getNestedTuneResultsX, getCountResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold
getNestedTuneResultsX

Examples

see example of makeTuneWrapper

getNestedTuneResultsX Get the tuned hyperparameter settings from a nested tuning.

Description

After you resampled a tuning wrapper (see makeTuneWrapper) with resample(..., extract = getTuneResult) this helper returns a data.frame with the best found hyperparameter settings for each resampling iteration.

Usage

getNestedTuneResultsX(r)

Arguments

r [ResampleResult]
 The result of resampling of a tuning wrapper.

Value

data.frame. One column for each tuned hyperparameter and one row for each outer resampling iteration.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDF, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIRace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold

Examples

see example of makeTuneWrapper
getOOBPreds

Extracts out-of-bag predictions from trained models.

Description

Learners like randomForest produce out-of-bag predictions. getOOBPreds extracts this information from trained models and builds a prediction object as provided by predict (with prediction time set to NA). In the classification case: What is stored exactly in the [Prediction] object depends on the predict.type setting of the Learner.

You can call listLearners(properties = "oobpreds") to get a list of learners which provide this.

Usage

getOOBPreds(model, task)

Arguments

model [WrappedModel]
The model.

task [Task]
The task.

Value

Prediction.

Examples

training.set = sample(1:150, 50)
lrn = makeLearner("classif.ranger", predict.type = "prob", predict.threshold = 0.6)
mod = train(lrnn, sonar.task, subset = training.set)
oob = getOOBPreds(mod, sonar.task)
oob
performance(oob, measures = list(auc, mmce))

getParamSet

Get a description of all possible parameter settings for a learner.

Description

Returns the ParamSet from a Learner.

Value

ParamSet.
getPredictionDump

Return the error dump of a failed Prediction.

Description

Returns the error dump that can be used with debugger() to evaluate errors. If configureMlr configuration on error.dump is FALSE or if the prediction did not fail, this returns NULL.

Usage

getAddressSavedModelURL(pred)

Arguments

pred [Prediction]
Prediction object.

Value

last.dump.

See Also

Other debug: FailureModel, ResampleResult, getRRDump

getPredictionProbabilities

Get probabilities for some classes.

Description

Get probabilities for some classes.

Usage

getAddressSavedModelURL(pred, cl)
getPredictionResponse

Arguments

pred [Prediction]
Prediction object.

cl [character]
Names of classes. Default is either all classes for multi-class / multilabel problems or the positive class for binary classification.

Value
data.frame with numerical columns or a numerical vector if length of cl is 1. Order of columns is defined by cl.

See Also
Other predict: asROCRPrediction, getPredictionResponse, plotViperCharts, predict.WrappedModel, setPredictThreshold, setPredictType

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda", predict.type = "prob")
mod = train(lrn, task)
predict probabilities
pred = predict(mod, newdata = iris)

Get probabilities for all classes
head(getPredictionProbabilities(pred))

Get probabilities for a subset of classes
head(getPredictionProbabilities(pred, c("setosa", "virginica")))

getPredictionResponse Get response / truth from prediction object.

Description
The following types are returned, depending on task type:

classif factor
regr numeric
se numeric
cluster integer
surv numeric
multilabel logical matrix, columns named with labels
getProbabilities

Usage

getPredictionResponse(pred)

getPredictionSE(pred)

getPredictionTruth(pred)

Arguments

pred [Prediction]
Prediction object.

Value

See above.

See Also

Other predict: asROCRPrediction, getPredictionProbabilities, plotViperCharts, predict.WrappedModel, setPredictThreshold, setPredictType

getProbabilities

Deprecated, use getPredictionProbabilities instead.

Description

Deprecated, use getPredictionProbabilities instead.

Usage

getProbabilities(pred, cl)

Arguments

pred Deprecated.

cl Deprecated.
getRRDump

Return the error dump of ResampleResult.

Description

Returns the error dumps generated during resampling, which can be used with debugger() to debug errors. These dumps are saved if configureMlr configuration on .error.dump, or the corresponding learner config, is TRUE.

The returned object is a list with as many entries as the resampling being used has folds. Each of these entries can have a subset of the following slots, depending on which step in the resampling iteration failed: “train” (error during training step), “predict.train” (prediction on training subset), “predict.test” (prediction on test subset).

Usage

getRRDump(res)

Arguments

- res

 [ResampleResult]

 The result of resample.

Value

list .

See Also

Other debug: FailureModel, ResampleResult, getPredictionDump

getRRPredictionList

Get list of predictions for train and test set of each single resample iteration.

Description

This function creates a list with two slots train and test where each slot is again a list of Prediction objects for each single resample iteration. In case that predict = “train” was used for the resample description (see makeResampleDesc), the slot test will be NULL and in case that predict = “test” was used, the slot train will be NULL.

Usage

getRRPredictionList(res, ...)

getRRPredictions

Arguments

`res` [ResampleResult]
The result of `resample` run with `keep.pred = TRUE`.

... [any]
Further options passed to `makePrediction`.

Value

`list`.

See Also

Other resample: `ResamplePrediction`, `ResampleResult`, `addRRMeasure`, `getRRPredictions`, `getRRTaskDescription`, `getRRTaskDesc`, `makeResampleDesc`, `makeResampleInstance`, `resample`

getRRPredictions

Get predictions from resample results.

Description

Very simple getter.

Usage

getRRPredictions(res)

Arguments

`res` [ResampleResult]
The result of `resample` run with `keep.pred = TRUE`.

Value

`ResamplePrediction`.

See Also

Other resample: `ResamplePrediction`, `ResampleResult`, `addRRMeasure`, `getRRPredictionList`, `getRRTaskDescription`, `getRRTaskDesc`, `makeResampleDesc`, `makeResampleInstance`, `resample`
getRRTaskDesc

Get task description from resample results (DEPRECATED).

Description
Get a summarizing task description.

Usage
`getRRTaskDesc(res)`

Arguments
- `res`
 [ResampleResult]
 The result of `resample`.

Value
TaskDesc.

See Also
Other resample: `ResamplePrediction, ResampleResult, addRRMeasure, getRRPredictionList, getRRPredictions, getRRTaskDescription, makeResampleDesc, makeResampleInstance, resample`
getTaskClassLevels

Get the class levels for classification and multilabel tasks.

Description

NB: For multilabel, getTaskTargetNames and getTaskClassLevels actually return the same thing.

Usage

getTaskClassLevels(x)

Arguments

- x [Task | TaskDesc]
 Task or its description object.

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure, getRRPredictionList, getRRPredictions, getRRTaskDesc, makeResampleDesc, makeResampleInstance, resample

getStackedBaseLearnerPredictions

Returns the predictions for each base learner.

Description

Returns the predictions for each base learner.

Usage

getStackedBaseLearnerPredictions(model, newdata = NULL)

Arguments

- model [WrappedModel]
 Wrapped model, result of train.
- newdata [data.frame]
 New observations, for which the predictions using the specified base learners should be returned. Default is NULL and extracts the base learner predictions that were made during the training.

Details

None.
getTaskCosts

Value
character.

See Also
Other task: getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask

getTaskCosts

Extract costs in task.

Description

Returns “NULL” if the task is not of type “costsens”.

Usage

getTaskCosts(task, subset = NULL)

Arguments

task [CostSensTask] The task.

subset [integer | logical] Selected cases. Either a logical or an index vector. By default all observations are used.

Value

matrix | NULL.

See Also

Other task: getTaskClassLevels, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask
getTaskData

Extract data in task.

Description

Useful in `trainLearner` when you add a learning machine to the package.

Usage

```r
getTaskData(task, subset = NULL, features, target.extra = FALSE,
            recode.target = "no")
```

Arguments

- **task** `[Task]`
 - The task.
- **subset** `[integer | logical]`
 - Selected cases. Either a logical or an index vector. By default all observations are used.
- **features** `[character | integer | logical]`
 - Vector of selected inputs. You can either pass a character vector with the feature names, a vector of indices, or a logical vector. In case of an index vector each element denotes the position of the feature name returned by `getTaskFeatureNames`. Note that the target feature is always included in the resulting task, you should not pass it here. Default is to use all features.
- **target.extra** `[logical]`
 - Should target vector be returned separately? If not, a single data.frame including the target columns is returned, otherwise a list with the input data.frame and an extra vector or data.frame for the targets. Default is `FALSE`.
- **recode.target** `[character]`
 - Should target classes be recoded? Supported are binary and multilabel classification and survival. Possible values for binary classification are “01”, “-1+1” and “drop.levels”. In the two latter cases the target vector is converted into a numeric vector. The positive class is coded as “+1” and the negative class either as “0” or “-1”. “drop.levels” will remove empty factor levels in the target column. In the multilabel case the logical targets can be converted to factors with “multilabel.factor”. For survival, you may choose to recode the survival times to “left”, “right” or “interval2” censored times using “lens”, “reens” or “icens”, respectively. See `Surv` for the format specification. Default for both binary classification and survival is “no” (do nothing).

Value

Either a data.frame or a list with data.frame data and vector target.
getTaskDesc

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask

Examples

library("mlbench")
data(BreastCancer)

df = BreastCancer
df$Id = NULL
task = makeClassifTask(id = "BreastCancer", data = df, target = "Class", positive = "malignant")
head(getTaskData)
head(getTaskData(task, features = c("Cell.size", "Cell.shape"), recode.target = "-1+1"))
head(getTaskData(task, subset = 1:100, recode.target = "01"))

getTaskDesc

Get a summarizing task description.

Description

Get a summarizing task description.

Usage

getTaskDesc(x)

Arguments

x [Task | TaskDesc]

Value

TaskDesc.

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask
getTaskDescription
Deprecated, use getTaskDesc instead.

Description

Deprecated, use `getTaskDesc` instead.

Usage

`getTaskDescription(x)`

Arguments

- `x`

 `[Task | TaskDesc]`

 Task or its description object.

getTaskFeatureNames
Get feature names of task.

Description

Target column name is not included.

Usage

`getTaskFeatureNames(task)`

Arguments

- `task`

 `[Task]`

 The task.

Value

character .

See Also

Other task: `getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask`
getTaskFormula

Get formula of a task.

Description

This is usually simply “<target> ~ .”. For multilabel it is “<target_1> + ... + <target_k> ~ .”.

Usage

getTaskFormula(x, target = getTaskTargetNames(x), explicit.features = FALSE, env = parent.frame())

Arguments

x
[Task | TaskDesc]
Task or its description object.

target
[character(1)]
Left hand side of the formula. Default is defined by task x.

explicit.features
[logical(1)]
Should the features (right hand side of the formula) be explicitly listed? Default is FALSE, i.e., they will be represented as ".".

env
[environment]
Environment of the formula. Default is parent.frame().

Value

formula

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask

getTaskId

Get the id of the task.

Description

Get the id of the task.

Usage

getTaskId(x)
getTaskNFeats

Arguments

\[x \]
\{ Task | TaskDesc \}
Task or its description object.

Value

characterHQI.

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask

getTaskNFeats
\textit{Get number of features in task.}

Description

Get number of features in task.

Usage

getTaskNFeats(x)

Arguments

\[x \]
\{ Task | TaskDesc \}
Task or its description object.

Value

integerHQI.

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskNFeats, getTaskId, getTaskSize, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask
getTaskSize

Get number of observations in task.

Description
Get number of observations in task.

Usage
getTaskSize(x)

Arguments
x [Task | TaskDesc]
Task or its description object.

Value
integer(1).

See Also
Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskTargetNames, getTaskTargets, getTaskType, subsetTask

getTaskTargetNames
Get the name(s) of the target column(s).

Description
NB: For multilabel, getTaskTargetNames and getTaskClassLevels actually return the same thing.

Usage
getTaskTargetNames(x)

Arguments
x [Task | TaskDesc]
Task or its description object.

Value
character.
See Also

Other task: `getTaskClassLevels`, `getTaskCosts`, `getTaskData`, `getTaskDesc`, `getTaskFeatureNames`, `getTaskFormula`, `getTaskId`, `getTaskNFeats`, `getTaskSize`, `getTaskTargets`, `getTaskType`, `subsetTask`

getTaskTargets
Get target data of task.

Description

Get target data of task.

Usage

getTaskTargets(task, recode.target = "no")

Arguments

task
[Task]
The task.

recode.target
[character(1)]
Should target classes be recoded? Only for binary classification. Possible are “no” (do nothing), “01”, and “-1+1”. In the two latter cases the target vector is converted into a numeric vector. The positive class is coded as +1 and the negative class either as 0 or -1. Default is “no”.

Value

A factor for classification or a numeric for regression, a data.frame of logical columns for multilabel.

See Also

Other task: `getTaskClassLevels`, `getTaskCosts`, `getTaskData`, `getTaskDesc`, `getTaskFeatureNames`, `getTaskFormula`, `getTaskId`, `getTaskNFeats`, `getTaskSize`, `getTaskTargetNames`, `getTaskType`, `subsetTask`

Examples

```r
task = makeClassifTask(data = iris, target = "Species")
getTaskTargets(task)
```
getTaskType

Get the type of the task.

Description

Get the type of the task.

Usage

getTaskType(x)

Arguments

x

(Task | TaskDesc)

Task or its description object.

Value

character(1).

See Also

Other task: getTaskClassLevels, getTaskCosts, getTaskData, getTaskDesc, getTaskFeatureNames, getTaskFormula, getTaskId, getTaskNFeats, getTaskSize, getTaskTargetNames, getTaskTargets, subsetTask

getTuneResult

Returns the optimal hyperparameters and optimization path after training.

Description

Returns the optimal hyperparameters and optimization path after training.

Usage

getTuneResult(object)

Arguments

object

(WrappedModel)

Trained Model created with makeTuneWrapper.

Value

TuneResult.
See Also

Other `tune`:
- `TuneControl`, `getNestedTuneResultsOptPathDF`, `getNestedTuneResultsX`, `makeModelMultiplexerParams`, `makeModelMultiplexer`, `makeTuneControlCMAES`, `makeTuneControlDesign`, `makeTuneControlGenSA`, `makeTuneControlGrid`, `makeTuneControlIrace`, `makeTuneControlMBO`, `makeTuneControlRandom`, `makeTuneWrapper`, `tuneParams`, `tuneThreshold`.

hasProperties

`Deprecated, use hasLearnerProperties instead.`

Description

Deprecated, use `hasLearnerProperties` instead.

Usage

```r
def hasProperties(learner, props)
```

Arguments

- **learner**: Deprecated.
- **props**: Deprecated.

imputations

`Built-in imputation methods.`

Description

The built-ins are:

- `imputeConstant(const)` for imputation using a constant value.
- `imputeMedian()` for imputation using the median.
- `imputeMode()` for imputation using the mode.
- `imputeMin(multiplier)` for imputing constant values shifted below the minimum using `min(x) - multiplier * diff(range(x))`.
- `imputeMax(multiplier)` for imputing constant values shifted above the maximum using `max(x) + multiplier * diff(range(x))`.
- `imputeNormal(mean, sd)` for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided.
- `imputeHist(breaks, use.mids)` for imputation using random values with probabilities calculated using `table` or `hist`.
- `imputeLearner(learner, features = NULL)` for imputations using the response of a classification or regression learner.
Usage

imputeConstant(const)
imputeMedian()
imputeMean()
imputeMode()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)
imputeUniform(min = NA_real_, max = NA_real_)
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>[any]</td>
</tr>
<tr>
<td>multiplier</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>min</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>max</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>mu</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>sd</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>breaks</td>
<td>[numeric(1)]</td>
</tr>
<tr>
<td>use.mids</td>
<td>[logical(1)]</td>
</tr>
</tbody>
</table>

- **const**: Constant valued use for imputation.
- **multiplier**: Value that stored minimum or maximum is multiplied with when imputation is done.
- **min**: Lower bound for uniform distribution. If NA (default), it will be estimated from the data.
- **max**: Upper bound for uniform distribution. If NA (default), it will be estimated from the data.
- **mu**: Mean of normal distribution. If missing it will be estimated from the data.
- **sd**: Standard deviation of normal distribution. If missing it will be estimated from the data.
- **breaks**: Number of breaks to use in `hist`. If missing, defaults to auto-detection via “Sturges”.
- **use.mids**: If `x` is numeric and a histogram is used, impute with bin mids (default) or instead draw uniformly distributed samples within bin range.
impute

Description

Allows imputation of missing feature values through various techniques. Note that you have the possibility to re-impute a data set in the same way as the imputation was performed during training. This especially comes in handy during resampling when one wants to perform the same imputation on the test set as on the training set.

The function impute performs the imputation on a data set and returns, alongside with the imputed data set, an "ImputationDesc" object which can contain "learned" coefficients and helpful data. It can then be passed together with a new data set to reimpute.

The imputation techniques can be specified for certain features or for feature classes, see function arguments.

You can either provide an arbitrary object, use a built-in imputation method listed under imputations or create one yourself using makeImputeMethod.

Usage

impute(obj, target = character(0L), classes = list(), cols = list(),
 dummy.classes = character(0L), dummy.ccols = character(0L),
 dummy.type = "factor", force.dummies = FALSE, impute.new.levels = TRUE,
 recode.factor.levels = TRUE)

Arguments

obj [data.frame|Task] Input data.
target [character] Name of the column(s) specifying the response. Default is character(0).
classes [named list] Named list containing imputation techniques for classes of columns. E.g. list(numeric = imputeMedian)
cols [named list]
Named list containing names of imputation methods to impute missing values in the data column referenced by the list element’s name. Overrules imputation set via classes.

dummy.classes [character]
Classes of columns to create dummy columns for. Default is character(0).

dummy.cols [character]
Column names to create dummy columns (containing binary missing indicator) for. Default is character(0).

dummy.type [character]
How dummy columns are encoded. Either as 0/1 with type “numeric” or as “factor”. Default is “factor”.

force.dummies [logical]
Force dummy creation even if the respective data column does not contain any NAs. Note that (a) most learners will complain about constant columns created this way but (b) your feature set might be stochastic if you turn this off. Default is FALSE.

impute.new.levels [logical]
If new, unencountered factor level occur during reimputation, should these be handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels [logical]
Recode factor levels after reimputation, so they match the respective element of lvls (in the description object) and therefore match the levels of the feature factor in the training data after imputation?. Default is TRUE.

Details
The description object contains these slots

target [character]
See argument.

features [character]
Feature names (column names of data).

classes [character]
Feature classes (storage type of data).

lvls [named list]
Mapping of column names of factor features to their levels, including newly created ones during imputation.

impute [named list]
Mapping of column names to imputation functions.

dummies [named list]
Mapping of column names to imputation functions.

impute.new.levels [logical] See argument.

recode.factor.levels [logical] See argument.

Value

data [data.frame]
Imputed data.

desc [ImputationDesc]
Description object.
isFailureModel

See Also

Other impute: `imputations`, `makeImputeMethod`, `makeImputeWrapper`, `reimpute`

Examples

def = data.frame(x = c(1, 1, NA), y = factor(c("a", "a", "b")), z = 1:3)
imputed = impute(df, target = character(0), cols = list(x = 99, y = imputeMode()))
print(imputed$data)
reimpute(data.frame(x = NA_real_), imputed$desc)

iris.task

Iris classification task.

Description

Contains the task (iris.task).

References

See `iris`.

isFailureModel

Is the model a FailureModel?

Description

Such a model is created when one sets the corresponding option in `configureMlR`.
For complex wrappers this getter returns `TRUE` if ANY model contained in it failed.

Usage

`isFailureModel(model)`

Arguments

- `model` *[[WrappedModel]]*

The model.

Value

`logical(1)`.
joinClassLevels

Join some class existing levels to new, larger class levels for classification problems.

Description

Join some class existing levels to new, larger class levels for classification problems.

Usage

```r
classlevels(task, new.levels)
```

Arguments

- `task`
 [Task]
 The task.

- `new.levels`
 [list of character]
 Element names specify the new class levels to create, while the corresponding element character vector specifies the existing class levels which will be joined to the new one.

Value

task.

Examples

```r
classlevels(iris.task, new.levels = list(foo = c("setosa", "virginica")))
```

learnerArgsToControl

Convert arguments to control structure.

Description

Find all elements in ... which are not missing and call control on them.

Usage

```r
learnerArgsToControl(control, ...)
```

Arguments

- `control`
 [function]
 Function that creates control structure.

- `...`
 [any]
 Arguments for control structure function.
LearnerProperties

Value

Control structure for learner.

Description

Properties can be accessed with `getLearnerProperties(learner)`, which returns a character vector.

The learner properties are defined as follows:

- **numerics, factors, ordered** Can numeric, factor or ordered factor features be handled?
- **missings** Can missing values in features be handled?
- **weights** Can observations be weighted during fitting?
- **oneclas, twoclass, multiclass** Only for classif: Can one-class, two-class or multi-class classification problems be handled?
- **class.weights** Only for classif: Can class weights be handled?
- **rcens, lcens, icens** Only for surv: Can right, left, or interval censored data be handled?
- **prob** For classif, cluster, multilabel, surv: Can probabilities be predicted?
- **se** Only for regr: Can standard errors be predicted?
- **oobpreds** Only for classif, regr and surv: Can out of bag predictions be extracted from the trained model?
- **featimp** For classif, regr, surv: Does the model support extracting information on feature importance?

Usage

```r
getLearnerProperties(learner)

hasLearnerProperties(learner, props)
```

Arguments

- **learner**: `[Learner | character(1)]`

 The learner. If you pass a string the learner will be created via `makeLearner`.

- **props**: `[character]`

 Vector of properties to query.

Value

- `getLearnerProperties` returns a character vector with learner properties.
- `hasLearnerProperties` returns a logical vector of the same length as `props`.
See Also

Other learner: getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

learners

List of supported learning algorithms.

listFilterMethods

List filter methods.

Description

All supported learners can be found by listLearners or as a table in the tutorial appendix: http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/.

listFilterMethods

List filter methods.

Description

Returns a subset-able dataframe with filter information.

Usage

```r
listFilterMethods(desc = TRUE, tasks = FALSE, features = FALSE,
                   include.deprecated = FALSE)
```

Arguments

- **desc**

 [logical(1)]

 Provide more detailed information about filters. Default is TRUE.

- **tasks**

 [logical(1)]

 Provide information on supported tasks. Default is FALSE.

- **features**

 [logical(1)]

 Provide information on supported features. Default is FALSE.

- **include.deprecated**

 [logical(1)]

 Should deprecated filter methods be included in the list. Default is FALSE.

Value

data.frame.
listLearnerProperties
List the supported learner properties

Description
This is useful for determining which learner properties are available.

Usage
listLearnerProperties(type = "any")

Arguments
type
[character(1)]
Only return properties for a specified task type. Default is “any”.

Value
character.

listLearners
Find matching learning algorithms.

Description
Returns learning algorithms which have specific characteristics, e.g. whether they support missing values, case weights, etc.

Note that the packages of all learners are loaded during the search if you create them. This can be a lot. If you do not create them we only inspect properties of the S3 classes. This will be a lot faster.

Note that for general cost-sensitive learning, mlr currently supports mainly “wrapper” approaches like CostSensWeightedPairsWrapper, which are not listed, as they are not basic R learning algorithms. The same applies for many multilabel methods, see, e.g., makeMultilabelBinaryRelevanceWrapper.

Usage
listLearners(obj = NA_character_, properties = character(0L), quiet = TRUE, warn.missing.packages = TRUE, check.packages = FALSE, create = FALSE)

```r
## Default S3 method:
listLearners(obj = NA_character_,
    properties = character(0L), quiet = TRUE, warn.missing.packages = TRUE,
    check.packages = TRUE, create = FALSE)
```

```r
## S3 method for class 'character'
```
listLearners

Arguments

obj [character(1) | Task]
Either a task or the type of the task, in the latter case one of: “classif”, “regr”, “surv”, “costsens”, “cluster”, “multilabel”. Default is NA, matching all types.

properties [character]
Set of required properties to filter for. Default is character(0).

quiet [logical(1)]
Construct learners quietly to check their properties, shows no package startup messages. Turn off if you suspect errors. Default is TRUE.

warn.missing.packages [logical(1)]
If some learner cannot be constructed because its package is missing, should a warning be shown? Default is TRUE.

check.packages [logical(1)]
Check if required packages are installed. Calls find.package(). If create is TRUE, this is done implicitly and the value of this parameter is ignored. If create is FALSE and check.packages is TRUE the returned table only contains learners whose dependencies are installed. If check.packages set to FALSE, learners that cannot actually be constructed because of missing packages may be returned. Default is FALSE.

create [logical(1)]
Instantiate objects (or return info table)? Packages are loaded if and only if this option is TRUE. Default is FALSE.

Value
data.frame | list of Learner . Either a descriptive data.frame that allows access to all properties of the learners or a list of created learner objects (named by ids of listed learners).

Examples

Not run:
listLearners("classif", properties = c("multiclass", "prob"))
data = iris
task = makeClassifTask(data = data, target = "Species")
listLearners(task)

End(Not run)
listMeasureProperties

List the supported measure properties.

Description

This is useful for determining which measure properties are available.

Usage

```r
listMeasureProperties()
```

Value

character.

listMeasures

Find matching measures.

Description

Returns the matching measures which have specific characteristics, e.g. whether they support classification or regression.

Usage

```r
listMeasures(obj, properties = character(0L), create = FALSE)
```

Arguments

- **obj** [character(1) | Task]

 Either a task or the type of the task, in the latter case one of: “classif”, “regr”, “surv”, “costsens”, “cluster”, “multilabel”. Default is NA, matching all types.

- **properties** [character]

 Set of required properties to filter for. See Measure for some standardized properties. Default is character(0).
listTaskTypes

create
[logical(1)]
Instantiate objects (or return strings)? Default is FALSE.

Value
character | list of **Measure**. Class names of matching measures or instantiated objects.

listTaskTypes
List the supported task types in mlr

Description
Returns a character vector with each of the supported task types in mlr.

Usage

```r
listTaskTypes()
```

Value
character .

lung.task
NCCTG Lung Cancer survival task.

Description
Contains the task (lung.task).

References
See lung. Incomplete cases have been removed from the task.
makeAggregation

Specify your own aggregation of measures.

Description

This is an advanced feature of mlr. It gives access to some inner workings so the result might not be compatible with everything!

Usage

```r
makeAggregation(id, name = id, properties, fun)
```

Arguments

- **id**
 - `[character(1)]`
 - Name of the aggregation method (preferably the same name as the generated function).
- **name**
 - `[character(1)]`
 - Long name of the aggregation method. Default is `id`.
- **properties**
 - `[character]`
 - Set of aggregation properties.
- **fun**
 - `[function(task, perf.test, perf.train, measure, group, pred)]`
 - Calculates the aggregated performance. In most cases you will only need the performances `perf.test` and optionally `perf.train` on the test and training data sets.
 - **task** [Task] The task.
 - **perf.test** [numeric] `performance` results on the test data sets.
 - **perf.train** [numeric] `performance` results on the training data sets.
 - **measure** [Measure] Performance measure.
 - **group** [factor] Grouping of resampling iterations. This encodes whether specific iterations 'belong together' (e.g. repeated CV).
 - **pred** [Prediction] Prediction object.

Value

Aggregation .

See Also

`aggregations, setAggregation`
Examples

computes the interquartile range on all performance values
test.iqr = makeAggregation(id = "test.iqr", name = "Test set interquartile range",
properties = "req.test",
fun = function (task, perf.test, perf.train, measure, group, pred) IQR(perf.test))

makeBaggingWrapper

Fuse learner with the bagging technique.

Description

Fuses a learner with the bagging method (i.e., similar to what a \texttt{randomForest} does). Creates a learner object, which can be used like any other learner object. Models can easily be accessed via \texttt{getLearnerModel}.

Bagging is implemented as follows: For each iteration a random data subset is sampled (with or without replacement) and potentially the number of features is also restricted to a random subset. Note that this is usually handled in a slightly different way in the random forest where features are sampled at each tree split.

Prediction works as follows: For classification we do majority voting to create a discrete label and probabilities are predicted by considering the proportions of all predicted labels. For regression the mean value and the standard deviations across predictions is computed.

Note that the passed base learner must always have \texttt{predict.type = 'response'}, while the BaggingWrapper can estimate probabilities and standard errors, so it can be set, e.g., to \texttt{predict.type = 'prob'}. For this reason, when you call \texttt{setPredictType}, the type is only set for the BaggingWrapper, not passed down to the inner learner.

Usage

\texttt{makeBaggingWrapper(learner, bw.\texttt{iters} = 10L, bw.\texttt{replace} = TRUE, bw.\texttt{size},
bw.\texttt{feats} = 1)}

Arguments

- \texttt{learner} [\texttt{Learner | character(1)}]
The learner. If you pass a string the learner will be created via \texttt{makeLearner}.
- \texttt{bw.\texttt{iters}} [\texttt{integer(1)}]
Iterations = number of fitted models in bagging. Default is 10.
- \texttt{bw.\texttt{replace}} [\texttt{logical(1)}]
Sample bags with replacement (bootstrapping)? Default is TRUE.
- \texttt{bw.\texttt{size}} [\texttt{numeric(1)}]
Percentage size of sampled bags. Default is 1 for bootstrapping and 0.632 for subsampling.
- \texttt{bw.\texttt{feats}} [\texttt{numeric(1)}]
Percentage size of randomly selected features in bags. Default is 1. At least one feature will always be selected.
Value

Learner.

See Also

Other wrapper: makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper,
makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper,
makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifiersWrapper,
makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper,
makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper,
makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

makeClassifTask Create a classification, regression, survival, cluster, cost-sensitive classification or multilabel task.

Description

The task encapsulates the data and specifies - through its subclasses - the type of the task. It also contains a description object detailing further aspects of the data.

Useful operators are: getTaskFormula, getTaskFeatureNames, getTaskData, getTaskTargets, and subsetTask.

Object members:

- **env** [environment] Environment where data for the task are stored. Use getTaskData in order to access it.
- **weights** [numeric] See argument. NULL if not present.
- **blocking** [factor] See argument. NULL if not present.
- **task.desc** [TaskDesc] Encapsulates further information about the task.

Notes: For multilabel classification we assume that the presence of labels is encoded via logical columns in data. The name of the column specifies the name of the label. target is then a character vector that points to these columns.

Usage

```r
makeClassifTask(id = deparse(substitute(data)), data, target,
                weights = NULL, blocking = NULL, positive = NA_character_,
                fixup.data = "warn", check.data = TRUE)

makeClusterTask(id = deparse(substitute(data)), data, weights = NULL,
                blocking = NULL, fixup.data = "warn", check.data = TRUE)

makeCostSensTask(id = deparse(substitute(data)), data, costs,
                 blocking = NULL, fixup.data = "warn", check.data = TRUE)
```
makeClassifTask

makeMultilabelTask(id = deparse(substitute(data)), data, target,
weights = NULL, blocking = NULL, positive = NA_character_,
fixup.data = "warn", check.data = TRUE)

makeRegrTask(id = deparse(substitute(data)), data, target, weights = NULL,
blocking = NULL, fixup.data = "warn", check.data = TRUE)

makeSurvTask(id = deparse(substitute(data)), data, target,
censoring = "rcens", weights = NULL, blocking = NULL,
fixup.data = "warn", check.data = TRUE)

Arguments

id [character(1)]
Id string for object. Default is the name of the R variable passed to data.

data [data.frame]
A data frame containing the features and target variable(s).

target [character(1) | character(2) | character(n.classes)]
Name(s) of the target variable(s). For survival analysis these are the names of
the survival time and event columns, so it has length 2. For multilabel classification
it contains the names of the logical columns that encode whether a label
is present or not and its length corresponds to the number of classes.

weights [numeric]
Optional, non-negative case weight vector to be used during fitting. Cannot
be set for cost-sensitive learning. Default is NULL which means no (= equal)
weights.

blocking [factor]
An optional factor of the same length as the number of observations. Observations
with the same blocking level “belong together”. Specifically, they are
either put all in the training or the test set during a resampling iteration. Default
is NULL which means no blocking.

positive [character(1)]
Positive class for binary classification (otherwise ignored and set to NA). Default
is the first factor level of the target attribute.

fixup.data [character(1)]
Should some basic cleaning up of data be performed? Currently this means
removing empty factor levels for the columns. Possible choices are: “no” = Don’t
do it. “warn” = Do it but warn about it. “quiet” = Do it but keep silent. Default
is “warn”.

check.data [logical(1)]
Should sanity of data be checked initially at task creation? You should have
good reasons to turn this off (one might be speed). Default is TRUE.

costs [data.frame]
A numeric matrix or data frame containing the costs of misclassification. We
assume the general case of observation specific costs. This means we have n
rows, corresponding to the observations, in the same order as data. The columns
correspond to classes and their names are the class labels (if unnamed we use y1 to yk as labels). Each entry (i,j) of the matrix specifies the cost of predicting class j for observation i.

censoring [character(1)]
Censoring type. Allowed choices are “rcens” for right censored data (default), “lcens” for left censored and “icens” for interval censored data using the “interval2” format. See Surv for details.

Value
Task .

See Also
Other costsens: makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeCostSensWeightedPairsWrapper

Examples
if (requireNamespace("mlbench")) {
 library(mlbench)
 data(BostonHousing)
 data(Ionosphere)

 makeClassifTask(data = iris, target = "Species")
 makeRegrTask(data = BostonHousing, target = "medv")
 # an example of a classification task with more than those standard arguments:
 blocking = factor(c(rep(1, 51), rep(2, 300)))
 makeClassifTask(id = "myIonosphere", data = Ionosphere, target = "Class",
 positive = "good", blocking = blocking)
 makeClusterTask(data = iris[, -5L])
}

makeConstantClassWrapper

Wraps a classification learner to support problems where the class label is (almost) constant.

Description
If the training data contains only a single class (or almost only a single class), this wrapper creates a model that always predicts the constant class in the training data. In all other cases, the underlying learner is trained and the resulting model used for predictions.

Probabilities can be predicted and will be 1 or 0 depending on whether the label matches the majority class or not.

Usage
makeConstantClassWrapper(learner, frac = 0)
makeCostMeasure

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

frac [numeric(1)]
The fraction of labels in [0, 1) that can be different from the majority label. Default is 0, which means that constant labels are only predicted if there is exactly one label in the data.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

makeCostMeasure

Creates a measure for non-standard misclassification costs.

Description

Creates a cost measure for non-standard classification error costs.

Usage

makeCostMeasure(id = "costs", minimize = TRUE, costs, combine = mean, best = NULL, worst = NULL, name = id, note = "")

Arguments

id [character(1)]
Name of measure. Default is “costs”.

minimize [logical(1)]
Should the measure be minimized? Otherwise you are effectively specifying a benefits matrix. Default is TRUE.

costs [matrix]
Matrix of misclassification costs. Rows and columns have to be named with class labels, order does not matter. Rows indicate true classes, columns predicted classes.
combine [function]
How to combine costs over all cases for a SINGLE test set? Note this is not the same as the aggregate argument in makeMeasure You can set this as well via setAggregation, as for any measure. Default is mean.

best [numeric(1)]
Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.

worst [numeric(1)]
Worst obtainable value for measure. Default is Inf or -Inf, depending on minimize.

name [character]
Name of the measure. Default is id.

note [character]
Description and additional notes for the measure. Default is “”.

Value
Measure.

See Also
Other performance: ConfusionMatrix, calculateConfusionMatrix, calculateROCMeasures, estimateRelativeOverfitting, makeCustomResampledMeasure, makeMeasure, measures, performance

makeCostSensClassifWrapper
Wraps a classification learner for use in cost-sensitive learning.

Description
Creates a wrapper, which can be used like any other learner object. The classification model can easily be accessed via getLearnerModel.

This is a very naive learner, where the costs are transformed into classification labels - the label for each case is the name of class with minimal costs. (If ties occur, the label which is better on average w.r.t. costs over all training data is preferred.) Then the classifier is fitted to that data and subsequently used for prediction.

Usage
makeCostSensClassifWrapper(learner)

Arguments
learner [Learner | character(1)]
The classification learner. If you pass a string the learner will be created via makeLearner.
makeCostSensRegrWrapper

Wraps a regression learner for use in cost-sensitive learning.

Description
Creates a wrapper, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.
For each class in the task, an individual regression model is fitted for the costs of that class. During prediction, the class with the lowest predicted costs is selected.

Usage
makeCostSensRegrWrapper(learner)

Arguments
learner [Learner | character(1)]
The regression learner. If you pass a string the learner will be created via makeLearner.

Value
Learner .

See Also
Other costsens: makeClassifTask, makeCostSensClassifWrapper, makeCostSensWeightedPairsWrapper
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

makeCostSensRegrWrapper

Value
Learner .

See Also
Other costsens: makeClassifTask, makeCostSensClassifWrapper, makeCostSensWeightedPairsWrapper
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper
makeCostSensWeightedPairsWrapper

Wraps a classifier for cost-sensitive learning to produce a weighted pairs model.

Description

Creates a wrapper, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.

For each pair of labels, we fit a binary classifier. For each observation we define the label to be the element of the pair with minimal costs. During fitting, we also weight the observation with the absolute difference in costs. Prediction is performed by simple voting.

This approach is sometimes called cost-sensitive one-vs-one (CS-OVO), because it is obviously very similar to the one-vs-one approach where one reduces a normal multi-class problem to multiple binary ones and aggregates by voting.

Usage

makeCostSensWeightedPairsWrapper(learner)

Arguments

learner [Learner | character(1)]

The classification learner. If you pass a string the learner will be created via makeLearner.

Value

Learner.

References

See Also

Other costsens: makeClassifTask, makeCostSensClassifWrapper, makeCostSensRegrWrapper
makeCustomResampledMeasure

Construct your own resampled performance measure.

Description

Construct your own performance measure, used after resampling. Note that individual training / test set performance values will be set to NA, you only calculate an aggregated value. If you can define a function that makes sense for every single training / test set, implement your own Measure.

Usage

makeCustomResampledMeasure(measure.id, aggregation.id, minimize = TRUE,
 properties = character(0L), fun, extra.args = list(), best = NULL,
 worst = NULL, measure.name = measure.id,
 aggregation.name = aggregation.id, note = "")

Arguments

measure.id [character(1)]
 Short name of measure.
aggregation.id [character(1)]
 Short name of aggregation.
minimize [logical(1)]
 Should the measure be minimized? Default is TRUE.
properties [character]
 Set of measure properties. For a list of values see Measure. Default is character(0).
fun [function(task, group, pred, extra.args)]
 Calculates performance value from ResamplePrediction object. For rare cases you can also use the task, the grouping or the extra arguments extra.args.
 task [Task] The task.
 group [factor] Grouping of resampling iterations. This encodes whether specific iterations ‘belong together’ (e.g. repeated CV).
 pred [Prediction] Prediction object.
 extra.args [list] See below.
extra.args [list]
 List of extra arguments which will always be passed to fun. Default is empty list.
best [numeric(1)]
 Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.
worst [numeric(1)]
 Worst obtainable value for measure. Default is Inf or -Inf, depending on minimize.
makeDownsampleWrapper

```
makeDownsampleWrapper

Fuse learner with simple downsampling (subsampling).
```

Description

Creates a learner object, which can be used like any other learner object. It will only be trained on a subset of the original data to save computational time.

Usage

```
makeDownsampleWrapper(learner, dw.perc = 1, dw.stratify = FALSE)
```

Arguments

- **learner**
 - [Learner | character(1)]
 - The learner. If you pass a string the learner will be created via `makeLearner`.

- **dw.perc**
 - [numeric(1)]
 - See `downsample`. Default is 1.

- **dw.stratify**
 - [logical(1)]
 - See `downsample`. Default is FALSE.

Value

Learner.
`makeDummyFeaturesWrapper`

See Also

Other downsampling: `downsample`
Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDummyFeaturesWrapper`, `makeFeatSelWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMultilabelBinaryRelevanceWrapper`, `makeMultilabelClassificationWrapper`, `makeMultilabelDBRWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTEWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`

Description

Fuses a base learner with the dummy feature creator (see `createDummyFeatures`). Returns a learner which can be used like any other learner.

Usage

`makeDummyFeaturesWrapper(learner, method = "1-of-n", cols = NULL)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| learner | [Learner | character(1)]
| | The learner. If you pass a string the learner will be created via `makeLearner`. |
| method | [character(1)]
| | Available are:
| | "1-of-n": For n factor levels there will be n dummy variables. |
| | "reference": There will be n-1 dummy variables leaving out the first factor |
| | level of each variable. Default is "1-of-n". |
| cols | [character]
| | Columns to create dummy features for. Default is to use all columns. |

Value

`Learner`.

See Also

Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDownsampleWrapper`, `makeFeatSelWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMultilabelBinaryRelevanceWrapper`, `makeMultilabelClassificationWrapper`, `makeMultilabelDBRWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTEWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`
Description

Fuses a base learner with a search strategy to select variables. Creates a learner object, which can be used like any other learner object, but which internally uses `selectFeatures`. If the train function is called on it, the search strategy and resampling are invoked to select an optimal set of variables. Finally, a model is fitted on the complete training data with these variables and returned. See `selectFeatures` for more details.

After training, the optimal features (and other related information) can be retrieved with `getFeatSelResult`.

Usage

```r
makeFeatSelWrapper(learner, resampling, measures, bit.names, bits.to.features, control, show.info = getMlrOption("show.info"))
```

Arguments

- **learner**
 [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **resampling**
 [ResampleInstance | ResampleDesc]
 Resampling strategy for feature selection. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behaviour, look at `FeatSelControl`.

- **measures**
 [list of Measure | Measure]
 Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here `getDefaultMeasure`.

- **bit.names**
 [character]
 Names of bits encoding the solutions. Also defines the total number of bits in the encoding. Per default these are the feature names of the task.

- **bits.to.features**
 [function(x, task)]
 Function which transforms an integer-0-1 vector into a character vector of selected features. Per default a value of 1 in the ith bit selects the ith feature to be in the candidate solution.

- **control**
 [see `FeatSelControl`] Control object for search method. Also selects the optimization algorithm for feature selection.

- **show.info**
 [logical(1)]
 Print verbose output on console? Default is set via `configureMlr`.

Value

Learner.
makeFilter

Create a feature filter.

Description

Creates and registers custom feature filters. Implemented filters can be listed with `listFilterMethods`. Additional documentation for the `fun` parameter specific to each filter can be found in the description.

Minimum redundancy, maximum relevance filter “mrmr” computes the mutual information between the target and each individual feature minus the average mutual information of previously selected features and this feature using the `mRMR` package.

Filter “carscore” determines the “Correlation-Adjusted (marginal) coRelation scores” (short CAR scores). The CAR scores for a set of features are defined as the correlations between the target and the decorrelated features.

Filter “randomForestSRC.rfsrc” computes the importance of random forests fitted in package `randomForestSRC`. The concrete method is selected via the `method` parameter. Possible values are `permute` (default), `random`, `anti`, `permute.ensemble`, `random.ensemble`, `anti.ensemble`. See the VIMP section in the docs for `rfsrc` for details.

Filter “randomForestSRC.var.select” uses the minimal depth variable selection proposed by Ishwaran et al. (2010) (`method = "md"`) or a variable hunting approach (`method = "vh"` or `method = "vh.vimp"`). The minimal depth measure is the default.

Permutation importance of random forests fitted in package `party`. The implementation follows the principle of mean decrease in accuracy used by the `randomForest` package (see description of “randomForest.importance”) filter.

Filter “randomForest.importance” makes use of the `importance` from package `randomForest`. The importance measure to use is selected via the `method` parameter:

See Also

Other featsel: `FeatSelControl`, `analyzeFeatSelResult`, `getFeatSelResult`, `selectFeatures`

Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDownsampleWrapper`, `makeDummyFeaturesWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMultilabelBinaryRelevanceWrapper`, `makeMultilabelClassificationWrapper`, `makeMultilabelDBRWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTEWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`

Examples

```r
# nested resampling with feature selection (with a pretty stupid algorithm for selection)
outer = makeResampleDesc("CV", iters = 2L)
inner = makeResampleDesc("Holdout")
ctrl = makeFeatSelControlRandom(maxit = 1)
lnr = makeFeatSelWrapper("classif.ksvm", resampling = inner, control = ctrl)
# we also extract the selected features for all iteration here
r = resample(lnr, iris.task, outer, extract = getFeatSelResult)
```
oob.accuracy Permutation of Out of Bag (OOB) data.

node.impurity Total decrease in node impurity.

The Pearson correlation between each feature and the target is used as an indicator of feature importance. Rows with NA values are not taken into consideration.

The Spearman correlation between each feature and the target is used as an indicator of feature importance. Rows with NA values are not taken into consideration.

Filter “information.gain” uses the entropy-based information gain between each feature and target individually as an importance measure.

Filter “gain.ratio” uses the entropy-based information gain ratio between each feature and target individually as an importance measure.

Filter “symmetrical.uncertainty” uses the entropy-based symmetrical uncertainty between each feature and target individually as an importance measure.

The chi-square test is a statistical test of independence to determine whether two variables are independent. Filter “chi.squared” applies this test in the following way. For each feature the chi-square test statistic is computed checking if there is a dependency between the feature and the target variable. Low values of the test statistic indicate a poor relationship. High values, i.e., high dependency identifies a feature as more important.

Filter “relief” is based on the feature selection algorithm “ReliefF” by Kononenko et al., which is a generalization of the original “Relief” algorithm originally proposed by Kira and Rendell. Feature weights are initialized with zeros. Then for each instance sample.size instances are sampled, neighbours.count nearest-hit and nearest-miss neighbours are computed and the weight vector for each feature is updated based on these values.

Filter “oneR” makes use of a simple “One-Rule” (OneR) learner to determine feature importance. For this purpose the OneR learner generates one simple association rule for each feature in the data individually and computes the total error. The lower the error value the more important the corresponding feature.

The “univariate.model.score” feature filter resamples an mlr learner specified via perf.learner for each feature individually with randomForest from package rpart being the default learner. Further parameter are the resampling strategy perf.resampling and the performance measure perf.measure.

Filter “anova.test” is based on the Analysis of Variance (ANOVA) between feature and class. The value of the F-statistic is used as a measure of feature importance.

Filter “kruskal.test” applies a Kruskal-Wallis rank sum test of the null hypothesis that the location parameters of the distribution of a feature are the same in each class and considers the test statistic as an variable importance measure: if the location parameters do not differ in at least one case, i.e., the null hypothesis cannot be rejected, there is little evidence that the corresponding feature is suitable for classification.

Simple filter based on the variance of the features independent of each other. Features with higher variance are considered more important than features with low importance.

Filter “permutation.importance” computes a loss function between predictions made by a learner before and after a feature is permuted. Special arguments to the filter function are imp.learner, a [Learner or character] which specifies the learner to use when computing the permutation importance, contrast, a function which takes two numeric vectors and returns one (default is the difference), aggregation, a function which takes a numeric and returns a numeric(1) (default is
the mean), nmc, an integer(1), and replace, a logical(1) which determines whether the feature being permuted is sampled with or without replacement.

Usage

makeFilter(name, desc, pkg, supported.tasks, supported.features, fun)

rf.importance

rf.min.depth

univariate

Arguments

name [character(1)]
Identifier for the filter.

desc [character(1)]
Short description of the filter.

pkg [character(1)]
Source package where the filter is implemented.

supported.tasks [character]
Task types supported.

supported.features [character]
Feature types supported.

fun [function(task, nselect, ...)
Function which takes a task and returns a named numeric vector of scores, one score for each feature of task. Higher scores mean higher importance of the feature. At least nselect features must be calculated, the remaining may be set to NA or omitted, and thus will not be selected. the original order will be restored if necessary.

Format

An object of class Filter of length 6.

Value

Object of class “Filter”.

References

makeFilterWrapper
Fuse learner with a feature filter method.

Description

Fuses a base learner with a filter method. Creates a learner object, which can be used like any other learner object. Internally uses `filterFeatures` before every model fit.

After training, the selected features can be retrieved with `getFilteredFeatures`.

Note that observation weights do not influence the filtering and are simply passed down to the next learner.

Usage

```r
makeFilterWrapper(learner, fw.method = "randomForestSRC.rfsrc",
fw.perc = NULL, fw.abs = NULL, fw.threshold = NULL,
fw.mandatory.feat = NULL, ...)
```

Arguments

- **learner**
 `[Learner | character(1)]`
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **fw.method**
 `[character(1)]`
 Filter method. See `listFilterMethods`. Default is “randomForestSRC.rfsrc”.

- **fw.perc**
 `[numeric(1)]`
 If set, select `fw.perc` top scoring features. Mutually exclusive with arguments `fw.abs` and `fw.threshold`.

- **fw.abs**
 `[numeric(1)]`
 If set, select `fw.abs` top scoring features. Mutually exclusive with arguments `fw.perc` and `fw.threshold`.

- **fw.threshold**
 `[numeric(1)]`
 If set, select features whose score exceeds `fw.threshold`. Mutually exclusive with arguments `fw.perc` and `fw.abs`.

- **fw.mandatory.feat**
 `[character]`
 Mandatory features which are always included regardless of their scores

- **...**
 `[any]`
 Additional parameters passed down to the filter.

Value

`Learner`
makeFixedHoldoutInstance

Generate a fixed holdout instance for resampling.

Description

Generate a fixed holdout instance for resampling.

Usage

makeFixedHoldoutInstance(train.inds, test.inds, size)

Arguments

train.inds [integer]
Indices for training set.

test.inds [integer]
Indices for test set.

size [integer(1)]
Size of the data set to resample. The function needs to know the largest possible index of the whole data set.

See Also

Other filter: filterFeatures, generateFilterValuesData, getFilterValues, getFilteredFeatures, plotFilterValuesGGVIS, plotFilterValues

Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeFilterWrapper(lrn, fw.perc = 0.5)
mod = train(lrn, task)
print(getFilteredFeatures(mod))

now nested resampling, where we extract the features that the filter method selected
r = resample(lrn, task, outer, extract = function(model) {
 getFilteredFeatures(model)
})
print(r$extract)
Value

ResampleInstance.

makeImputeWrapper

Create a custom imputation method.

Description

This is a constructor to create your own imputation methods.

Usage

makeImputeMethod(learn, impute, args = list())

Arguments

learn
[function(data, target, col, ...)]
Function to learn and extract information on column col out of data frame data. Argument target specifies the target column of the learning task. The function has to return a named list of values.

impute
[function(data, target, col, ...)]
Function to impute missing values in col using information returned by learn on the same column. All list elements of the return values of learn are passed to this function into

args
[list]
Named list of arguments to pass to learn via

See Also

Other impute: imputations, impute, makeImputeWrapper, reimpute

makeImputeWrapper

Fuse learner with an imputation method.

Description

Fuses a base learner with an imputation method. Creates a learner object, which can be used like any other learner object. Internally uses impute before training the learner and reimpute before predicting.

Usage

makeImputeWrapper(learner, classes = list(), cols = list(),
dummy.classes = character(0L), dummy.cols = character(0L),
dummy.type = "factor", force.dummies = FALSE, impute.new.levels = TRUE,
recode.factor.levels = TRUE)
Arguments

learner [Learner | character(1)]
 The learner. If you pass a string the learner will be created via makeLearner.

classes [named list]
 Named list containing imputation techniques for classes of columns. E.g. list(numeric = imputeMedian).

cols [named list]
 Named list containing names of imputation methods to impute missing values in the data column referenced by the list element's name. Overrules imputation set via classes.

dummy.classes [character]
 Classes of columns to create dummy columns for. Default is character(0).

dummy.cols [character]
 Column names to create dummy columns (containing binary missing indicator) for. Default is character(0).

dummy.type [character(1)]
 How dummy columns are encoded. Either as 0/1 with type “numeric” or as “factor”. Default is “factor”.

force.dummies [logical(1)]
 Force dummy creation even if the respective data column does not contain any NAs. Note that (a) most learners will complain about constant columns created this way but (b) your feature set might be stochastic if you turn this off. Default is FALSE.

impute.new.levels [logical(1)]
 If new, unencountered factor level occur during reimpputation, should these be handled as NAs and then be imputed the same way? Default is TRUE.

recode.factor.levels [logical(1)]
 Recode factor levels after reimpputation, so they match the respective element of lvl(s) (in the description object) and therefore match the levels of the feature factor in the training data after imputation?. Default is TRUE.

Value

Learner.

See Also

Other impute: imputations, impute, makeImputeMethod, reimpute
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrappercaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper
Description

For a classification learner the predict.type can be set to "prob" to predict probabilities and the maximum value selects the label. The threshold used to assign the label can later be changed using the setThreshold function.

To see all possible properties of a learner, go to: LearnerProperties.

Usage

makeLearner(cl, id = cl, predict.type = "response",
 predict.threshold = NULL, fix.factors.prediction = FALSE,
 par.vals = list(), config = list())

Arguments

cl [character(1)]
Class of learner. By convention, all classification learners start with "classif.", all regression learners with "regr.", all survival learners start with "surv.", all clustering learners with "cluster.", and all multilabel classification learners start with "multilabel.". A list of all integrated learners is available on the learners help page.

id [character(1)]
Id string for object. Used to display object. Default is cl.

predict.type [character(1)]
Classification: "response" (= labels) or "prob" (= probabilities and labels by selecting the ones with maximal probability). Regression: "response" (= mean response) or "se" (= standard errors and mean response). Survival: "response" (= some sort of orderable risk) or "prob" (= time dependent probabilities). Clustering: "response" (= cluster IDS) or "prob" (= fuzzy cluster membership probabilities). Multilabel: "response" (= logical matrix indicating the predicted class labels) or "prob" (= probabilities and corresponding logical matrix indicating class labels). Default is "response".

predict.threshold [numeric]
Threshold to produce class labels. Has to be a named vector, where names correspond to class labels. Only for binary classification it can be a single numerical threshold for the positive class. See setThreshold for details on how it is applied. Default is NULL which means 0.5 / an equal threshold for each class.

fix.factors.prediction [logical(1)]
In some cases, problems occur in underlying learners for factor features during prediction. If the new features have LESS factor levels than during training (a strict subset), the learner might produce an error like "type of predictors in
new data do not match that of the training data”. In this case one can repair this problem by setting this option to TRUE. We will simply add the missing factor levels missing from the test feature (but present in training) to that feature. Default is FALSE.

...
[any]
Optional named (hyper)parameters. Alternatively these can be given using the par.vals argument.

par.vals [list]
Optional list of named (hyper)parameters. The arguments in ... take precedence over values in this list. We strongly encourage you to use one or the other to pass (hyper)parameters to the learner but not both.

config [named list]
Named list of config option to overwrite global settings set via configureMlr for this specific learner.

Value

Learner.

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, removeHyperPars, setHyperPars, setID, setLearnerID, setPredictThreshold, setPredictType

Examples

makeLearner("classif.rpart")
makeLearner("classif.lda", predict.type = "prob")

lrn = makeLearner("classif.lda", method = "t", nu = 10)
print(lrn$par.vals)

makeLearners Create multiple learners at once.

Description

Small helper function that can save some typing when creating multiple learner objects. Calls makeLearner multiple times internally.

Usage

makeLearners(cls, ids = NULL, type = NULL, ...)

Arguments

- **cls** [character]
 Classes of learners.

- **ids** [character]
 Id strings. Must be unique. Default is cls.

- **type** [character(1)]
 Shortcut to prepend type string to cls so one can set cls = "rpart". Default is NULL, i.e., this is not used.

- **...** [any]
 Optional named (hyper)parameters. Alternatively these can be given using the `par.vals` argument.

Value

A named list of Learner. Named by ids.

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

Examples

```
makeLearners(c("rpart", "lda"), type = "classif", predict.type = "prob")
```

Description

A measure object encapsulates a function to evaluate the performance of a prediction. Information about already implemented measures can be obtained here: measures.

A learner is trained on a training set d1, results in a model m and predicts another set d2 (which may be a different one or the training set) resulting in the prediction. The performance measure can now be defined using all of the information of the original task, the fitted model and the prediction.

Object slots:

- **id** [character(1)] See argument.
- **minimize** [logical(1)] See argument.
- **properties** [character] See argument.
- **fun** [function] See argument.
- **extra.args** [list] See argument.
makeMeasure

- **aggr** [Aggregation] See argument.
- **best** [numeric(1)] See argument.
- **worst** [numeric(1)] See argument.
- **name** [character(1)] See argument.
- **note** [character(1)] See argument.

Usage

```
makeMeasure(id, minimize, properties = character(0L), fun,
             extra.args = list(), aggr = test.mean, best = NULL, worst = NULL,
             name = id, note = "")
```

Arguments

- **id** [character(1)]
 Name of measure.
- **minimize** [logical(1)]
 Should the measure be minimized? Default is TRUE.
- **properties** [character]
 Set of measure properties. Some standard property names include:
 - **classif** Is the measure applicable for classification?
 - **classif.multi** Is the measure applicable for multi-class classification?
 - **multilabel** Is the measure applicable for multilabel classification?
 - **regr** Is the measure applicable for regression?
 - **surv** Is the measure applicable for survival?
 - **cluster** Is the measure applicable for cluster?
 - **costsens** Is the measure applicable for cost-sensitive learning?
 - **req.pred** Is prediction object required in calculation? Usually the case.
 - **req.truth** Is truth column required in calculation? Usually the case.
 - **req.task** Is task object required in calculation? Usually not the case
 - **req.model** Is model object required in calculation? Usually not the case
 - **req.feats** Are feature values required in calculation? Usually not the case.
 - **req.prob** Are predicted probabilities required in calculation? Usually not the case
 Default is character(0).
- **fun** [function(task, model, pred, feats, extra.args)]
 Calculates the performance value. Usually you will only need the prediction object `pred`.
 - **task** [Task] The task.
 - **model** [WrappedModel] The fitted model.
 - **pred** [Prediction] Prediction object.
 - **feats** [data.frame] The features.
 - **extra.args** [list] See below.
extra.args [list]
List of extra arguments which will always be passed to fun. Default is empty list.

aggr [Aggregation]
Aggregation function, which is used to aggregate the values measured on test / training sets of the measure to a single value. Default is test.mean.

best [numeric(1)]
Best obtainable value for measure. Default is -Inf or Inf, depending on minimize.

worst [numeric(1)]
Worst obtainable value for measure. Default is Inf or -Inf, depending on minimize.

name [character]
Name of the measure. Default is id.

note [character]
Description and additional notes for the measure. Default is “”.

Value
Measure .

See Also
Other performance: ConfusionMatrix, calculateConfusionMatrix, calculateROCMeasures, estimateRelativeOverfitting, makeCostMeasure, makeCustomResampledMeasure, measures, performance

Examples
f = function(task, model, pred, extra.args)
 sum((pred$data$response - pred$data$truth)^2)
makeMeasure(id = "my.sse", minimize = TRUE, properties = c("regr", "response"), fun = f)

makeModelMultiplexer
Create model multiplexer for model selection to tune over multiple possible models.

Description
Combines multiple base learners by dispatching on the hyperparameter “selected.learner” to a specific model class. This allows to tune not only the model class (SVM, random forest, etc) but also their hyperparameters in one go. Combine this with tuneParams and makeTuneControlIRace for a very powerful approach, see example below.

The parameter set is the union of all (unique) base learners. In order to avoid name clashes all parameter names are prefixed with the base learner id, i.e. “[learner.id].[parameter.name]”.

The predict.type of the Multiplexer is inherited from the predict.type of the base learners.

The getter getLearnerProperties returns the properties of the selected base learner.
Usage

makeModelMultiplexer(base.learners)

Arguments

base.learners [list of Learner]
 List of Learners with unique IDs.

Value

ModelMultiplexer. A Learner specialized as ModelMultiplexer.

Note

Note that logging output during tuning is somewhat shortened to make it more readable. I.e., the artificial prefix before parameter names is suppressed.

See Also

Other multiplexer: makeModelMultiplexerParamSet
Other tune: TuneControl, getNestedTuneResultsOptPathDF, getNestedTuneResultsX, getTuneResult,
 makeModelMultiplexerParamSet, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA,
 makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom,
 makeTuneWrapper, tuneParams, tuneThreshold

Examples

library(BBmisc)
bls = list(
 makeLearner("classif.ksvm"),
 makeLearner("classif.randomForest")
)
lrn = makeModelMultiplexer(bls)
 # simple way to contruct param set for tuning
 # parameter names are prefixed automatically and the 'requires'
 # element is set, too, to make all parameters subordinate to 'selected.learner'
 ps = makeModelMultiplexerParamSet(lrn,
 makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 2^x),
 makeIntegerParam("ntree", lower = 1L, upper = 500L)
)
print(ps)
rdesc = makeResampleDesc("CV", iters = 2L)
 # to save some time we use random search. but you probably want something like this:
 # ctrl = makeTuneControlIrace(maxExperiments = 500L)
 ctrl = makeTuneControlRandom(maxit = 10L)
res = tuneParams(lrn, iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
print(head(as.data.frame(res$opt.path)))
 # more unique and reliable way to construct the param set
makeModelMultiplexerParamSet

Creates a parameter set for model multiplexer tuning.

Description

Handy way to create the param set with less typing.

The following is done automatically:

- The selected.learner param is created
- Parameter names are prefixed.
- The requires field of each param is set. This makes all parameters subordinate to selected.learner

Usage

makeModelMultiplexerParamSet(multiplexer, ..., .check = TRUE)

Arguments

multiplexer [ModelMultiplexer] The multiplexer learner.
...
[ParamSet | Param]
(a) First option: Named param sets. Names must correspond to base learners. You only need to enter the parameters you want to tune without reference to the selected.learner field in any way.
(b) Second option. Just the params you would enter in the param sets. Even shorter to create. Only works when it can be uniquely identified to which learner each of your passed parameters belongs.
makeMulticlassWrapper

makeMulticlassWrapper

Fuses a base learner with a multi-class method. Creates a learner object, which can be used like any other learner object. This way learners which can only handle binary classification will be able to handle multi-class problems, too.

We use a multiclass-to-binary reduction principle, where multiple binary problems are created from the multiclass task. How these binary problems are generated is defined by an error-correcting-output-code (ECOC) code book. This also allows the simple and well-known one-vs-one and one-vs-rest approaches. Decoding is currently done via Hamming decoding, see e.g. here http://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf.

Currently, the approach always operates on the discrete predicted labels of the binary base models (instead of their probabilities) and the created wrapper cannot predict posterior probabilities.

Usage

makeMulticlassWrapper(learner, mcw.method = "onevsrest")

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.
makeMultilabelBinaryRelevanceWrapper

Use binary relevance method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped binary relevance multilabel learner. The multilabel classification problem is converted into simple binary classifications for each label/target on which the binary learner is applied.

Models can easily be accessed via `getLearnerModel`.

Note that it does not make sense to set a threshold in the used base learner when you predict probabilities. On the other hand, it can make a lot of sense, to call `setThreshold` on the `MultilabelBinaryRelevanceWrapper` for each label individually; Or to tune these thresholds with `tuneThreshold`; especially when you face very unbalanced class distributions for each binary label.

Usage

```r
makeMultilabelBinaryRelevanceWrapper(learner)
```

Arguments

- **learner**

 `[Learner | character(1)]`

 The learner. If you pass a string the learner will be created via `makeLearner`.

Value

`Learner`.
makeMultilabelClassifierChainsWrapper

Use classifier chains method (CC) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped classifier chains multilabel learner. CC trains a binary classifier for each label following a given order. In training phase, the feature space of each classifier is extended with true label information of all previous labels in the chain. During the prediction phase, when true labels are not available, they are replaced by predicted labels.

Models can easily be accessed via `getLearnerModel`.

References

See Also

Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDownsampleWrapper`, `makeDummyFeaturesWrapper`, `makeFeatSelWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMultilabelClassifierChainsWrapper`, `makeMultilabelDBRWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTEWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`

Other multilabel: `getMultilabelBinaryPerformances`, `makeMultilabelClassifierChainsWrapper`, `makeMultilabelDBRWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`

Examples

d = getTaskData(yeast.task)
 # drop some labels so example runs faster
 d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
 task = makeMultilabelTask(data = d, target = c("label1", "label2"))
 lrn = makeLearner("classif.rpart")
 lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
 lrn = setPredictType(lrn, "prob")
 # train, predict and evaluate
 mod = train(lrn, task)
 pred = predict(mod, task)
 performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
 # the next call basically has the same structure for any multilabel meta wrapper
 getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
 # above works also with predictions from resample!
Usage

`makeMultilabelClassifierChainsWrapper(learner, order = NULL)`

Arguments

- `learner` [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.
- `order` [character]
 Specifies the chain order using the names of the target labels. E.g. for \(m \) target labels, this must be a character vector of length \(m \) that contains a permutation of the target label names. Default is `NULL`, which uses a random ordering of the target label names.

Value

`Learner`.

References

Montanes, E. et al. (2013) *Dependent binary relevance models for multi-label classification* Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDownsampleWrapper`, `makeDummyFeaturesWrapper`, `makeFeatSelWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMulticlassBinaryRelevanceWrapper`, `makeMulticlassDBRWrapper`, `makeMulticlassNestedStackingWrapper`, `makeMulticlassStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTEWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`.

Other multilabel: `getMultilabelBinaryPerformances`, `makeMulticlassBinaryRelevanceWrapper`, `makeMulticlassDBRWrapper`, `makeMulticlassNestedStackingWrapper`, `makeMulticlassStackingWrapper`.

Examples

d = getTaskData(yeast.task)
drop some labels so example runs faster
d = d[, seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lrn = makeLearner("classif.rpart")
lrn = makeMulticlassBinaryRelevanceWrapper(lrn)
lrn = setPredictType(lrn, "prob")
train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multiclass.hamloss, multiclass.subset01, multiclass.f1))
the next call basically has the same structure for any multilabel meta wrapper
getMulticlassBinaryPerformances(pred, measures = list(mmce, auc))
above works also with predictions from resample!
makeMultilabelDBRWrapper

Use dependent binary relevance method (DBR) to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped DBR multilabel learner. The multilabel classification problem is converted into simple binary classifications for each label/target on which the binary learner is applied. For each target, actual information of all binary labels (except the target variable) is used as additional features. During prediction these labels need are obtained by the binary relevance method using the same binary learner.

Models can easily be accessed via `getLearnerModel`.

Usage

```r
makeMultilabelDBRWrapper(learner)
```

Arguments

- **learner**
  ```r
  [Learner | character(1)]
  ```
 The learner. If you pass a string the learner will be created via `makeLearner`.

Value

Learner.

References

Montanes, E. et al. (2013) *Dependent binary relevance models for multi-label classification* Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: `makeBaggingWrapper`, `makeConstantClassWrapper`, `makeCostSensClassifWrapper`, `makeCostSensRegrWrapper`, `makeDownsampleWrapper`, `makeDummyFeaturesWrapper`, `makeFeatSelWrapper`, `makeFilterWrapper`, `makeImputeWrapper`, `makeMulticlassWrapper`, `makeMultilabelBinaryRelevanceWrapper`, `makeMultilabelClassifierChainsWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`, `makeOverBaggingWrapper`, `makePreprocWrapperCaret`, `makePreprocWrapper`, `makeRemoveConstantFeaturesWrapper`, `makeSMOTETWrapper`, `makeTuneWrapper`, `makeUndersampleWrapper`, `makeWeightedClassesWrapper`

Other multilabel: `getMultilabelBinaryPerformances`, `makeMultilabelBinaryRelevanceWrapper`, `makeMultilabelClassifierChainsWrapper`, `makeMultilabelNestedStackingWrapper`, `makeMultilabelStackingWrapper`
Examples

d = getTaskData(yeast.task)
 # drop some labels so example runs faster
 d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
 task = makeMultilabelTask(data = d, target = c("label1", "label2"))
 lrn = makeLearner("classif.rpart")
 lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
 lrn = setPredictType(lrn, "prob")
 # train, predict and evaluate
 mod = train(lrn, task)
 pred = predict(mod, task)
 performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
 # the next call basically has the same structure for any multilabel meta wrapper
 getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
 # above works also with predictions from resample!

makeMultilabelNestedStackingWrapper

Use nested stacking method to create a multilabel learner.

Description

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped nested stacking multilabel learner. Nested stacking trains a binary classifier for each label following a given order. In training phase, the feature space of each classifier is extended with predicted label information (by cross validation) of all previous labels in the chain. During the prediction phase, predicted labels are obtained by the classifiers, which have been learned on all training data.

Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelNestedStackingWrapper(learner, order = NULL, cv.folds = 2)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

order [character]
Specifies the chain order using the names of the target labels. E.g. for \(m \) target labels, this must be a character vector of length \(m \) that contains a permutation of the target label names. Default is NULL, which uses a random ordering of the target label names.

cv.folds [integer(1)]
The number of folds for the inner cross validation method to predict labels for the augmented feature space. Default is 2.
Use stacking method (stacked generalization) to create a multilabel learner.

Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped stacking multilabel learner. Stacking trains a binary classifier for each label using predicted label information of all labels (including the target label) as additional features (by
cross validation). During prediction these labels need are obtained by the binary relevance method using the same binary learner.
Models can easily be accessed via getLearnerModel.

Usage

makeMultilabelStackingWrapper(learner, cv.folds = 2)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.
cv.folds [integer(1)]
The number of folds for the inner cross validation method to predict labels for the augmented feature space. Default is 2.

Value

Learner.

References

Montanes, E. et al. (2013) Dependent binary relevance models for multi-label classification Artificial Intelligence Center, University of Oviedo at Gijon, Spain.

See Also

Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMulticlassBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTETwrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

Other multilabel: getMultilabelBinaryPerformances, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper

Examples

d = getTaskData(yeast.task)
drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20L), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lrn = makeLearner("classif.rpart")
lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
lrn = setPredictType(lrn, "prob")
train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
the next call basically has the same structure for any multilabel meta wrapper
makeOverBaggingWrapper

Fuses a classification learner for binary classification with an over-bagging method for imbalancy correction when we have strongly unequal class sizes. Creates a learner object, which can be used like any other learner object. Models can easily be accessed via `getLearnerModel`.

OverBagging is implemented as follows: For each iteration a random data subset is sampled. Class examples are oversampled with replacement with a given rate. Members of the other class are either simply copied into each bag, or bootstrapped with replacement until we have as many majority class examples as in the original training data. Features are currently not changed or sampled.

Prediction works as follows: For classification we do majority voting to create a discrete label and probabilities are predicted by considering the proportions of all predicted labels.

Usage

```r
makeOverBaggingWrapper(learner, obw.iters = 10L, obw.rate = 1,
                           obw.maxcl = "boot", obw.cl = NULL)
```

Arguments

- **learner** [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **obw.iters** [integer(1)]
 Number of fitted models in bagging. Default is 10.

- **obw.rate** [numeric(1)]
 Factor to upsample a class in each bag. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

- **obw.maxcl** [character(1)]
 How should other class (usually larger class) be handled? “all” means every instance of the class gets in each bag, “boot” means the class instances are bootstrapped in each iteration. Default is “boot”.

- **obw.cl** [character(1)]
 Which class should be over- or undersampled. If NULL, `makeOverBaggingWrapper` will take the smaller class.

Value

Learner.
Description
Fuses a base learner with a preprocessing method. Creates a learner object, which can be used like any other learner object, but which internally preprocesses the data as requested. If the train or predict function is called on data / a task, the preprocessing is always performed automatically.

Usage
makePreprocWrapper(learner, train, predict, par.set = makeParamSet(), par.vals = list())

Arguments
learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

train [function(data, target, args)]
Function to preprocess the data before training. target is a string and denotes the target variable in data. args is a list of further arguments and parameters to influence the preprocessing. Must return a list(data, control), where data is the preprocessed data and control stores all information necessary to do the preprocessing before predictions.

predict [function(data, target, args, control)]
Function to preprocess the data before prediction. target is a string and denotes the target variable in data. args are the args that were passed to train. control is the object you returned in train. Must return the processed data.

par.set [ParamSet]
Parameter set of LearnerParam objects to describe the parameters in args. Default is empty set.

par.vals [list]
Named list of default values for params in args respectively par.set. Default is empty list.
makePreprocWrapperCaret

Value
Learner.

See Also
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

Description
Fuses a learner with preprocessing methods provided by preProcess. Before training the preprocessing will be performed and the preprocessing model will be stored. Before prediction the preprocessing model will transform the test data according to the trained model. After being wrapped the learner will support missing values although this will only be the case if ppc.knnImpute, ppc.bagImpute or ppc.medianImpute is set to TRUE.

Usage
makePreprocWrapperCaret(learner, ...)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

...
[any]
See preProcess for parameters not listed above. If you use them you might want to define them in the add.par.set so that they can be tuned.

Value
Learner.

See Also
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper
makeRemoveConstantFeaturesWrapper

Fuse learner with removal of constant features preprocessing.

Description
Fuses a base learner with the preprocessing implemented in `removeConstantFeatures`.

Usage
```
makeRemoveConstantFeaturesWrapper(learner, perc = 0,
  dont.rm = character(0L), na.ignore = FALSE,
  tol = .Machine$double.eps^0.5)
```

Arguments
- `learner` [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.
- `perc` [numeric(1)]
 The percentage of a feature values in [0, 1) that must differ from the mode value.
 Default is 0, which means only constant features with exactly one observed level are removed.
- `dont.rm` [character]
 Names of the columns which must not be deleted. Default is no columns.
- `na.ignore` [logical(1)]
 Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default is FALSE.
- `tol` [numeric(1)]
 Numerical tolerance to treat two numbers as equal. Variables stored as double will get rounded accordingly before computing the mode. Default is `sqrt(.Machine$double.eps)`.

Value
`Learner`.

See Also
Other wrapper: `makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper`
makeResampleDesc

Create a description object for a resampling strategy.

Description

A description of a resampling algorithm contains all necessary information to create a ResampleInstance, when given the size of the data set.

Usage

makeResampleDesc(method, predict = "test", ..., stratify = FALSE, stratify.cols = NULL)

Arguments

method [character(1)]

predict [character(1)]
What to predict during resampling: “train”, “test” or “both” sets. Default is “test”.

... [any]
Further parameters for strategies.

iters [integer(1)] Number of iterations, for “CV”, “Subsample” and “Bootstrap”.

split [numeric(1)] Proportion of training cases for “Holdout” and “Subsample” between 0 and 1. Default is 2/3.

reps [integer(1)] Repeats for “RepCV”. Here iters = folds * reps. Default is 10.

folds [integer(1)] Folds in the repeated CV for RepCV. Here iters = folds * reps. Default is 10.

stratify [logical(1)]
Should stratification be done for the target variable? For classification tasks, this means that the resampling strategy is applied to all classes individually and the resulting index sets are joined to make sure that the proportion of observations in each training set is as in the original data set. Useful for imbalanced class sizes. For survival tasks stratification is done on the events, resulting in training sets with comparable censoring rates.

stratify.cols [character]
Stratify on specific columns referenced by name. All columns have to be factors. Note that you have to ensure yourself that stratification is possible, i.e. that each strata contains enough observations. This argument and stratify are mutually exclusive.
Details

Some notes on some special strategies:

Repeated cross-validation Use “RepCV”. Then you have to set the aggregation function for your preferred performance measure to “testgroup.mean” via `setAggregation`.

B632 bootstrap Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the aggregation function for your preferred performance measure to “b632” via `setAggregation`.

B632+ bootstrap Use “Bootstrap” for bootstrap and set predict to “both”. Then you have to set the aggregation function for your preferred performance measure to “b632plus” via `setAggregation`.

Fixed Holdout set Use `makeFixedHoldoutInstance`.

Object slots:

- **id** [character(1)] Name of resampling strategy.
- **iters** [integer(1)] Number of iterations. Note that this is always the complete number of generated train/test sets, so for a 10-times repeated 5fold cross-validation it would be 50.
- **predict** [character(1)] See argument.
- **stratify** [logical(1)] See argument.

All parameters passed in ... **under the respective argument name** See arguments.

Value

`ResampleDesc`.

Standard ResampleDesc objects

For common resampling strategies you can save some typing by using the following description objects:

- **hout** holdout a.k.a. test sample estimation (two-thirds training set, one-third testing set)
- **cv2** 2-fold cross-validation
- **cv3** 3-fold cross-validation
- **cv5** 5-fold cross-validation
- **cv10** 10-fold cross-validation

See Also

Other resample: `ResamplePrediction,ResampleResult,addRRMeasure,getRRPredictionList, getRRPredictions,getRRTaskDescription,getRRTaskDesc,makeResampleInstance,resample`
makeResampleInstance

Examples

```r
# Bootstraping
makeResampleDesc("Bootstrap", iters = 10)
makeResampleDesc("Bootstrap", iters = 10, predict = "both")

# Subsampling
makeResampleDesc("Subsample", iters = 10, split = 3/4)
makeResampleDesc("Subsample", iters = 10)

# Holdout a.k.a. test sample estimation
makeResampleDesc("Holdout")
```

Description

This class encapsulates training and test sets generated from the data set for a number of iterations. It mainly stores a set of integer vectors indicating the training and test examples for each iteration.

Usage

```r
makeResampleInstance(desc, task, size, ...)
```

Arguments

- `desc` [ResampleDesc | character(1)]
 Resampling description object or name of resampling strategy. In the latter case `makeResampleDesc` will be called internally on the string.

- `task` [Task]
 Data of task to resample from. Prefer to pass this instead of `size`.

- `size` [integer]
 Size of the data set to resample. Can be used instead of `task`.

- `...` [any]
 Passed down to `makeResampleDesc` in case you passed a string in `desc`. Otherwise ignored.

Details

Object slots:

- `desc` [ResampleDesc] See argument.
- `size` [integer(1)] See argument.
- `train.ind` [list of integer] List of training indices for all iterations.
- `test.ind` [list of integer] List of test indices for all iterations.
- `group` [factor] Optional grouping of resampling iterations. This encodes whether specific iterations 'belong together' (e.g., repeated CV), and it can later be used to aggregate performance values accordingly. Default is 'factor()'.
makeSMOTEWrapper

Fuse learner with SMOTE oversampling for imbalancy correction in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses smote before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next learner.

Usage

makeSMOTEWrapper(learner, sw.rate = 1, sw.nn = 5L, sw.standardize = TRUE, sw.alt.logic = FALSE)

Arguments

- **learner** [Learner | character(1)]
 The learner. If you pass a string the learner will be created via makeLearner.

- **sw.rate** [numeric(1)]
 Factor to oversample the smaller class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

- **sw.nn** [integer(1)]
 Number of nearest neighbors to consider. Default is 5.

- **sw.standardize** [logical(1)]
 Standardize input variables before calculating the nearest neighbors for data sets with numeric input variables only. For mixed variables (numeric and factor) the gower distance is used and variables are standardized anyway. Default is TRUE.
Use an alternative logic for selection of minority class observations. Instead of sampling a minority class element AND one of its nearest neighbors, each minority class element is taken multiple times (depending on rate) for the interpolation and only the corresponding nearest neighbor is sampled. Default is FALSE.

Value

Learner.

See Also

Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

makeStackedLearner

Create a stacked learner object.

Description

A stacked learner uses predictions of several base learners and fits a super learner using these predictions as features in order to predict the outcome. The following stacking methods are available:

average Averaging of base learner predictions without weights.
stack.nocv Fits the super learner, where in-sample predictions of the base learners are used.
stack.cv Fits the super learner, where the base learner predictions are computed by crossvalidated predictions (the resampling strategy can be set via the resampling argument).
hill.climb Select a subset of base learner predictions by hill climbing algorithm.
compress Train a neural network to compress the model from a collection of base learners.

Usage

makeStackedLearner(base.learners, super.learner = NULL, predict.type = NULL, method = "stack.nocv", use.feat = FALSE, resampling = NULL, parset = list())
Arguments

base.learners ([list of] Learner]
A list of learners created with makeLearner.

super.learner [Learner | character(1)]
The super learner that makes the final prediction based on the base learners. If you pass a string, the super learner will be created via makeLearner. Not used for method = 'average'. Default is NULL.

predict.type [character(1)]
Sets the type of the final prediction for method = 'average'. For other methods, the predict type should be set within super.learner. If the type of the base learner prediction, which is set up within base.learners, is

"prob" then predict.type = 'prob' will use the average of all base learner predictions and predict.type = 'response' will use the class with highest probability as final prediction.

"response" then, for classification tasks with predict.type = 'prob', the final prediction will be the relative frequency based on the predicted base learner classes and classification tasks with predict.type = 'response' will use majority vote of the base learner predictions to determine the final prediction. For regression tasks, the final prediction will be the average of the base learner predictions.

method [character(1)]
"average" for averaging the predictions of the base learners, "stack.nocv" for building a super learner using the predictions of the base learners, "stack.cv" for building a super learner using crossvalidated predictions of the base learners. "hill.climb" for averaging the predictions of the base learners, with the weights learned from hill climbing algorithm and "compress" for compressing the model to mimic the predictions of a collection of base learners while speeding up the predictions and reducing the size of the model. Default is "stack.nocv",

use.feat [logical(1)]
Whether the original features should also be passed to the super learner. Not used for method = 'average'. Default is FALSE.

resampling [ResampleDesc]
Resampling strategy for method = 'stack.cv'. Currently only CV is allowed for resampling. The default NULL uses 5-fold CV.

parset the parameters for hill.climb method, including
replace Whether a base learner can be selected more than once.
init Number of best models being included before the selection algorithm.
bagprob The proportion of models being considered in one round of selection.
bagtime The number of rounds of the bagging selection.
metric The result evaluation metric function taking two parameters pred and true, the smaller the score the better.

the parameters for compress method, including
k the size multiplier of the generated data
prob the probability to exchange values
s the standard deviation of each numerical feature
makeTuneControlCMAES

Create control object for hyperparameter tuning with CMAES.

Description

CMA Evolution Strategy with method cma_es. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded. The sigma variance parameter is initialized to 1/4 of the span of box-constraints per parameter dimension.

Usage

makeTuneControlCMAES(same.resampling.instance = TRUE, impute.val = NULL, start = NULL, tune.threshold = FALSE, tune.threshold.args = list(), log.fun = "default", final.dw.perc = NULL, budget = NULL, ...)

Arguments

same.resampling.instance
 [logical(1)]
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val
 [numeric]
 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are

Examples

Classification
data(iris)
tsk = makeClassifTask(data = iris, target = "Species")
base = c("classif.rpart", "classif.lda", "classif.svm")
lrns = lapply(base, makeLearner)
lrns = lapply(lrns, setPredictType, "prob")
m = makeStackedLearner(base.learners = lrns,
 predict.type = "prob", method = "hill.climb")
tmp = train(m, tsk)
res = predict(tmp, tsk)

Regression
data(BostonHousing, package = "mlbench")
tsk = makeRegrTask(data = BostonHousing, target = "medv")
base = c("regr.rpart", "regr.svm")
lrns = lapply(base, makeLearner)
m = makeStackedLearner(base.learners = lrns,
 predict.type = "response", method = "compress")
tmp = train(m, tsk)
res = predict(tmp, tsk)
logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

start

[**list**]
Named list of initial parameter values.

tune.threshold

[**logical(1)**]
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args

[**list**]
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun

[**function | character(1)**]
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set.control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc

[**boolean**]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget

[**integer(1)**]
Maximum budget for tuning. This value restricts the number of function evaluations. The budget corresponds to the product of the number of generations (maxit) and the number of offsprings per generation (lambda).

...

[**any**]
Further control parameters passed to the control arguments of cma_es or GenSA, as well as towards the tunerConfig argument of irace.

Value

TuneControlCMAES

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold
MakeTuneControlDesign

Create control object for hyperparameter tuning with predefined design.

Description

Completely pre-specify a data.frame of design points to be evaluated during tuning. All kinds of parameter types can be handled.

Usage

makeTuneControlDesign(same.resampling.instance = TRUE, impute.val = NULL,
 design = NULL, tune.threshold = FALSE, tune.threshold.args = list(),
 log.fun = "default")

Arguments

same.resampling.instance
 [logical(1)]
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val
 [numeric]
 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

design
 [data.frame]
 data.frame containing the different parameter settings to be evaluated. The columns have to be named according to the ParamSet which will be used in tune(). Proper designs can be created with generateDesign for instance.

tune.threshold
 [logical(1)]
 Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args
 [list]
 Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun
 [function | character(1)]
 Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to
“memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set.control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

Value

TuneControlDesign

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDF, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIRace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold

makeTuneControlGenSA Create control object for hyperparameter tuning with GenSA.

Description

Generalized simulated annealing with method GenSA. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded.

Usage

makeTuneControlGenSA(same.resampling.instance = TRUE, impute.val = NULL, start = NULL, tune.threshold = FALSE, tune.threshold.args = list(), log.fun = "default", final.dw.perc = NULL, budget = NULL, ...)

Arguments

same.resampling.instance

[logical(1)]
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val

[numeric]
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

start | [list]
Named list of initial parameter values.

`tune.threshold` | [logical(1)]
Should the threshold be tuned for the measure at hand, after each hyperparam-
ter evaluation, via `tunethreshold`? Only works for classification if the predict
type is “prob”. Default is FALSE.

`tune.threshold.args` | [list]
Further arguments for threshold tuning that are passed down to `tunethreshold`
Default is none.

`log.fun` | [function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory”, the memory usage for each evaluation will also be displayed, with
a small increase in run time. Otherwise a function with arguments learner,
resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas,
stage, and prev.stage is expected. The default displays the performance mea-
sures, the time needed for evaluating, the currently used memory and the max
memory ever used before (the latter two both taken from `gc`). See the imple-
mation for details.

`final.dw.perc` | [boolean]
If a Learner wrapped by a `makeDownsampleWrapper` is used, you can define the
value of `dw.perc` which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

`budget` | [integer(1)]
Maximum budget for tuning. This value restricts the number of function eval-
uations. GenSA defines the budget via the argument `max.call`. However, one
should note that this algorithm does not stop its local search before its end. This
behavior might lead to an extension of the defined budget and will result in a
warning.

... | [any]
Further control parameters passed to the control arguments of `cma_es` or GenSA,
as well as towards the tunerConfig argument of `irace`.

Value

TuneControlGenSA .

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDF, getNestedTuneResultsX, getTuneResult,
makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign,
makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom,
makeTuneWrapper, tuneParams, tuneThreshold
makeTuneControlGrid

Create control object for hyperparameter tuning with grid search.

Description

A basic grid search can handle all kinds of parameter types. You can either use their correct param
type and resolution, or discretize them yourself by always using makeDiscreteParam in the
par.set passed to tuneParams.

Usage

makeTuneControlGrid(same.resampling.instance = TRUE, impute.val = NULL,
resolution = 10L, tune.threshold = FALSE, tune.threshold.args = list(),
log.fun = "default", final.dw.perc = NULL, budget = NULL)

Arguments

same.resampling.instance

[logical(1)]
Should the same resampling instance be used for all evaluations to reduce vari-
ance? Default is TRUE.

impute.val

[numeric]
If something goes wrong during optimization (e.g. the learner crashes), this
value is fed back to the tuner, so the tuning algorithm does not abort. It is not
stored in the optimization path, an NA and a corresponding error message are
logged instead. Note that this value is later multiplied by -1 for maximization
measures internally, so you need to enter a larger positive value for maximization
here as well. Default is the worst obtainable value of the performance measure
you optimize for when you aggregate by mean value, or Inf instead. For multi-
criteria optimization pass a vector of imputation values, one for each of your
measures, in the same order as your measures.

resolution

[integer]
Resolution of the grid for each numeric/integer parameter in par.set. For vec-
tor parameters, it is the resolution per dimension. Either pass one resolution for
all parameters, or a named vector. See generateGridDesign. Default is 10.

tune.threshold

[logical(1)]
Should the threshold be tuned for the measure at hand, after each hyperparam-
eter evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args

[list]
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

log.fun

[function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
"memory", the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set.control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc [boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget [integer]
Maximum budget for tuning. This value restricts the number of function evaluations. If set, must equal the size of the grid.

Value
TuneControlGrid

See Also
Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold

makeTuneControlIrace

Create control object for hyperparameter tuning with Irace.

Description
Tuning with iterated F-Racing with method irace. All kinds of parameter types can be handled. We return the best of the final elite candidates found by irace in the last race. Its estimated performance is the mean of all evaluations ever done for that candidate. More information on irace can be found in the TR at http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf.

For resampling you have to pass a ResampleDesc, not a ResampleInstance. The resampling strategy is randomly instantiated n.instances times and these are the instances in the sense of irace (instances element of tunerConfig in irace). Also note that irace will always store its tuning results in a file on disk, see the package documentation for details on this and how to change the file path.

Usage

makeTuneControlIrace(impute.val = NULL, n.instances = 100L,
show.irace.output = FALSE, tune.threshold = FALSE,
tune.threshold.args = list(), log.fun = "default", final.dw.perc = NULL,
budget = NULL, ...)

Arguments

impute.val [numeric]
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures.

n.instances [integer(1)]
Number of random resampling instances for irace, see details. Default is 100.

show.irace.output [logical(1)]
Show console output of irace while tuning? Default is FALSE.

tune.threshold [logical(1)]
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args [list]
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun [function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc [boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget [integer(1)]
Maximum budget for tuning. This value restricts the number of function evaluations. It is passed to maxExperiments.

... [any]
Further control parameters passed to the control arguments of cma_es or GenSA, as well as towards the tunerConfig argument of irace.
makeTuneControlMBO

Create control object for hyperparameter tuning with MBO.

Description

Model-based / Bayesian optimization with the function `mbo` from the `mlrMBO` package. Please refer to https://github.com/mlr-org/mlrMBO for further info.

Usage

```r
makeTuneControlMBO(same.resampling.instance = TRUE, impute.val = NULL,
learner = NULL, mbo.control = NULL, tune.threshold = FALSE,
tune.threshold.args = list(), continue = FALSE, log.fun = "default",
final.dw.perc = NULL, budget = NULL, mbo.keep.result = FALSE,
mbo.design = NULL)
```

Arguments

- `same.resampling.instance`

 `[logical(1)]`

 Should the same resampling instance be used for all evaluations to reduce variance? Default is `TRUE`.

- `impute.val`

 `[numeric]`

 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or `Inf` instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

- `learner`

 `[Learner | NULL]`

 The surrogate learner: A regression learner to model performance landscape. For the default, NULL, `mlrMBO` will automatically create a suitable learner based on the rules described in `makeMBOllearner`.

Value

`TuneControlMBO`

See Also

Other tune: `TuneControl, getNestedTuneResultsOptPathDF, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold`
mbo.control [MBOControl | NULL]
Control object for model-based optimization tuning. For the default, NULL, the
control object will be created with all the defaults as described in makeMBOControl.

tune.threshold [logical(1)]
Should the threshold be tuned for the measure at hand, after each hyperparameter
evaluation, via tuneThreshold? Only works for classification if the predict
type is “prob”. Default is FALSE.

tune.threshold.args [list]
Further arguments for threshold tuning that are passed down to tuneThreshold.
Default is none.

continue [logical(1)]
Resume calculation from previous run using mboContinue? Requires “save.file.path”
to be set. Note that the OptPath in the OptResult will only include the evaluations
after the continuation. The complete OptPath will be found in the slot mboresult$opt.path.

log.fun [function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design
points, the resulting performances, and the runtime will be reported. If set to
“memory”, the memory usage for each evaluation will also be displayed, with
a small increase in run time. Otherwise a function with arguments learner,
resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas,
stage, and prev.stage is expected. The default displays the performance measures,
the time needed for evaluating, the currently used memory and the max
memory ever used before (the latter two both taken from gc). See the implementa-
tion for details.

final.dw.perc [boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the
value of dw.perc which is used to train the Learner with the final parameter
setting found by the tuning. Default is NULL which will not change anything.

budget [integer(1)]
Maximum budget for tuning. This value restricts the number of function evalua-
tions.

mbo.keep.result [logical(1)]
Should the MBOSingleObjResult be stored in the result? Default is FALSE.

mbo.design [data.frame | NULL]
Initial design as data frame. If the parameters have corresponding trafo func-
tions, the design must not be transformed before it is passed! For the default,
NULL, a default design is created like described in mbo.

Value

TuneControlMBO
makeTuneControlRandom

Create control object for hyperparameter tuning with random search.

Description

Random search. All kinds of parameter types can be handled.

Usage

makeTuneControlRandom(same.resampling.instance = TRUE, maxit = NULL,
 tune.threshold = FALSE, tune.threshold.args = list(),
 log.fun = "default", final.dw.perc = NULL, budget = NULL)

Arguments

same.resampling.instance
 [logical(1)]
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

maxit
 [integer() | NULL]
 Number of iterations for random search. Default is 100.

tune.threshold
 [logical(1)]
 Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via `tuneThreshold`? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args
 [list]
 Further arguments for threshold tuning that are passed down to `tuneThreshold`. Default is none.

log.fun
 [function | character(1)]
 Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments `learner`, `resampling`, `measures`, `par.set`, `control`, `opt.path`, `dob`, `x`, `y`, `remove.nas`, `stage`, and `prev.stage` is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from `gc`). See the implementation for details.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold
Documentation for `makeTuneWrapper`

final.dw.perc
[boolean]
If a Learner wrapped by a `makeDownsampleWrapper` is used, you can define the value of `dw.perc` which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget
[integerHQI]
Maximum budget for tuning. This value restricts the number of function evaluations. The budget equals the number of iterations (maxit) performed by the random search algorithm.

Value
TuneControlRandom

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIRace, makeTuneControlMBO, makeTuneWrapper, tuneParams, tuneThreshold

Documentation for `makeTuneWrapper`

Description

Fuse learner with tuning. Creates a learner object, which can be used like any other learner object, but which internally uses `tuneParams`. If the train function is called on it, the search strategy and resampling are invoked to select an optimal set of hyperparameter values. Finally, a model is fitted on the complete training data with these optimal hyperparameters and returned. See `tuneParams` for more details.

After training, the optimal hyperparameters (and other related information) can be retrieved with `getTuneResult`.

Usage

```r
makeTuneWrapper(learner, resampling, measures, par.set, control,  
    show.info = getMLrOption("show.info"))
```

Arguments

- **learner**
 [Learner | characterHQI]
 The learner. If you pass a string the learner will be created via `makeLearner`.

- **resampling**
 [ResampleInstance | ResampleDesc]
 Resampling strategy to evaluate points in hyperparameter space. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at `TuneControl`.

makeTuneWrapper

measures [list of Measure | Measure]
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefauiMeasure.

par.set [ParamSet]
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define it.

control [TuneControl]
Control object for search method. Also selects the optimization algorithm for
tuning.

show.info [logical(1)]
Print verbose output on console? Default is set via configureMLR.

Value

Learner.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPath, getNestedTuneResultsX, getTuneResult,
makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign,
makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO,
makeTuneControlRandom, tuneParams, tuneThreshold

Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper,
makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper,
makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper,
makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper,
makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper,
makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
stupid mini grid
ps = makeParamSet(
 makeDiscreteParam("cp", values = c(0.05, 0.1)),
 makeDiscreteParam("minsplit", values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
nested resampling for evaluation
we also extract tuned hyper pars in each iteration
Fuse learner with simple over/undersampling for imbalancy correction in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses `oversample` or `undersample` before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next learner.

Usage

```r
makeUndersampleWrapper(learner, usw.rate = 1, usw.cl = NULL)
makesOverSampleWrapper(learner, osw.rate = 1, osw.cl = NULL)
```

Arguments

- `learner`: [Learner | character(1)]
 The learner. If you pass a string the learner will be created via `makeLearner`.

- `usw.rate`: [numeric(1)]
 Factor to downsample a class. Must be between 0 and 1, where 1 means no downsampling, 0.5 implies reduction to 50 percent and 0 would imply reduction to 0 observations. Default is 1.

- `usw.cl`: [character(1)]
 Class that should be undersampled. Default is NULL, which means the larger one.

- `osw.rate`: [numeric(1)]
 Factor to oversample a class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size. Default is 1.

- `osw.cl`: [character(1)]
 Class that should be oversampled. Default is NULL, which means the smaller one.

Value

Learner.
makeWeightedClassesWrapper

Wraps a classifier for weighted fitting where each class receives a weight.

Description

Creates a wrapper, which can be used like any other learner object.

Fitting is performed in a weighted fashion where each observation receives a weight, depending on the class it belongs to, see `wcw.weight`. This might help to mitigate problems caused by imbalanced class distributions.

This weighted fitting can be achieved in two ways:

a) The learner already has a parameter for class weighting, so one weight can directly be defined per class. Example: “classif.ksvm” and parameter `class.weights`. In this case we don’t really do anything fancy. We convert `wcw.weight` a bit, but basically simply bind its value to the class weighting param. The wrapper in this case simply offers a convenient, consistent fashion for class weighting - and tuning! See example below.

b) The learner does not have a direct parameter to support class weighting, but supports observation weights, so `hasLearnerProperties(learner, 'weights')` is TRUE. This means that an individual, arbitrary weight can be set per observation during training. We set this weight depending on the class internally in the wrapper. Basically we introduce something like a new “class.weights” parameter for the learner via observation weights.

Usage

```r
makeWeightedClassesWrapper(learner, wcw.param = NULL, wcw.weight = 1)
```

Arguments

- **learner**
 - `[Learner | character(1)]`
 - The classification learner. If you pass a string the learner will be created via `makeLearner`.

- **wcw.param**
 - `[character(1)]`
 - Name of already existing learner parameter, which allows class weighting. The default (`wcw.param = NULL`) will use the parameter defined in the learner (`class.weights.param`). During training, the parameter must accept a named vector of class weights, where length equals the number of classes.
makeWrappedModel

Weight for each class. Must be a vector of the same number of elements as classes are in task, and must also be in the same order as the class levels are in getTaskDesc(task)$class.levels. For convenience, one must pass a single number in case of binary classification, which is then taken as the weight of the positive class, while the negative class receives a weight of 1. Default is 1.

Value
Learner.

See Also
Other wrapper: makeBaggingWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDownsampleWrapper, makeDummyFeaturesWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper

Examples

using the direct parameter of the SVM (which is already defined in the learner)
lnr = makeWeightedClassesWrapper("classif.ksvm", wcw.weight = 0.01)
res = holdout(lnr, sonar.task)
print(calculateConfusionMatrix(res$pred))

using the observation weights of logreg
lnr = makeWeightedClassesWrapper("classif.logreg", wcw.weight = 0.01)
res = holdout(lnr, sonar.task)
print(calculateConfusionMatrix(res$pred))

tuning the imbalancy param and the SVM param in one go
lnr = makeWeightedClassesWrapper("classif.ksvm", wcw.param = "class.weights")
ps = makeParamSet(
 makeNumericParam("wcw.weight", lower = 1, upper = 10),
 makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
 makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlRandom(maxit = 3L)
rdesc = makeResampleDesc("CV", iters = 2L, stratify = TRUE)
res = tuneParams(lnr, sonar.task, rdesc, par.set = ps, control = ctrl)
print(res)
print(res$opt.path)
MeasureProperties

Description

Result from train.

It internally stores the underlying fitted model, the subset used for training, features used for training, levels of factors in the data set and computation time that was spent for training.

Object members: See arguments.

The constructor makeWrappedModel is mainly for internal use.

Usage

makeWrappedModel(learner, learner.model, task.desc, subset, features, factor.levels, time)

Arguments

learner
[learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

learner.model
[any]
Underlying model.

task.desc
[TaskDesc]
Task description object.

subset
[integer | logical]
Selected cases. Either a logical or an index vector. By default all observations are used.

features
[character]
Features used for training.

factor.levels
[named list of character]
Levels of factor variables (features and potentially target) in training data. Named by variable name, non-factors do not occur in the list.

time
[numeric(1)]
Computation time for model fit in seconds.

Value

WrappedModel.

MeasureProperties

Query properties of measures.

Description

Properties can be accessed with getMeasureProperties(measure), which returns a character vector.

The measure properties are defined in Measure.
Usage

getMeasureProperties(measure)

hasMeasureProperties(measure, props)

Arguments

measure [Measure]
Performance measure. Default is the first measure used in the benchmark experiment.

props [character]
Vector of properties to query.

Value

getMeasureProperties returns a character vector with measure properties. hasMeasureProperties returns a logical vector of the same length as props.

Description

A performance measure is evaluated after a single train/predict step and returns a single number to assess the quality of the prediction (or maybe only the model, think AIC). The measure itself knows whether it wants to be minimized or maximized and for what tasks it is applicable.

All supported measures can be found by listMeasures or as a table in the tutorial appendix: http://mlr-org.github.io/mlr-tutorial/release/html/measures/.

If you want a measure for a misclassification cost matrix, look at makeCostMeasure. If you want to implement your own measure, look at makeMeasure.

Most measures can directly be accessed via the function named after the scheme measureX (e.g. measureSSE).

For clustering measures, we compact the predicted cluster IDs such that they form a continuous series starting with 1. If this is not the case, some of the measures will generate warnings.

Usage

featperc
timetrain
timepredict
timeboth
measures

sse
measureSSE(truth, response)
mse
measureMSE(truth, response)
rmse
measureRMSE(truth, response)
medse
measureMEDSE(truth, response)
sae
measureSAE(truth, response)
mae
measureMAE(truth, response)
medae
measureMEDAE(truth, response)
rsq
measureRSQ(truth, response)
expvar
measureEXPVAR(truth, response)
arsq
rrse
measureRRSE(truth, response)
rae
measureRAE(truth, response)
mape
measureMAPE(truth, response)
msle
measureMSLE(truth, response)
rmsle
kendalltau
measureKendallTau(truth, response)
spearmanrho
measureSpearmanRho(truth, response)
mmce
measureMMCE(truth, response)
acc
measureACC(truth, response)
ber
multiclass.aunu
measureAUNU(probabilities, truth)
multiclass.aunp
measureAUNP(probabilities, truth)
multiclass.au1u
measureAU1U(probabilities, truth)
multiclass.au1p
measureAU1P(probabilities, truth)
multiclass.brier
measureMulticlassBrier(probabilities, truth)
logloss
measures

measureLogloss(probabilities, truth)
ssr
measureSSR(probabilities, truth)
qsr
measureQSR(probabilities, truth)
lsr
measureLSR(probabilities, truth)
kappa
measureKAPPA(truth, response)
wkappa
measureWKAPPA(truth, response)
auc
measureAUC(probabilities, truth, negative, positive)
brier
measureBrier(probabilities, truth, negative, positive)
brier.scaled
measureBrierScaled(probabilities, truth, negative, positive)
bac
measureBAC(truth, response, negative, positive)
tp
measureTP(truth, response, positive)
ln
measureTN(truth, response, negative)
fp
measureFP(truth, response, positive)

fn

measureFN(truth, response, negative)

tpr

measureTPR(truth, response, positive)

tnr

measureTNR(truth, response, negative)

fpr

measureFPR(truth, response, negative, positive)

fnr

measureFNR(truth, response, negative, positive)

ppv

measurePPV(truth, response, positive, probabilities = NULL)

npv

measureNPV(truth, response, negative)

fdr

measureFDR(truth, response, positive)

mcc

measureMCC(truth, response, negative, positive)

f1

gmean

measureGMEAN(truth, response, negative, positive)

gpr

measureGPR(truth, response, positive)
\[\text{multilabel.hamloss} \]
\[\text{measureMultilabelHamloss}(\text{truth}, \text{response}) \]
\[\text{multilabel.subset01} \]
\[\text{measureMultilabelSubset01}(\text{truth}, \text{response}) \]
\[\text{multilabel.f1} \]
\[\text{measureMultiLabelF1}(\text{truth}, \text{response}) \]
\[\text{multilabel.acc} \]
\[\text{measureMultilabelACC}(\text{truth}, \text{response}) \]
\[\text{multilabelppv} \]
\[\text{measureMultilabelPPV}(\text{truth}, \text{response}) \]
\[\text{multilabel.tpr} \]
\[\text{measureMultilabelTPR}(\text{truth}, \text{response}) \]
\[\text{cindex} \]
\[\text{meancosts} \]
\[\text{mcp} \]
\[\text{db} \]
\[\text{dunn} \]
\[\text{G1} \]
\[\text{G2} \]
\[\text{silhouette} \]

Arguments

- **truth** [factor]
 Vector of the true class.
- **response** [factor]
 Vector of the predicted class.
- **probabilities** [numeric|matrix]
 a) For purely binary classification measures: The predicted probabilities for the
mergeBenchmarkResults

Merge different BenchmarkResult objects.

Description

The function automatically combines a list of BenchmarkResult objects into a single BenchmarkResult object as long as the full crossproduct of all task-learner combinations are available.

Usage

mergeBenchmarkResults(bmrs)

Arguments

bmrs [list of BenchmarkResult]

BenchmarkResult objects that should be merged.

Details

Note that if you want to merge several BenchmarkResult objects, you must ensure that all possible learner and task combinations will be contained in the returned object. Otherwise, the user will be notified which task-learner combinations are missing or duplicated. When merging BenchmarkResult objects with different measures, all missing measures will automatically be recomputed.
mergeSmallFactorLevels

Merges small levels of factors into new level.

Description
Merges factor levels that occur only infrequently into combined levels with a higher frequency.

Usage
mergeSmallFactorLevels(task, cols = NULL, min.perc = 0.01, new.level = "merged")

Arguments

- **task**
 [Task]
 The task.

- **cols**
 [character] Which columns to convert. Default is all factor and character columns.

- **min.perc**
 [numeric(1)]
 The smallest levels of a factor are merged until their combined proportion w.r.t. the length of the factor exceeds min.perc. Must be between 0 and 1. Default is 0.01.

- **new.level**
 [character(1)]
 New name of merged level. Default is "merged"

Value
Task, where merged levels are combined into a new level of name new.level.

See Also
Other eda_and_preprocess: capLargeValues, createDummyFeatures, dropFeatures, normalizeFeatures, removeConstantFeatures, summarizeColumns
mlrFamilies

mlr documentation families

Description

List of all mlr documentation families with members.

Arguments

- **benchmark**
 - batchmark, reduceBatchmarkResults, benchmark, benchmarkParallel, getBMRTaskIds, getBMR Learners, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Measures, getBMR MeasureIds, getBMR Predictions, getBMR Performances, getBMRAggr Performances, getBMRTune Results, getBMRFeatSelResults, getBMR FilteredFeatures, getBMR Models, getBMRTaskDescs, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, plotBMRBoxplots, plotBMR Ranks AsBarChart, generateCritDifferencesData, plotCritDifferences

- **calibration**
 - generateCalibrationData, plotCalibration

- **configure**
 - configureMlr, getMlrOptions

- **costsens**
 - makeCostSensTask, makeCostSensWeightedPairsWrapper

- **debug**
 - predictFailureModel, getPredictionDump, getRRDump, print.ResampleResult

- **downsample**
 - downsample

- **eda_and_preprocess**
 - capLargeValues, createDummyFeatures, dropFeatures, mergeSmallFactorLevels, normalizeFeatures, removeConstantFeatures, summarizeColumns, summarizeLevels

- **featsel**
 - analyzeFeatSelResult, makeFeatSelControl, getFeatSelResult, selectFeatures

- **filter**
 - filterFeatures, getFilteredFeatures, generateFilterValuesData, getFilterValues, plotFilterValuesGGVIS

- **generate_plot_data**
 - generateFeatureImportanceData, plotFilterValues, generatePartialDependenceData, generateFunctionalANOVAData

- **imbalancy**
 - oversample, smote

- **impute**
 - makeImputeMethod, imputeConstant, impute, reimpute

- **learner**
 - getClassWeightParam, getHyperPars, getParamSet.Learner, getLearnerType, getLearnerId, getLearnerPredictType, getLearnerPackages, getLearnerParamSet, getLearnerParamVals, setLearnerId, getLearnerShortName, getLearnerProperties, makeLearner, makeLearners, removeHyperPars, setHyperPars, setId, setPredictThreshold, setPredictType

- **learning_curve**
 - generateLearningCurveData, plotLearningCurveGGVIS

- **multilabel**
 - getMultilabelBinaryPerformances, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper
mtcars.task

Motor Trend Car Road Tests clustering task.

Description

Contains the task (**mtcars.task**).

References

See **mtcars**.
normalizeFeatures Normalize features.

Description

Normalize features by different methods. Internally `normalize` is used for every feature column. Non numerical features will be left untouched and passed to the result. For constant features most methods fail, special behaviour for this case is implemented.

Usage

```
normalizeFeatures(obj, target = character(NULL), method = "standardize",
                 cols = NULL, range = c(0, 1), on.constant = "quiet")
```

Arguments

- **obj**: [data.frame | Task]
 Input data.
- **target**: [character(1) | character(2) | character(n.classes)]
 Name(s) of the target variable(s). Only used when `obj` is a data.frame, otherwise ignored. If survival analysis is applicable, these are the names of the survival time and event columns, so it has length 2. For multilabel classification these are the names of logical columns that indicate whether a class label is present and the number of target variables corresponds to the number of classes.
- **method**: [character(1)]
 Normalizing method. Available are:
 “center”: Subtract mean.
 “scale”: Divide by standard deviation.
 “standardize”: Center and scale.
 “range”: Scale to a given range.
- **cols**: [character]
 Columns to normalize. Default is to use all numeric columns.
- **range**: [numeric(2)]
 Range for method “range”. Default is c(0,1).
- **on.constant**: [character(1)]
 How should constant vectors be treated? Only used, of “method != center”, since this methods does not fail for constant vectors. Possible actions are:
 “quiet”: Depending on the method, treat them quietly:
 “scale”: No division by standard deviation is done, input values. will be returned untouched.
 “standardize”: Only the mean is subtracted, no division is done.
 “range”: All values are mapped to the mean of the given range.
 “warn”: Same behaviour as “quiet”, but print a warning message.
 “stop”: Stop with an error.
Value
data.frame | Task. Same type as obj.

See Also
normalize
Other eda_and_preprocess: capLargeValues, createDummyFeatures, dropFeatures, mergeSmallFactorLevels, removeConstantFeatures, summarizeColumns

| oversample | Over- or undersample binary classification task to handle class imbal-
| | anc. |

Description
Oversampling: For a given class (usually the smaller one) all existing observations are taken and copied and extra observations are added by randomly sampling with replacement from this class.
Undersampling: For a given class (usually the larger one) the number of observations is reduced (downsampled) by randomly sampling without replacement from this class.

Usage
oversample(task, rate, cl = NULL)
undersample(task, rate, cl = NULL)

Arguments
task
[Task]
The task.
rate
[numeric(1)]
Factor to upsample or downsample a class. For undersampling: Must be between 0 and 1, where 1 means no downsampling, 0.5 implies reduction to 50 percent and 0 would imply reduction to 0 observations. For oversampling: Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size.
cl
[character(1)]
Which class should be over- or undersampled. If NULL, oversample will select the smaller and undersample the larger class.

Value
Task.

See Also
Other imbalance: makeOverBaggingWrapper, makeUndersampleWrapper, smote
Supported parallelization methods

Description

mlr supports different methods to activate parallel computing capabilities through the integration of the parallelMap package, which supports all major parallelization backends for R. You can start parallelization with parallelStart*, where * should be replaced with the chosen backend. parallelStop is used to stop all parallelization backends.

Parallelization is divided into different levels and will automatically be carried out for the first level that occurs, e.g. if you call resample() after parallelStart, each resampling iteration is a parallel job and possible underlying calls like parameter tuning won’t be parallelized further.

The supported levels of parallelization are:

- "mlr.resample" Each resampling iteration (a train/test step) is a parallel job.
- "mlr.benchmark" Each experiment "run this learner on this data set" is a parallel job.
- "mlr.tuneParams" Each evaluation in hyperparameter space "resample with these parameter settings" is a parallel job. How many of these can be run independently in parallel depends on the tuning algorithm. For grid search or random search there is no limit, but for other tuners it depends on how many points to evaluate are produced in each iteration of the optimization. If a tuner works in a purely sequential fashion, we cannot work magic and the hyperparameter evaluation will also run sequentially. But note that you can still parallelize the underlying resampling.
- "mlr.selectFeatures" Each evaluation in feature space "resample with this feature subset" is a parallel job. The same comments as for "mlr.tuneParams" apply here.
- "mlr.ensemble" For all ensemble methods, the training and prediction of each individual learner is a parallel job. Supported ensemble methods are the makeBaggingWrapper, makeCostSensRegrWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper and the makeOverBaggingWrapper.

Description

Measures the quality of a prediction w.r.t. some performance measure.

Usage

```r
performance(pred, measures, task = NULL, model = NULL, feats = NULL)
```
Arguments

pred [Prediction]
Prediction object.

measures [Measure | list of Measure]
Performance measure(s) to evaluate. Default is the default measure for the task, see here get_default_measure.

task [Task]
Learning task, might be requested by performance measure, usually not needed except for clustering.

model [WrappedModel]
Model built on training data, might be requested by performance measure, usually not needed.

feats [data.frame]
Features of predicted data, usually not needed except for clustering. If the prediction was generated from a task, you can also pass this instead and the features are extracted from it.

Value

named numeric. Performance value(s), named by measure(s).

See Also

Other performance: ConfusionMatrix, calculateConfusionMatrix, calculateROCMeasures, estimateRelativeOverfitting, makeCostMeasure, makeCustomResampledMeasure, makeMeasure, measures

Examples

test.set = seq(1, nrow(iris), by = 2)

training.set = seq(2, nrow(iris), by = 2)

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
mod = train(lrn, task, subset = training.set)
pred = predict(mod, newdata = iris[test.set,])

performance(pred, measures = mmce)

Compute multiple performance measures at once
ms = list("mmce" = mmce, "acc" = acc, "timetrain" = timetrain)
performance(pred, measures = ms, task, mod)
pid.task
PimaIndiansDiabetes classification task.

Description
Contains the task (pid.task).

References
See *PimaIndiansDiabetes*. Note that this is the uncorrected version from mlbench.

plotBMRBoxplots
Create box or violin plots for a BenchmarkResult.

Description
Plots box or violin plots for a selected measure across all iterations of the resampling strategy, faceted by the task.id.

Usage
```r
plotBMRBoxplots(bmr, measure = NULL, style = "box", order.lrns = NULL, order.tsks = NULL, pretty.names = TRUE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL)
```

Arguments
- `bmr`
 `[BenchmarkResult]`
 Benchmark result.
- `measure`
 `[Measure]`
 Performance measure. Default is the first measure used in the benchmark experiment.
- `style`
 `[character(1)]`
 Type of plot, can be “box” for a boxplot or “violin” for a violin plot. Default is “box”.
- `order.lrns`
 `[character(n.learners)]`
 Character vector with learner.ids in new order.
- `order.tsks`
 `[character(n.tasks)]`
 Character vector with task.ids in new order.
- `pretty.names`
 `[logical(1)]`
 Whether to use the Measure name and the Learner short name instead of the id. Default is TRUE.
- `facet.wrap.nrow`, `facet.wrap.ncol`
 `[integer()]`
 Number of rows and columns for faceting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.
Value

ggplot2 plot object.

See Also

Other plot: plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCcurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

Examples

see benchmark

plotBMRRanksAsBarChart

Create a bar chart for ranks in a BenchmarkResult.

Description

Plots a bar chart from the ranks of algorithms. Alternatively, tiles can be plotted for every rank-
task combination, see pos for details. In all plot variants the ranks of the learning algorithms are
displayed on the x-axis. Areas are always colored according to the learner.id.

Usage

plotBMRRanksAsBarChart(bmr, measure = NULL, ties.method = "average",
aggregation = "default", pos = "stack", order.lrns = NULL,
order.tsks = NULL, pretty.names = TRUE)

Arguments

bmr [BenchmarkResult] Benchmark result.
measure [Measure] Performance measure. Default is the first measure used in the benchmark exper-
iment.
ties.method [character(1)] See rank for details.
taggregation [character(1)] “mean” or “default”. See getBMRAggrPerformances for details on “default".
plotBMRSummary

pos: Optionally set how the bars are positioned in ggplot2. Ranks are plotted on the x-axis. “tile” plots a heat map with task as the y-axis. Allows identification of the performance in a special task. “stack” plots a stacked bar plot. Allows for comparison of learners within and across ranks. “dodge” plots a bar plot with bars next to each other instead of stacked bars.

order.lrn: Character vector with learner.ids in new order.

order.tsks: Character vector with task.ids in new order.

pretty.names: Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value

ggplot2 plot object.

See Also

Other plot: plotBMRBoxplots, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGVIS, plotLearningCurveGVIS, plotLearningCurve, plotPartialDependenceGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGVIS, plotThreshVsPerf

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLeaderShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRpredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMRSummary, plotCritDifferences, reduceBatchmarkResults

Examples

see benchmark

| plotBMRSummary | Plot a benchmark summary. |

Description

Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one of ggplot2’s transformations like scale_x_log10.

Usage

plotBMRSummary(bmr, measure = NULL, trafo = "none", order.tsks = NULL, pointsize = 4L, jitter = 0.05, pretty.names = TRUE)
plotBMRSummary

Arguments

- **bmr**
 - **[BenchmarkResult]**
 - Benchmark result.

- **measure**
 - **[Measure]**
 - Performance measure. Default is the first measure used in the benchmark experiment.

- **trafo**
 - **[character]**
 - Currently either "none" or "rank", the latter performing a rank transformation (with average handling of ties) of the scores per task. NB: You can add always add `scale_x_log10` to the result to put scores on a log scale. Default is "none".

- **order.tskts**
 - **[character]**
 - Character vector with `task.ids` in new order.

- **pointsize**
 - **[numeric]**
 - Point size for ggplot2 `geom_point` for data points. Default is 4.

- **jitter**
 - **[numeric]**
 - Small vertical jitter to deal with overplotting in case of equal scores. Default is 0.05.

- **pretty.names**
 - **[logical]**
 - Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value

- ggplot2 plot object.

See Also

- Other benchmark: `BenchmarkResult`, `batchmark`, `benchmark`, `convertBMRToRankMatrix`, `friedmanPostHocTestBMR`, `friedmanTestBMR`, `generateCritDifferencesData`, `getBMRAggrPerformances`, `getBMRFeatSelResults`, `getBMRFilteredFeatures`, `getBMR LearnerIds`, `getBMR LearnerShortNames`, `getBMR Learners`, `getBMRMeasureIds`, `getBMR Measures`, `getBMR Models`, `getBMR Performances`, `getBMR Predictions`, `getBMRTaskDescs`, `getBMRTaskIds`, `getBMR Tune Results`, `plotBMR Boxplots`, `plotBMR Ranks As BarChart`, `plotCrit Differences`, `reduceBatchmarkResults`

- Other plot: `plotBMR Boxplots`, `plotBMR Ranks As Bar Chart`, `plot Calibration`, `plot Crit Differences`, `plot Filter Values GG VIS`, `plot Learning Curve GG VIS`, `plot Partial Dependence GG VIS`, `plot Partial Dependence`, `plot ROC Curves`, `plot Residuals`, `plot Thresh Vs Perf GG VIS`, `plot Thresh Vs Perf`

Examples

```r
# see benchmark
```
plotCalibration

Plot calibration data using ggplot2.

Description

Plots calibration data from generateCalibrationData.

Usage

plotCalibration(obj, smooth = FALSE, reference = TRUE, rag = TRUE,
 facet.wrap.nrow = NULL, facet.wrap.ncol = NULL)

Arguments

obj [CalibrationData]
 Result of generateCalibrationData.
smooth [logical(1)]
 Whether to use a loess smoother. Default is FALSE.
reference [logical(1)]
 Whether to plot a reference line showing perfect calibration. Default is TRUE.
rug [logical(1)]
 Whether to include a rag plot which shows a rug plot on the top which pertains to positive cases and on the bottom which pertains to negative cases. Default is TRUE.
facet.wrap.nrow, facet.wrap.ncol [integer()]
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other plot: plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

Other calibration: generateCalibrationData

Examples

Not run:
lrns = list(makeLearner("classif.rpart", predict.type = "prob"),
 makeLearner("classif.nnet", predict.type = "prob"))
fit = lapply(lrns, train, task = iris.task)
pred = lapply(fit, predict, task = iris.task)
Description

Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected for the Bonferroni-Dunn test, the critical difference interval will be positioned around the baseline. If not, the best performing algorithm will be chosen as baseline. The positioning of some descriptive elements can be moved by modifying the generated data.

Usage

plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)

Arguments

obj [critDifferencesData] Result of generateCritDifferencesData function.
baseline [character(1)]: [learner.id] Overwrites baseline from generateCritDifferencesData!
Select a learner.id as baseline for the critical difference diagram, the critical difference will be positioned around this learner. Defaults to best performing algorithm.
pretty.names [logical(1)] Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value

ggplot2 plot object.

References

Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006
plotFilterValues

See Also

Other plot: plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggPerf, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR Learner Ids, getBMR Learner Short Names, getBMR Learners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescs, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, reduceBatchmarkResults

Examples

see benchmark

plotFilterValues

Plot filter values using ggplot2.

Description

Plot filter values using ggplot2.

Usage

plotFilterValues(fvalues, sort = "dec", n.show = 20L,
 feat.type.cols = FALSE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL)

Arguments

fvalues

[FilterValues]
Filter values.
sort

[character(1)]
Sort features like this. “dec” = decreasing, “inc” = increasing, “none” = no sorting. Default is decreasing.
n.show

[integer(1)]
Number of features (maximal) to show. Default is 20.
feat.type.cols

[logical(1)]
Colors for factor and numeric features. FALSE means no colors. Default is FALSE.
facet.wrap.nrow, facet.wrap.ncol

[integer()]
Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.
Value

 ggplot2 plot object.

See Also

 Other filter: filterFeatures, generateFilterValuesData, getFilterValues, getFilteredFeatures, makeFilterWrapper, plotFilterValuesGGVIS

 Other generate_plot_data: generateCalibrationData, generateCritDifferencesData, generateFeatureImportanceData, generateFilterValuesData, generateFunctionalANOVAData, generateLearningCurveData, generatePartialDependenceData, generateThreshVsPerfData, getFilterValues

Examples

 fv = generateFilterValuesData(iris.task, method = "variance")
 plotFilterValues(fv)

plotFilterValuesGGVIS Plot filter values using ggvis.

Description

 Plot filter values using ggvis.

Usage

 plotFilterValuesGGVIS(fvalues, feat.type.cols = FALSE)

Arguments

 fvalues [FilterValues]
 Filter values.

 feat.type.cols [logical(1)]
 Colors for factor and numeric features. FALSE means no colors. Default is FALSE.

Value

 a ggvis plot object.

See Also

 Other plot: plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

 Other filter: filterFeatures, generateFilterValuesData, getFilterValues, getFilteredFeatures, makeFilterWrapper, plotFilterValues
Examples

```r
## Not run:
fv = generateFilterValuesData(iris.task, method = "variance")
plotFilterValuesGGVIS(fv)

## End(Not run)
```

plotHyperParsEffect
Plot the hyperparameter effects data

Description

Plot hyperparameter validation path. Automated plotting method for HyperParsEffectData object. Useful for determining the importance or effect of a particular hyperparameter on some performance measure and/or optimizer.

Usage

```
plotHyperParsEffect(hyperpars.effect.data, x = NULL, y = NULL, z = NULL,
plot.type = "scatter", loess.smooth = FALSE, facet = NULL,
global.only = TRUE, interpolate = NULL, show.experiments = FALSE,
show.interpolated = FALSE, nested.agg = mean, partial.dep.learn = NULL)
```

Arguments

- `hyperpars.effect.data`
 Result of `generateHyperParsEffectData`

- `x`
 Specify what should be plotted on the x axis. Must be a column from `HyperParsEffectData$data`. For partial dependence, this is assumed to be a hyperparameter.

- `y`
 Specify what should be plotted on the y axis. Must be a column from `HyperParsEffectData$data`

- `z`
 Specify what should be used as the extra axis for a particular geom. This could be for the fill on a heatmap or color aesthetic for a line. Must be a column from `HyperParsEffectData$data`. Default is `NULL`.

- `plot.type`
 Specify the type of plot: “scatter” for a scatterplot, “heatmap” for a heatmap, “line” for a scatterplot with a connecting line, or “contour” for a contour plot layered on top of a heatmap. Default is “scatter”.

- `loess.smooth`
 If TRUE, will add loess smoothing line to plots where possible. Note that this is probably only useful when `plot.type` is set to either “scatter” or “line”. Must be a column from `HyperParsEffectData$data`. Not used with partial dependence. Default is FALSE.
facet [character(1)]
Specify what should be used as the facet axis for a particular geom. When using nested cross validation, set this to "nested_cv_run" to obtain a facet for each outer loop. Must be a column from HyperParsEffectData$data. Default is NULL.

global.only [logical(1)]
If TRUE, will only plot the current global optima when setting x = "iteration" and y as a performance measure from HyperParsEffectData$measures. Set this to FALSE to always plot the performance of every iteration, even if it is not an improvement. Not used with partial dependence. Default is TRUE.

interpolate [Learner | character(1)]
If not NULL, will interpolate non-complete grids in order to visualize a more complete path. Only meaningful when attempting to plot a heatmap or contour. This will fill in "empty" cells in the heatmap or contour plot. Note that cases of irregular hyperparameter paths, you will most likely need to use this to have a meaningful visualization. Accepts either a regression Learner object or the learner as a string for interpolation. This cannot be used with partial dependence. Default is NULL.

show.experiments [logical(1)]
If TRUE, will overlay the plot with points indicating where an experiment ran. This is only useful when creating a heatmap or contour plot with interpolation so that you can see which points were actually on the original path. Note: if any learner crashes occurred within the path, this will become TRUE. Not used with partial dependence. Default is FALSE.

show.interpolated [logical(1)]
If TRUE, will overlay the plot with points indicating where interpolation ran. This is only useful when creating a heatmap or contour plot with interpolation so that you can see which points were interpolated. Not used with partial dependence. Default is FALSE.

nested.agg [function]
The function used to aggregate nested cross validation runs when plotting 2 hyperparameters. This is also used for nested aggregation in partial dependence. Default is mean.

partial.dep.learn [Learner | character(1)]
The regression learner used to learn partial dependence. Must be specified if "partial.dep" is set to TRUE in generateHyperParsEffectData. Accepts either a Learner object or the learner as a string for learning partial dependence. Default is NULL.

Value ggplot2 plot object.
plotLearnerPrediction

Note
Any NAs incurred from learning algorithm crashes will be indicated in the plot (except in the case of partial dependence) and the NA values will be replaced with the column min/max depending on the optimal values for the respective measure. Execution time will be replaced with the max. Interpolation by its nature will result in predicted values for the performance measure. Use interpolation with caution. If “partial.dep” is set to TRUE in generateHyperParsEffectData, only partial dependence will be plotted.

Since a ggplot2 plot object is returned, the user can change the axis labels and other aspects of the plot using the appropriate ggplot2 syntax.

Examples

see generateHyperParsEffectData

plotLearnerPrediction Visualizes a learning algorithm on a 1D or 2D data set.

Description
Trains the model for 1 or 2 selected features, then displays it via ggplot. Good for teaching or exploring models.

For classification and clustering, only 2D plots are supported. The data points, the classification and potentially through color alpha blending the posterior probabilities are shown.

For regression, 1D and 2D plots are supported. 1D shows the data, the estimated mean and potentially the estimated standard error. 2D does not show estimated standard error, but only the estimated mean via background color.

The plot title displays the model id, its parameters, the training performance and the cross-validation performance.

Usage

plotLearnerPrediction(learner, task, features = NULL, measures, cv = 10L,
... , gridsize, pointsize = 2, prob.alpha = TRUE, se.band = TRUE,
err.mark = "train", bg.cols = c("darkblue", "green", "darkred"),
err.col = "white", err.size = pointsize, greyscale = FALSE,
pretty.names = TRUE)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

task [Task]
The task.

features [character]
Selected features for model. By default the first 2 features are used.
measures

[Measure | list of Measure]
Performance measure(s) to evaluate. Default is the default measure for the task, see here get_default_measure.

cv

[integer(1)]
Do cross-validation and display in plot title? Number of folds. 0 means no CV. Default is 10.

...[any]
Parameters for learner.

gridsize

[integer(1)]
Grid resolution per axis for background predictions. Default is 500 for 1D and 100 for 2D.

pointsize

[numeric(1)]
Pointsize for ggplot2 geom_point for data points. Default is 2.

prob.alpha

[logical(1)]
For classification: Set alpha value of background to probability for predicted class? Allows visualization of “confidence” for prediction. If not, only a constant color is displayed in the background for the predicted label. Default is TRUE.

se.band

[logical(1)]
For regression in 1D: Show band for standard error estimation? Default is TRUE.

err.mark

[character(1)]: For classification: Either mark error of the model on the training data (“train”) or during cross-validation (“cv”) or not at all with “none”. Default is “train”.

bg.cols

[character(3)]
Background colors for classification and regression. Sorted from low, medium to high. Default is TRUE.

err.col

[character(1)]
For classification: Color of misclassified data points. Default is “white”

err.size

[integer(1)]
For classification: Size of misclassified data points. Default is pointsize.

greyscale

[logical(1)]
Should the plot be greyscale completely? Default is FALSE.

pretty.names

[logical(1)]
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

Value

The ggplot2 object.
plotLearningCurve

Plot learning curve data using ggplot2.

Description

Visualizes data size (percentage used for model) vs. performance measure(s).

Usage

plotLearningCurve(obj, facet = "measure", pretty.names = TRUE,
facetAddress.rownrow = NULL, facetAddress.ncol = NULL)

Arguments

obj
[LearningCurveData]
Result of generateLearningCurveData, with class LearningCurveData.

facet
[character(1)]
Selects “measure” or “learner” to be the facetting variable. The variable mapped
to facet must have more than one unique value, otherwise it will be ignored.
The variable not chosen is mapped to color if it has more than one unique value.
The default is “measure”.

pretty.names
[logical(1)]
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

facetAddress.rownrow, facetAddress.ncol
[integer()]
Number of rows and columns for facetting. Default for both is NULL. In this case
ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other learning_curve: generateLearningCurveData, plotLearningCurveGGVIS

Other plot: plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSsummary, plotCalibration,
plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotPartialDependenceGGVIS,
plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf
plotLearningCurveGGVIS

Plot learning curve data using ggvis.

Description

Visualizes data size (percentage used for model) vs. performance measure(s).

Usage

```r
plotLearningCurveGGVIS(obj, interaction = "measure", pretty.names = TRUE)
```

Arguments

- `obj` [{LearningCurveData}]

 Result of `generateLearningCurveData`.

- `interaction` [character(1)]

 Selects “measure” or “learner” to be used in a Shiny application making the interaction variable selectable via a drop-down menu. This variable must have more than one unique value, otherwise it will be ignored. The variable not chosen is mapped to color if it has more than one unique value. Note that if there are multiple learners and multiple measures interactivity is necessary as ggvis does not currently support faceting or subplots. The default is “measure”.

- `pretty.names` [logical(1)]

 Whether to use the Measure name instead of the id in the plot. Default is TRUE.

Value

a ggvis plot object.

See Also

Other plot: plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

Other learning_curve: generateLearningCurveData, plotLearningCurve
plotPartialDependence

Plot a partial dependence with ggplot2.

Description

Plot a partial dependence from `generatePartialDependenceData` using ggplot2.

Usage

```r
plotPartialDependence(obj, geom = "line", facet = NULL,
                        facet.wrap.nrow = NULL, facet.wrap.ncol = NULL, p = 1, data = NULL)
```

Arguments

- **obj**
 - `[PartialDependenceData]`
 - Generated by `generatePartialDependenceData`.

- **geom**
 - `[character(1)]`
 - The type of geom to use to display the data. Can be “line” or “tile”. For tiling at least two features must be used with `interaction = TRUE` in the call to `generatePartialDependenceData`. This may be used in conjunction with the `facet` argument if three features are specified in the call to `generatePartialDependenceData`. Default is “line”.

- **facet**
 - `[character(1)]`
 - The name of a feature to be used for facetting. This feature must have been an element of the `features` argument to `generatePartialDependenceData` and is only applicable when said argument had length greater than 1. The feature must be a factor or an integer. If `generatePartialDependenceData` is called with the `interaction` argument `FALSE` (the default) with argument `features` of length greater than one, then `facet` is ignored and each feature is plotted in its own facet. Default is `NULL`.

- **facet.wrap.nrow, facet.wrap.ncol**
 - `[integer()]
 - Number of rows and columns for facetting. Default for both is `NULL`. In this case ggplot’s `facet_wrap` will choose the layout itself.

- **p**
 - `[numeric(1)]`
 - If `individual = TRUE` then `sample` allows the user to sample without replacement from the output to make the display more readable. Each row is sampled with probability `p`. Default is 1.

- **data**
 - `[data.frame]`
 - Data points to plot. Usually the training data. For survival and binary classification tasks a rug plot wherein ticks represent failures or instances of the positive class are shown. For regression tasks points are shown. For multiclass classification tasks ticks are shown and colored according to their class. Both the features and the target must be included. Default is `NULL`.
plotPartialDependenceGGVIS

Value

ggplot2 plot object.

See Also

Other partial dependence: generatePartialDependenceData, plotPartialDependenceGGVIS

Other plot: plotBMRRboxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf

plotPartialDependenceGGVIS

Plot a partial dependence using ggvis.

Description

Plot partial dependence from generatePartialDependenceData using ggvis.

Usage

plotPartialDependenceGGVIS(obj, interact = NULL, p = 1)

Arguments

obj

[PartialDependenceData]
Generated by generatePartialDependenceData.

interact

[character(1)]
The name of a feature to be mapped to an interactive sidebar using Shiny. This feature must have been an element of the features argument to generatePartialDependenceData and is only applicable when said argument had length greater than 1. If generatePartialDependenceData is called with the interaction argument FALSE (the default) with argument features of length greater than one, then interact is ignored and the feature displayed is controlled by an interactive side panel. Default is NULL.

p

[numeric(1)]
If individual = TRUE then sample allows the user to sample without replacement from the output to make the display more readable. Each row is sampled with probability p. Default is 1.

Value

a ggvis plot object.
plotResiduals

See Also
Other partial dependence: `generatePartialDependenceData`, `plotPartialDependence`
Other plot: `plotBMRRBoxplots`, `plotBMRRanksAsBarChart`, `plotBMRSSummary`, `plotCalibration`, `plotCritDifferences`, `plotFilterValuesGGVIS`, `plotLearningCurveGGVIS`, `plotLearningCurve`, `plotPartialDependence`, `plotROCCurves`, `plotResiduals`, `plotThreshVsPerfGGVIS`, `plotThreshVsPerf`

Description
Plots for model diagnostics. Provides scatterplots of true vs. predicted values and histograms of the model’s residuals.

Usage

```r
plotResiduals(obj, type = "scatterplot", loess.smooth = TRUE, rug = TRUE,
            pretty.names = TRUE)
```

Arguments

- `obj`: `[Prediction|BenchmarkResult]`
 - Input data.
- `type`:
 - Type of plot. Can be “scatterplot”, the default. Or “hist”, for a histogram, or in case of classification problems a barplot, displaying the residuals.
- `loess.smooth`:
 - [logical(1)]
 - Should a loess smoother be added to the plot? Defaults to TRUE. Only applicable for regression tasks and if `type` is set to `scatterplot`.
- `rug`:
 - [logical(1)]
 - Should marginal distributions be added to the plot? Defaults to TRUE. Only applicable for regression tasks and if `type` is set to `scatterplot`.
- `pretty.names`:
 - [logical(1)]
 - Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE. Only applicable if a `BenchmarkResult` is passed to `obj` in the function call, ignored otherwise.

Value

- ggplot2 object.

See Also
Other plot: `plotBMRRBoxplots`, `plotBMRRanksAsBarChart`, `plotBMRSSummary`, `plotCalibration`, `plotCritDifferences`, `plotFilterValuesGGVIS`, `plotLearningCurveGGVIS`, `plotLearningCurve`, `plotPartialDependenceGGVIS`, `plotPartialDependence`, `plotROCCurves`, `plotThreshVsPerfGGVIS`, `plotThreshVsPerf`
plotROCCurves

Plots a ROC curve using ggplot.

Description

Plots a ROC curve from predictions.

Usage

```r
plotROCCurves(obj, measures, diagonal = TRUE, pretty.names = TRUE)
```

Arguments

- `obj`: [ThreshVsPerfData]
 Result of `generateThreshVsPerfData`.
- `measures`: [list(2) of Measure]
 Default is the first 2 measures passed to `generateThreshVsPerfData`.
- `diagonal`: [logical(1)]
 Whether to plot a dashed diagonal line. Default is TRUE.
- `pretty.names`: [logical(1)]
 Whether to use the Measure name instead of the id in the plot. Default is TRUE.

Value

A ggvis plot object.

See Also

Other plot: `plotBMRBoxplots`, `plotBMRRanksAsBarChart`, `plotBMRSummary`, `plotCalibration`, `plotCritDifferences`, `plotFilterValuesGGVIS`, `plotLearningCurveGGVIS`, `plotLearningCurve`, `plotPartialDependenceGGVIS`, `plotPartialDependence`, `plotResiduals`, `plotThreshVsPerfGGVIS`, `plotThreshVsPerf`

Other thresh_vs_perf: `generateThreshVsPerfData`, `plotThreshVsPerfGGVIS`, `plotThreshVsPerf`

Examples

```r
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
roc = generateThreshVsPerfData(pred, list(fpr, tpr))
plotROCCurves(roc)

r = bootstrapB632plus(lrn, sonar.task, iters = 3)
roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_r)
```
\[r2 = \text{crossval}(\text{lrn}, \text{sonar.task}, \text{iters} = 3) \]
\[\text{roc}_1 = \text{generateThreshVsPerfData}(\text{list}(\text{boot} = r, \text{cv} = \text{r2}), \text{list}(\text{fpr}, \text{tpr}), \text{aggregate} = \text{FALSE}) \]
\[\text{plotROCCurves}(\text{roc}_1) \]

plotThreshVsPerf
Plot threshold vs. performance(s) for 2-class classification using ggplot2.

Description

Plots threshold vs. performance(s) data that has been generated with `generateThreshVsPerfData`.

Usage

```r
plotThreshVsPerf(obj, measures = obj$measures, facet = "measure", mark.th = NA_real_, pretty.names = TRUE, facet.wrap.nrow = NULL, facet.wrap.ncol = NULL)
```

Arguments

- **obj**
 [ThreshVsPerfData]
 Result of `generateThreshVsPerfData`.

- **measures**
 [Measure | list of Measure]
 Performance measure(s) to plot. Must be a subset of those used in `generateThreshVsPerfData`. Default is all the measures stored in obj generated by `generateThreshVsPerfData`.

- **facet**
 [character(1)]
 Selects “measure” or “learner” to be the facetting variable. The variable mapped to facet must have more than one unique value, otherwise it will be ignored. The variable not chosen is mapped to color if it has more than one unique value. The default is “measure”.

- **mark.th**
 [numeric(1)]
 Mark given threshold with vertical line? Default is NA which means not to do it.

- **pretty.names**
 [logical(1)]
 Whether to use the Measure name instead of the id in the plot. Default is TRUE.

- **facet.wrap.nrow**, **facet.wrap.ncol**
 [integer()]
 Number of rows and columns for facetting. Default for both is NULL. In this case ggplot’s facet_wrap will choose the layout itself.

Value

ggplot2 plot object.
See Also

Other plot: plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotMultinom, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS

Other thresh_vs_perf: generateThreshVsPerfData, plotROCCurves, plotThreshVsPerfGGVIS

Examples

```r
lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, sonar.task)
pred = predict(mod, sonar.task)
pvs = generateThreshVsPerfData(pred, list(acc, setAggregation(acc, train.mean)))
plotThreshVsPerf(pvs)
```

plotThreshVsPerfGGVIS
Plot threshold vs. performance(s) for 2-class classification using ggvis.

Description

Plots threshold vs. performance(s) data that has been generated with `generateThreshVsPerfData`.

Usage

```r
plotThreshVsPerfGGVIS(obj, interaction = "measure", mark.th = NA_real_, pretty.names = TRUE)
```

Arguments

- `obj`
 [ThreshVsPerfData]
 Result of `generateThreshVsPerfData`.

- `interaction`
 [character(1)]
 Selects "measure" or "learner" to be used in a Shiny application making the interaction variable selectable via a drop-down menu. This variable must have more than one unique value, otherwise it will be ignored. The variable not chosen is mapped to color if it has more than one unique value. Note that if there are multiple learners and multiple measures interactivity is necessary as ggvis does not currently support facetting or subplots. The default is "measure".

- `mark.th`
 [numeric(1)]
 Mark given threshold with vertical line? Default is NA which means not to do it.

- `pretty.names`
 [logical(1)]
 Whether to use the Measure name instead of the id in the plot. Default is TRUE.

Value

a ggvis plot object.
plotTuneMultiCritResult

See Also

Other plot: plotBMRRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCcurves, plotResiduals, plotThreshVsPerf

Other thresh_vs_perf: generateThreshVsPerfData, plotROCCurves, plotThreshVsPerf

Examples

```r
## Not run:
lrn = makeLearner("classr.rpart", predict.type = "prob")
mod = train(lrn, sonar.task)
pred = predict(mod, sonar.task)
pvs = generateThreshVsPerfData(pred, list(tpr, fpr))
plotThreshVsPerfGGVIS(pvs)

## End(Not run)
```

```
plotTuneMultiCritResult

Plots multi-criteria results after tuning using ggplot2.

Description

Visualizes the pareto front and possibly the dominated points.

Usage

plotTuneMultiCritResult(res, path = TRUE, col = NULL, shape = NULL,
    pointsize = 2, pretty.names = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>[logical(1)] Visualize all evaluated points (or only the non-dominated pareto front)? For the full path, the size of the points on the front is slightly increased. Default is TRUE.</td>
</tr>
<tr>
<td>col</td>
<td>[character(1)] Which column of res$opt.path should be mapped to ggplot2 color? Default is NULL, which means none.</td>
</tr>
<tr>
<td>shape</td>
<td>[character(1)] Which column of res$opt.path should be mapped to ggplot2 shape? Default is NULL, which means none.</td>
</tr>
<tr>
<td>pointsize</td>
<td>[numeric(1)] Point size for ggplot2 geom_point for data points. Default is 2.</td>
</tr>
<tr>
<td>pretty.names</td>
<td>[logical(1)] Whether to use the ID of the measures instead of their name in labels. Defaults to TRUE.</td>
</tr>
</tbody>
</table>
```
plotTuneMultiCritResultGGVIS

Value

ggplot2 plot object.

See Also

Other tune_multicrit: TuneMultiCritControl, plotTuneMultiCritResultGGVIS, tuneParamsMultiCrit

Examples

see tuneParamsMultiCrit

plotTuneMultiCritResultGGVIS

Plots multi-criteria results after tuning using ggvis.

Description

Visualizes the pareto front and possibly the dominated points.

Usage

plotTuneMultiCritResultGGVIS(res, path = TRUE)

Arguments

- **res** [TuneMultiCritResult]
 - Result of tuneParamsMultiCrit.
- **path** [logical(1)]
 - Visualize all evaluated points (or only the non-dominated pareto front)? Points are colored according to their location. Default is TRUE.

Value

a ggvis plot object.

See Also

Other tune_multicrit: TuneMultiCritControl, plotTuneMultiCritResult, tuneParamsMultiCrit

Examples

see tuneParamsMultiCrit
plotViperCharts

Visualize binary classification predictions via ViperCharts system.

Description

This includes ROC, lift charts, cost curves, and so on. Please go to http://viper.ijs.si for further info.

For resampled learners, the predictions from different iterations are combined into one. That is, for example for cross-validation, the predictions appear on a single line even though they were made by different models. There is currently no facility to separate the predictions for different resampling iterations.

Usage

```r
plotViperCharts(obj, chart = "rocc", browse = TRUE, auth.key = NULL,
                 task.id = NULL)
```

Arguments

- **obj**
 (list of) `Prediction`, (list of) `ResampleResult`, `BenchmarkResult`
 Single prediction object, list of them, single resample result, list of them, or a benchmark result. In case of a list probably produced by different learners you want to compare, then name the list with the names you want to see in the plots, probably learner shortnames or ids.

- **chart**
 [character(1)]
 First chart to display in focus in browser. All other charts can be displayed by clicking on the browser page menu. Default is “rocc”.

- **browse**
 [logical(1)]
 Open ViperCharts plot in web browser? If not you simple get the URL returned. Calls `browseURL`. Default is TRUE.

- **auth.key**
 [character(1)]
 API key to use for call to Viper charts website. Only required if you want the chart to be private. Default is NULL.

- **task.id**
 [character(1)]
 Selected task in `BenchmarkResult` to do plots for, ignored otherwise. Default is first task.

Value

character(1). Invisibly returns the ViperCharts URL.

References

predict.WrappedModel

See Also
Other roc: asROCRprediction, calculateROCMeasures
Other predict: asROCRprediction, getPredictionProbabilities, getPredictionResponse, predict.WrappedModel, setPredictThreshold, setPredictType

Examples
Not run:
lrn1 = makeLearner("classif.logreg", predict.type = "prob")
lrn2 = makeLearner("classif.rpart", predict.type = "prob")
b = benchmark(list(lrn1, lrn2), pid.task)
z = plotViperCharts(b, chart = "lift", browse = TRUE)

End(Not run)

predict.WrappedModel Predict new data.

Description
Predict the target variable of new data using a fitted model. What is stored exactly in the [Prediction] object depends on the predict.type setting of the Learner. If predict.type was set to “prob” probability thresholding can be done calling the setThreshold function on the prediction object.

The row names of the input task or newdata are preserved in the output.

Usage
S3 method for class 'WrappedModel'
predict(object, task, newdata, subset = NULL, ...)

Arguments

- **object**
 [WrappedModel]
 Wrapped model, result of train.

- **task**
 [Task]
 The task. If this is passed, data from this task is predicted.

- **newdata**
 [data.frame]
 New observations which should be predicted. Pass this alternatively instead of task.

- **subset**
 [integer | logical]
 Selected cases. Either a logical or an index vector. By default all observations are used.

- **...**
 [any]
 Currently ignored.
predictLearner

Value
Prediction .

See Also
Other predict: asROCRPrediction, getPredictionProbabilities, getPredictionResponse, plotViperCharts, setPredictThreshold, setPredictType

Examples
train and predict
train.set = seq(1, 150, 2)
test.set = seq(2, 150, 2)
model = train("classif.lda", iris.task, subset = train.set)
p = predict(model, newdata = iris, subset = test.set)
print(p)
predict(model, task = iris.task, subset = test.set)

predict now probabilities instead of class labels
lrn = makeLearner("classif.lda", predict.type = "prob")
model = train(lrn, iris.task, subset = train.set)
p = predict(model, task = iris.task, subset = test.set)
print(p)
getPredictionProbabilities(p)

predictLearner

Predict new data with an R learner.

Description
Mainly for internal use. Predict new data with a fitted model. You have to implement this method
if you want to add another learner to this package.

Usage
predictLearner(.learner, .model, .newdata, ...)

Arguments
.learner [R Learner]
Wrapped learner.
.model [WrappedModel]
Model produced by training.
.newdata [data.frame]
New data to predict. Does not include target column.
... [any]
Additional parameters, which need to be passed to the underlying predict function.
Details

Your implementation must adhere to the following: Predictions for the observations in \texttt{newdata} must be made based on the fitted model (\texttt{model$learner$model}). All parameters in \ldots must be passed to the underlying predict function.

Value

- For classification: Either a factor with class labels for type "response" or, if the learner supports this, a matrix of class probabilities for type "prob". In the latter case the columns must be named with the class labels.
- For regression: Either a numeric vector for type "response" or, if the learner supports this, a matrix with two columns for type "se". In the latter case the first column contains the estimated response (mean value) and the second column the estimated standard errors.
- For survival: Either a numeric vector with some sort of orderable risk for type "response" or, if supported, a numeric vector with time dependent probabilities for type "prob".
- For clustering: Either an integer with cluster IDs for type "response" or, if supported, a matrix of membership probabilities for type "prob".
- For multilabel: A logical matrix that indicates predicted class labels for type "response" or, if supported, a matrix of class probabilities for type "prob". The columns must be named with the class labels.

reduceBatchmarkResults

Reduce results of a batch-distributed benchmark.

Description

This creates a \texttt{BenchmarkResult} from a \texttt{ExperimentRegistry}. To setup the benchmark have a look at \texttt{batchmark}.

Usage

```r
reduceBatchmarkResults(ids = NULL, keep.pred = TRUE,
show.info = getMlrOption("show.info"),
reg = batchtools::getDefaultRegistry())
```

Arguments

- `ids` [data.frame or integer]
 A \texttt{data.frame} (or \texttt{data.table}) with a column named "job.id". Alternatively, you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
- `keep.pred` [logical(1)]
 Keep the prediction data in the \texttt{pred} slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. In this case you can set this argument to \texttt{FALSE}. Default is \texttt{TRUE}.
show.info [logical(1)]
Print verbose output on console? Default is set via configureMlr.
reg [ExperimentRegistry]
Registry, created by makeExperimentRegistry. If not explicitly passed, uses the last created registry.

Value
BenchmarkResult.

See Also
Other benchmark: BenchmarkResult, batchmark, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMR LearnerIds, getBMR Learner ShortNames, getBMR Learners, getBMRMeasureIds, getBMR Measures, getBMR Models, getBMR Performances, getBMR Predictions, getBMR TaskDescs, getBMR TaskIds, getBMR Tune Results, plotBMR Boxplots, plotBMR Ranks As Bar Chart, plotBMR Summary, plotCritDifferences

regre.featureless Featureless regression learner.

Description
A very basic baseline method which is useful for model comparisons (if you don’t beat this, you very likely have a problem). Does not consider any features of the task and only uses the target feature of the training data to make predictions. Using observation weights is currently not supported.
Methods “mean” and “median” always predict a constant value for each new observation which corresponds to the observed mean or median of the target feature in training data, respectively.
The default method is ”mean” which corresponds to the ZeroR algorithm from WEKA, see https://weka.wikispaces.com/ZeroR.

regre.randomForest RandomForest regression learner.

Description
mlr learner for regression tasks using randomForest.
This doc page exists, as we added additional uncertainty estimation functionality (predict.type = ”se”) for the randomForest, which is not provided by the underlying package.
Currently implemented methods are:
• If se.method = ”jackknife”, the default, the standard error of a prediction is estimated by computing the jackknife-after-bootstrap, the mean-squared difference between the prediction made by only using trees which did not contain said observation and the ensemble prediction.
- If `se.method = "bootstrap"` the standard error of a prediction is estimated by bootstrapping the random forest, where the number of bootstrap replicates and the number of trees in the ensemble are controlled by `se.boot` and `se.ntree` respectively, and then taking the standard deviation of the bootstrap predictions. The "brute force" bootstrap is executed when `ntree = se.ntree`, the latter of which controls the number of trees in the individual random forests which are bootstrapped. The "noisy bootstrap" is executed when `se.ntree < ntree` which is less computationally expensive. A Monte-Carlo bias correction may make the latter option preferable in many cases. Defaults are `se.boot = 50` and `se.ntree = 100`.

- If `se.method = "sd"`, the standard deviation of the predictions across trees is returned as the variance estimate. This can be computed quickly but is also a very naive estimator.

For both “jackknife” and “bootstrap”, a Monte-Carlo bias correction is applied and, in the case that this results in a negative variance estimate, the values are truncated at 0.

Note that when using the “jackknife” procedure for `se` estimation, using a small number of trees can lead to training data observations that are never out-of-bag. The current implementation ignores these observations, but in the original definition, the resulting `se` estimation would be undefined.

Please note that all of the mentioned `se.method` variants do not affect the computation of the posterior mean “response” value. This is always the same as from the underlying randomForest.

References

Arguments

obj [data.frame | Task]
Input data.

desc [ImputationDesc]
Imputation description as returned by impute.

Value

Imputated data.frame or task with imputed data.

See Also

Other impute: imputations, impute, makeImputeMethod, makeImputeWrapper

removeConstantFeatures

Remove constant features from a data set.

Description

Constant features can lead to errors in some models and obviously provide no information in the training set that can be learned from. With the argument “perc”, there is a possibility to also remove features for which less than “perc” percent of the observations differ from the mode value.

Usage

removeConstantFeatures(obj, perc = 0, dont.rm = character(0L),
na.ignore = FALSE, tol = .Machine$double.eps^0.5,
show.info = getMlrOption("show.info"))

Arguments

obj [data.frame | Task]
Input data.

perc [numeric]
The percentage of a feature values in [0, 1) that must differ from the mode value. Default is 0, which means only constant features with exactly one observed level are removed.

dont.rm [character]
Names of the columns which must not be deleted. Default is no columns.

na.ignore [logical]
Should NAs be ignored in the percentage calculation? (Or should they be treated as a single, extra level in the percentage calculation?) Note that if the feature has only missing values, it is always removed. Default is FALSE.
removeHyperPars

tol [numeric(1)]
Numerical tolerance to treat two numbers as equal. Variables stored as double will get rounded accordingly before computing the mode. Default is sqrt(.Machine$double.eps).

show.info [logical(1)]
Print verbose output on console? Default is set via configureMlr.

Value
data.frame|Task. Same type as obj.

See Also
Other eda_and_preprocess: capLargeValues, createDummyFeatures, dropFeatures, mergeSmallFactorLevels, normalizeFeatures, summarizeColumns

removeHyperPars Remove hyperparameters settings of a learner.

Description
Remove settings (previously set through mlr) for some parameters. Which means that the default behavior for that param will now be used.

Usage
removeHyperPars(learner, ids = character(0L))

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

ids [character]
Parameter names to remove settings for. Default is character(0L).

Value
Learner.

See Also
Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, setHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType
Description

The function `resample` fits a model specified by Learner on a Task and calculates predictions and performance measures for all training and all test sets specified by either a resampling description (ResampleDesc) or resampling instance (ResampleInstance).

You are able to return all fitted models (parameter `models`) or extract specific parts of the models (parameter `extract`) as returning all of them completely might be memory intensive.

The remaining functions on this page are convenience wrappers for the various existing resampling strategies. Note that if you need to work with precomputed training and test splits (i.e., resampling instances), you have to stick with `resample`.

Usage

```r
resample(learner, task, resampling, measures, weights = NULL, 
  models = FALSE, extract, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
crossval(learner, task, iters = 10L, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
repcv(learner, task, folds = 10L, reps = 10L, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
holdout(learner, task, split = 2/3, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
subsample(learner, task, iters = 30, split = 2/3, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
bootstrapOOB(learner, task, iters = 30, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
bootstrapB632(learner, task, iters = 30, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```

```r
bootstrapB632plus(learner, task, iters = 30, stratify = FALSE, measures, 
  models = FALSE, keep.pred = TRUE, ..., 
  show.info = getMlrOption("show.info"))
```
Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.
task [Task]
The task.
resampling [ResampleDesc or ResampleInstance]
Resampling strategy. If a description is passed, it is instantiated automatically.
measures [Measure | list of Measure]
Performance measure(s) to evaluate. Default is the default measure for the task, see here get_default_measure.
weights [numeric]
Optional, non-negative case weight vector to be used during fitting. If given, must be of same length as observations in task and in corresponding order. Over- writes weights specified in the task. By default NULL which means no weights are used unless specified in the task.
models [logical(1)]
Should all fitted models be returned? Default is FALSE.
extract [function]
Function used to extract information from a fitted model during resampling. Is applied to every WrappedModel resulting from calls to train during resampling. Default is to extract nothing.
keep.pred [logical(1)]
Keep the prediction data in the pred slot of the result object. If you do many experiments (on larger data sets) these objects might unnecessarily increase object size / mem usage, if you do not really need them. In this case you can set this argument to FALSE. Default is TRUE.
... [any]
Further hyperparameters passed to learner.
show.info [logical(1)]
Print verbose output on console? Default is set via configureMlr.
iters [integer(1)]
See ResampleDesc.
stratify [logical(1)]
See ResampleDesc.
folds [integer(1)]
See ResampleDesc.
reps [integer(1)]
See ResampleDesc.
split [numeric(1)]
See ResampleDesc.

Value

ResampleResult.
Note

If you would like to include results from the training data set, make sure to appropriately adjust the resampling strategy and the aggregation for the measure. See example code below.

See Also

Other resample: ResamplePrediction, ResampleResult, addRRMeasure, getRRPredictionList, getRRPredictions, getRRTaskDescription, getRRTaskDesc, makeResampleDesc, makeResampleInstance

Examples

task = makeClassifTask(data = iris, target = "Species")
rdesc = makeResampleDesc("CV", iters = 2)
r = resample(makeLearner("classif.qda"), task, rdesc)
print(r$aggr)
print(r$measures.test)
print(r$pred)

include the training set performance as well
rdesc = makeResampleDesc("CV", iters = 2, predict = "both")
r = resample(makeLearner("classif.qda"), task, rdesc,
 measures = list(mmce, setAggregation(mmce, train.mean)))
print(r$aggr)

ResamplePrediction Prediction from resampling.

Description

Contains predictions from resampling, returned (among other stuff) by function resample. Can basically be used in the same way as Prediction, its super class. The main differences are: (a) The internal data.frame (member data) contains an additional column iter, specifying the iteration of the resampling strategy, and an additional columns set, specifying whether the prediction was from an observation in the “train” or “test” set. (b) The prediction time is a numeric vector, its length equals the number of iterations.

See Also

Other resample: ResampleResult, addRRMeasure, getRRPredictionList, getRRPredictions, getRRTaskDescription, getRRTaskDesc, makeResampleDesc, makeResampleInstance, resample
ResampleResult

Description

A resample result is created by \texttt{resample} and contains the following object members:

\textbf{task.id} [character(1) :] Name of the Task.

\textbf{learner.id} [character(1) :] Name of the Learner.

\textbf{measures.test} [data.frame :] Gives you access to performance measurements on the individual test sets. Rows correspond to sets in resampling iterations, columns to performance measures.

\textbf{measures.train} [data.frame :] Gives you access to performance measurements on the individual training sets. Rows correspond to sets in resampling iterations, columns to performance measures. Usually not available, only if specifically requested, see general description above.

\textbf{aggr} [numeric :] Named vector of aggregated performance values. Names are coded like this \texttt{<measure>.<aggregation>}.

\textbf{err.msgs} [data.frame :] Number of rows equals resampling iterations and columns are: “iter”, “train”, “predict”. Stores error messages generated during train or predict, if these were caught via \texttt{configureMlr}.

\textbf{err.dumps} [list of list of dump.frames :] List with length equal to number of resampling iterations. Contains lists of dump.frames objects that can be fed to \texttt{debugger}() to inspect error dumps generated on learner errors. One iteration can generate more than one error dump depending on which of training, prediction on training set, or prediction on test set, operations fail. Therefore the lists have named slots \texttt{$train$}, \texttt{$predict.train$}, or \texttt{$predict.test$} if relevant. The error dumps are only saved when option \texttt{on.error.dump} is TRUE.

\textbf{pred} [ResamplePrediction :] Container for all predictions during resampling.

\textbf{models} [list of WrappedModel :] List of fitted models or null.

\textbf{extract} [list :] List of extracted parts from fitted models or null.

\textbf{runtime} [numeric(1) :] Time in seconds it took to execute the resampling.

The print method of this object gives a short overview, including task and learner ids, aggregated measures and runtime for the resampling.

See Also

Other resample: \texttt{ResamplePrediction, addRRMeasure, getRRPredictionList, getRRPredictions, getRRTaskDescription, getRRTaskDesc, makeResampleDesc, makeResampleInstance, resample}

Other debug: \texttt{FailureModel, getPredictionDump, getRRDump}
Description

Wraps an already implemented learning method from R to make it accessible to mlr. Call this method in your constructor. You have to pass an id (name), the required package(s), a description object for all changeable parameters (you do not have to do this for the learner to work, but it is strongly recommended), and use property tags to define features of the learner.

For a general overview on how to integrate a learning algorithm into mlr’s system, please read the section in the online tutorial: http://mlr-org.github.io/mlr-tutorial/release/html/create_learner/index.html

To see all possible properties of a learner, go to: LearnerProperties.

Usage

makeR Learner()

makeR LearnerClassif(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "",
 class.weights.param = NULL)

makeR LearnerMultilabel(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "")

makeR LearnerRegr(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "")

makeR LearnerSurv(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "")

makeR LearnerCluster(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "")

makeR LearnerCostSens(cl, package, par.set, par.vals = list(),
 properties = character(0L), name = cl, short.name = cl, note = "")

Arguments

c1 [character(1)]
Class of learner. By convention, all classification learners start with “classif.”, all regression learners with “regr.”, all survival learners start with “surv.”, all clustering learners with “cluster.”, and all multilabel classification learners start with “multilabel.”. A list of all integrated learners is available on the learners help page.
selectFeatures

package [character]
 Package(s) to load for the implementation of the learner.

par.set [ParamSet]
 Parameter set of (hyper)parameters and their constraints. Dependent parameters with a requires field must use quote and not expression to define it.

par.vals [list]
 Always set hyperparameters to these values when the object is constructed. Useful when default values are missing in the underlying function. The values can later be overwritten when the user sets hyperparameters. Default is empty list.

properties [character]
 Set of learner properties. See above. Default is character(0).

name [character]
 Meaningful name for learner. Default is id.

short.name [character]
 Short name for learner. Should only be a few characters so it can be used in plots and tables. Default is id.

note [character]
 Additional notes regarding the learner and its integration in mlr. Default is “”.

class.weights.param [character]
 Name of the parameter, which can be used for providing class weights.

Value

RLearner . The specific subclass is one of R LearnerClassif , R LearnerCluster , R LearnerMultilabel , R LearnerRegr , R LearnerSurv .

selectFeatures Feature selection by wrapper approach.

Description

Optimizes the features for a classification or regression problem by choosing a variable selection wrapper approach. Allows for different optimization methods, such as forward search or a genetic algorithm. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at the subclasses of [FeatSelControl].

All algorithms operate on a 0-1-bit encoding of candidate solutions. Per default a single bit corresponds to a single feature, but you are able to change this by using the arguments bit.names and bits.to.features. Thus allowing you to switch on whole groups of features with a single bit.

Usage

selectFeatures(learner, task, resampling, measures, bit.names, bits.to.features, control, show.info = getMlrOption("show.info"))
Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

task [Task]
The task.

resampling [ResampleInstance | ResampleDesc]
Resampling strategy for feature selection. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behaviour, look at FeatSelControl.

measures [list of Measure | Measure]
Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here getDefaultMeasure.

bit.names [character]
Names of bits encoding the solutions. Also defines the total number of bits in the encoding. Per default these are the feature names of the task.

bits.to.features [function(x, task)]
Function which transforms an integer-0-1 vector into a character vector of selected features. Per default a value of 1 in the ith bit selects the ith feature to be in the candidate solution.

control [see FeatSelControl] Control object for search method. Also selects the optimization algorithm for feature selection.

show.info [logical(1)]
Print verbose output on console? Default is set via configureMlr.

Value

FeatSelResult

See Also

Other featsel: FeatSelControl, analyzeFeatSelResult, getFeatSelResult, makeFeatSelWrapper

Examples

rdesc = makeResampleDesc("Holdout")
ctrl = makeFeatSelControlSequential(method = "sfs", maxit = NA)
res = selectFeatures("classif.rpart", iris.task, rdesc, control = ctrl)
analyzeFeatSelResult(res)
setAggregation

Set aggregation function of measure.

Description

Set how this measure will be aggregated after resampling. To see possible aggregation functions: [aggregations](#).

Usage

```
setAggregation(measure, aggr)
```

Arguments

- **measure**
 - *[Measure]*
 - Performance measure.
- **aggr**
 - *[Aggregation]*
 - Aggregation function.

Value

Measure with changed aggregation behaviour.

setHyperPars

Set the hyperparameters of a learner object.

Description

Set the hyperparameters of a learner object.

Usage

```
setHyperPars(learner, ..., par.vals = list())
```

Arguments

- **learner**
 - *[Learner | character(1)]*
 - The learner. If you pass a string the learner will be created via `makeLearner`.
- **...**
 - [any]
 - Named (hyper)parameters with new setting. Alternatively these can be passed using the `par.vals` argument.
- **par.vals**
 - [list]
 - Optional list of named (hyper)parameter settings. The arguments in `...` take precedence over values in this list.
setHyperPars2

Value

Learner.

Note

If a named (hyper)parameter can’t be found for the given learner, the 3 closest (hyper)parameter names will be output in case the user mistyped.

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParV#s, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setId, setLearnerId, setPredictThreshold, setPredictType

Examples

c11 = makeLearner("classif.ksvm", sigma = 1)
c12 = setHyperPars(c11, sigma = 10, par.vals = list(C = 2))
print(c11)
note the now set and altered hyperparameters:
print(c12)

setHyperPars2 Only exported for internal use.

Description

Only exported for internal use.

Usage

setHyperPars2(learner, par.vals)

Arguments

learner [Learner]
The learner.

par.vals [list]
List of named (hyper)parameter settings.
setId

Set the id of a learner object.

Description

Deprecated, use `setLearnerId` instead.

Usage

```r
setId(learner, id)
```

Arguments

- **learner**`[Learner | character(1)]`
 - The learner. If you pass a string the learner will be created via `makeLearner`.

- **id**`[character(1)]`
 - New id for learner.

setLearnerId

Set the ID of a learner object.

Description

Set the ID of the learner.

Usage

```r
setLearnerId(learner, id)
```

Arguments

- **learner**`[Learner | character(1)]`
 - The learner. If you pass a string the learner will be created via `makeLearner`.

- **id**`[character(1)]`
 - New ID for learner.
setPredictThreshold

Set the probability threshold the learner should use.

Value

Learner.

See Also

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setPredictThreshold, setPredictType

setPredictThreshold

Set the probability threshold the learner should use.

Description

See predict.threshold in makeLearner and setThreshold.

For complex wrappers only the top-level predict.type is currently set.

Usage

setPredictThreshold(learner, predict.threshold)

Arguments

learner

[Learner | character(1)]

The learner. If you pass a string the learner will be created via makeLearner.

predict.threshold

[numeric]

Threshold to produce class labels. Has to be a named vector, where names correspond to class labels. Only for binary classification it can be a single numerical threshold for the positive class. See setThreshold for details on how it is applied. Default is NULL which means 0.5 / an equal threshold for each class.

Value

Learner.

See Also

Other predict: asROCRPrediction, getPredictionProbabilities, getPredictionResponse, plotViperCharts, predictWrappedModel, setPredictType

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setLearnerId, setPredictType
setPredictType

Set the type of predictions the learner should return.

Description

Possible prediction types are: Classification: Labels or class probabilities (including labels). Regression: Numeric or response or standard errors (including numeric response). Survival: Linear predictor or survival probability.

For complex wrappers the predict type is usually also passed down the encapsulated learner in a recursive fashion.

Usage

setPredictType(learner, predict.type)

Arguments

learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

predict.type [character(1)]
Classification: “response” or “prob”. Regression: “response” or “se”. Survival: “response” (linear predictor) or “prob”. Clustering: “response” or “prob”. Default is “response”.

Value

Learner.

See Also

Other predict: asROCRPrediction, getPredictionProbabilities, getPredictionResponse, plotViperCharts, predict.WrappedModel, setPredictThreshold

Other learner: LearnerProperties, getClassWeightParam, getHyperPars, getId, getLearnerId, getLearnerPackages, getLearnerParVals, getLearnerParamSet, getLearnerPredictType, getLearnerShortName, getLearnerType, getParamSet, makeLearners, makeLearner, removeHyperPars, setHyperPars, setId, setIdLearnerId, setPredictThreshold
setThreshold

Set threshold of prediction object.

Description

Set threshold of prediction object for classification or multilabel classification. Creates corresponding discrete class response for the newly set threshold. For binary classification: The positive class is predicted if the probability value exceeds the threshold. For multiclass: Probabilities are divided by corresponding thresholds and the class with maximum resulting value is selected. The result of both are equivalent if in the multi-threshold case the values are greater than 0 and sum to 1. For multilabel classification: A label is predicted (with entry TRUE) if a probability matrix entry exceeds the threshold of the corresponding label.

Usage

setThreshold(pred, threshold)

Arguments

pred [Prediction]
Prediction object.

threshold [numeric]
Threshold to produce class labels. Has to be a named vector, where names correspond to class labels. Only for binary classification it can be a single numerical threshold for the positive class.

Value

Prediction with changed threshold and corresponding response.

See Also

predict.WrappedModel

Examples

create task and train learner (LDA)
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda", predict.type = "prob")
mod = train(lrn, task)

predict probabilities and compute performance
pred = predict(mod, newdata = iris)
performance(pred, measures = mmce)
head(as.data.frame(pred))

adjust threshold and predict probabilities again
threshold = c(setosa = 0.4, versicolor = 0.3, virginica = 0.3)
simplifyMeasureNames

```r
pred = setThreshold(pred, threshold = threshold)
performance(pred, measures = mmce)
head(as.data.frame(pred))
```

Description

Clips aggregation names from character vector. E.g: 'mmce.test.mean' becomes 'mmce'. Elements that don’t contain a measure name are ignored and returned unchanged.

Usage

`simplifyMeasureNames(xs)`

Arguments

- `xs` [character]
 Character vector that (possibly) contains aggregated measure names.

Value

Character.

smote

Synthetic Minority Oversampling Technique to handle class imbalancy in binary classification.

Description

In each iteration, samples one minority class element x1, then one of x1’s nearest neighbors: x2. Both points are now interpolated / convex-combined, resulting in a new virtual data point x3 for the minority class.

The method handles factor features, too. The gower distance is used for nearest neighbor calculation, see `daisy`. For interpolation, the new factor level for x3 is sampled from the two given levels of x1 and x2 per feature.

Usage

`smote(task, rate, nn = 5L, standardize = TRUE, alt.logic = FALSE)`
Arguments

- **task** [Task]
 The task.
- **rate** [numeric(1)]
 Factor to upsample the smaller class. Must be between 1 and Inf, where 1 means no oversampling and 2 would mean doubling the class size.
- **nn** [integer(1)]
 Number of nearest neighbors to consider. Default is 5.
- **standardize** [integer(1)]
 Standardize input variables before calculating the nearest neighbors for data sets with numeric input variables only. For mixed variables (numeric and factor) the gower distance is used and variables are standardized anyway. Default is TRUE.
- **alt.logic** [integer(1)]
 Use an alternative logic for selection of minority class observations. Instead of sampling a minority class element AND one of its nearest neighbors, each minority class element is taken multiple times (depending on rate) for the interpolation and only the corresponding nearest neighbor is sampled. Default is FALSE.

Value

- **Task**

References

See Also

- Other imbalancy: `makeOverBaggingWrapper`, `makeUndersampleWrapper`, `oversample`
subsetTask

Subset data in task.

Description

Subset data in task.

Usage

subsetTask(task, subset = NULL, features)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>task</td>
<td>[Task] The task.</td>
</tr>
<tr>
<td>subset</td>
<td>[integer</td>
</tr>
<tr>
<td>features</td>
<td>[character</td>
</tr>
</tbody>
</table>

Value

Task. Task with subsetted data.

See Also

Other task: `getTaskClassLevels`, `getTaskCosts`, `getTaskData`, `getTaskDesc`, `getTaskFeatureNames`, `getTaskFormula`, `getTaskId`, `getTaskNFeats`, `getTaskSize`, `getTaskTargetNames`, `getTaskTargets`, `getTaskType`

Examples

task = makeClassifTask(data = iris, target = "Species")
subsetTask(task, subset = 1:100)
summarizeColumns

Summarize columns of data.frame or task.

Description

Summarizes a data.frame, somewhat differently than the normal `summary` function of R. The function is mainly useful as a basic EDA tool on data.frames before they are converted to tasks, but can be used on tasks as well.

Columns can be of type numeric, integer, logical, factor, or character. Characters and logicals will be treated as factors.

Usage

`summarizeColumns(obj)`

Arguments

- **obj**
 [data.frame | Task]
 Input data.

Value

data.frame . With columns:

- **name**
 Name of column.

- **type**
 Data type of column.

- **na**
 Number of NAs in column.

- **disp**
 Measure of dispersion, for numerics and integers `sd` is used, for categorical columns the qualitative variation.

- **mean**
 Mean value of column, NA for categorical columns.

- **median**
 Median value of column, NA for categorical columns.

- **mad**
 MAD of column, NA for categorical columns.

- **min**
 Minimal value of column, for categorical columns the size of the smallest category.

- **max**
 Maximal value of column, for categorical columns the size of the largest category.

- **nlevs**
 For categorical columns, the number of factor levels, NA else.

See Also

Other eda_and_preprocess: `capLargeValues`, `createDummyFeatures`, `dropFeatures`, `mergeSmallFactorLevels`, `normalizeFeatures`, `removeConstantFeatures`

Examples

`summarizeColumns(iris)`
summarizeLevels

Summarizes factors of a data.frame by tabling them.

Description

Characters and logicals will be treated as factors.

Usage

`summarizeLevels(obj, cols = NULL)`

Arguments

- **obj**
 - `data.frame` | `Task`
 - Input data.
- **cols**
 - `character`
 - Restrict result to columns in cols. Default is all factor, character and logical columns of obj.

Value

`list` . Named list of tables.

TaskDesc

Description object for task.

Description

Description object for task, encapsulates basic properties of the task without having to store the complete data set.

Details

Object members:

- **id** [character(1)] Id string of task.
- **type** [character(1)] Type of task. “classif” for classification, “regr” for regression, “surv” for survival and “cluster” for cluster analysis, “costsens” for cost-sensitive classification, and “multilabel” for multilabel classification.
- **target** [character(0) | character(1) | character(2) | character(n.classes)] Name(s) of the target variable(s). For “surv” these are the names of the survival time and event columns, so it has length 2. For “costsens” it has length 0, as there is no target column, but a cost matrix instead. For “multilabel” these are the names of logical columns that indicate whether a class label is present and the number of target variables corresponds to the number of classes.
- **size** [integer(1)] Number of cases in data set.
Train a learning algorithm.

Description

Given a Task, creates a model for the learning machine which can be used for predictions on new data.

Usage

```r
train(learner, task, subset, weights = NULL)
```

Arguments

- **learner**
 - [Learner | character(1)]
 - The learner. If you pass a string the learner will be created via `makeLearner`.
- **task**
 - [Task]
 - The task.
- **subset**
 - [integer | logical]
 - Selected cases. Either a logical or an index vector. By default all observations are used.
- **weights**
 - [numeric]
 - Optional, non-negative case weight vector to be used during fitting. If given, must be of same length as subset and in corresponding order. By default NULL which means no weights are used unless specified in the task (Task). Weights from the task will be overwritten.

Value

`WrappedModel`.
trainLearner

See Also

predict.WrappedModel

Examples

```r
training.set = sample(1:nrow(iris), nrow(iris) / 2)

## use linear discriminant analysis to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.lda", method = "mle")
mod = train(learner, task, subset = training.set)
print(mod)

## use random forest to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.rpart", nsplit = 7, predict.type = "prob")
mod = train(learner, task, subset = training.set)
print(mod)
```

Description

Mainly for internal use. Trains a wrapped learner on a given training set. You have to implement this method if you want to add another learner to this package.

Usage

```r
trainLearner(.learner, .task, .subset, .weights = NULL, ...)
```

Arguments

- `.learner` [R Learner]
 Wrapped learner.
- `.task` [Task]
 Task to train learner on.
- `.subset` [integer]
 Subset of cases for training set, index the task with this. You probably want to use `getTaskData` for this purpose.
- `.weights` [numeric]
 Weights for each observation.
- `...` [any]
 Additional (hyper)parameters, which need to be passed to the underlying train function.
Details

Your implementation must adhere to the following: The model must be fitted on the subset of tasks given by .subset. All parameters in ... must be passed to the underlying training function.

Value

any. Model of the underlying learner.

TuneControl

Control object for tuning

Description

General tune control object.

Arguments

- `same.resampling.instance` [logical(1)]
 Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

- `impute.val` [numeric]
 If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

- `start` [list]
 Named list of initial parameter values.

- `tune.threshold` [logical(1)]
 Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via `tuneThreshold`? Only works for classification if the predict type is “prob”. Default is FALSE.

- `tune.threshold.args` [list]
 Further arguments for threshold tuning that are passed down to `tuneThreshold`. Default is none.

- `log.fun` [function | character(1)]
 Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with
a small increase in run time. Otherwise a function with arguments learner,
resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas,
stage, and prev.stage is expected. The default displays the performance mea-
ures, the time needed for evaluating, the currently used memory and the max
memory ever used before (the latter two both taken from gc). See the imple-
mentation for details.

final.dw.perc [boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the
value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

See Also
Other tune: getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIRace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold

TuneMultiCritControl Create control structures for multi-criteria tuning.

Description
The following tuners are available:

- **makeTuneMultiCritControlGrid** Grid search. All kinds of parameter types can be handled. You can either use their correct param type and resolution, or discretize them yourself by always using `makeDiscreteParam` in the par.set passed to `tuneParams`.

- **makeTuneMultiCritControlRandom** Random search. All kinds of parameter types can be handled.

- **makeTuneMultiCritControlNSGA2** Evolutionary method `nsga2`. Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies. For integers the internally proposed numeric values are automatically rounded.

Usage

```r
makeTuneMultiCritControlGrid(same.resampling.instance = TRUE, 
resolution = 10L, log.fun = "default", final.dw.perc = NULL, 
budget = NULL)
```

```r
makeTuneMultiCritControlNSGA2(same.resampling.instance = TRUE, 
impute.val = NULL, log.fun = "default", final.dw.perc = NULL, 
budget = NULL, ...)
```
makeTuneMultiCritControlRandom(same.resampling.instance = TRUE,
maxit = 100L, log.fun = "default", final.dw.perc = NULL,
budget = NULL)

Arguments

same.resampling.instance [logical(1)]
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

resolution [integer]
Resolution of the grid for each numeric/integer parameter in par.set. For vector parameters, it is the resolution per dimension. Either pass one resolution for all parameters, or a named vector. See generateGridDesign. Default is 10.

log.fun [function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc [boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget [integer(1)]
Maximum budget for tuning. This value restricts the number of function evaluations. In case of makeTuneMultiCritControlGrid this number must be identical to the size of the grid. For makeTuneMultiCritControlRandom the budget equals the number of iterations (maxit) performed by the random search algorithm. And in case of makeTuneMultiCritControlNSGA2 the budget corresponds to the product of the maximum number of generations (max(generations)) + 1 (for the initial population) and the size of the population (popsize).

impute.val [numeric]
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.
Further control parameters passed to the control arguments of `cma_es` or `GenSA`, as well as towards the `tunerConfig` argument of `irace`.

`maxit` [integer(1)]
Number of iterations for random search. Default is 100.

Value

TuneMultiCritControl. The specific subclass is one of TuneMultiCritControlGrid, TuneMultiCritControlRandom, TuneMultiCritControlNSGA2.

See Also

Other `tune_multicrit`: `plotTuneMultiCritResultGGVIS`, `plotTuneMultiCritResult`, `tuneParamsMultiCrit`

Description

Container for results of hyperparameter tuning. Contains the obtained pareto set and front and the optimization path which lead there.

Object members:

- **learner** [Learner] Learner that was optimized.
- **control** [TuneControl] Control object from tuning.
- **x** [list] List of lists of non-dominated hyperparameter settings in pareto set. Note that when you have trafos on some of your params, x will always be on the TRANSFORMED scale so you directly use it.
- **y** [matrix] Pareto front for x.
- **opt.path** [OptPath] Optimization path which lead to x. Note that when you have trafos on some of your params, the opt.path always contains the UNTRANSFORMED values on the original scale. You can simply call `trafoOptPath(opt.path)` to transform them, or, as data.frame(trafoOptPath(opt.path))
- **measures** [(list of) Measure] Performance measures.
tuneParams

Hyperparameter tuning.

Description
Optimizes the hyperparameters of a learner. Allows for different optimization methods, such as
grid search, evolutionary strategies, iterated F-race, etc. You can select such an algorithm (and its
settings) by passing a corresponding control object. For a complete list of implemented algorithms
look at TuneControl.

Multi-criteria tuning can be done with tuneParamsMultiCrit.

Usage
tuneParams(learner, task, resampling, measures, par.set, control,
show.info = getMlrOption("show.info"), resample.fun = resample)

Arguments
learner [Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

task [Task]
The task.

resampling [ResampleInstance | ResampleDesc]
Resampling strategy to evaluate points in hyperparameter space. If you pass a
description, it is instantiated once at the beginning by default, so all points are
evaluated on the same training/test sets. If you want to change that behavior,
look at TuneControl.

measures [list of Measure | Measure]
Performance measures to evaluate. The first measure, aggregated by the first
aggregation function is optimized, others are simply evaluated. Default is the
default measure for the task, see here getDefaultMeasure.

par.set [ParamSet]
Collection of parameters and their constraints for optimization. Dependent pa-
rameters with a requires field must use quote and not expression to define it.

control [TuneControl]
Control object for search method. Also selects the optimization algorithm for
tuning.

show.info [logical(1)]
Print verbose output on console? Default is set via configureMlr.

resample.fun [closure]
The function to use for resampling. Defaults to resample. If a user-given func-
tion is to be used instead, it should take the arguments “learner”, “task”, “re-
sampling”, “measures”, and “show.info”; see resample. Within this function,
it is easiest to call `resample` and possibly modify the result. However, it is possible to return a list with only the following essential slots: the “aggr” slot for general tuning, additionally the “pred” slot if threshold tuning is performed (see `TuneControl`), and the “errmsgs” and “err.dumps” slots for error reporting. This parameter must be the default when mbo tuning is performed.

Value

TuneResult.

Note

If you would like to include results from the training data set, make sure to appropriately adjust the resampling strategy and the aggregation for the measure. See example code below.

See Also

- `generateHyperParsEffectData`
- Other tune: `TuneControl`, `getNestedTuneResultsOptPathDF`, `getNestedTuneResultsX`, `getTuneResult`, `makeModelMultipleParamSet`, `makeModelMultipleX`, `makeTuneControlCMAES`, `makeTuneControlDesign`, `makeTuneControlGenSA`, `makeTuneControlGrid`, `makeTuneControlIRace`, `makeTuneControlMBO`, `makeTuneControlRandom`, `makeTuneWrapper`, `tuneThreshold`

Examples

```r
# a grid search for an SVM (with a tiny number of points...)
# note how easily we can optimize on a log-scale
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlGrid(resolution = 2L)
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
```

```r
# access data for all evaluated points
print(head(as.data.frame(res$opt.path)))
print(head(as.data.frame(res$opt.path, trafo = TRUE)))
```

```r
# access data for all evaluated points - alternative
print(head(generateHyperParsEffectData(res)))
print(head(generateHyperParsEffectData(res, trafo = TRUE)))
```

```r
## Not run:
# we optimize the SVM over 3 kernels simultaneously
# note how we use dependent params (requires = ...) and iterated F-racing here
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x,
    requires = quote(kernel == "rbfdot")),
  makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")),
  makeIntegerParam("degree", lower = 2L, upper = 5L)
tuneParamsMultiCrit

Hyperparameter tuning for multiple measures at once.

Description

Optimizes the hyperparameters of a learner in a multi-criteria fashion. Allows for different optimization methods, such as grid search, evolutionary strategies, etc. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at `tunemulticritcontrol`.

Usage

tuneParamsMultiCrit(learner, task, resampling, measures, par.set, control, show.info = getMLrOption("show.info"), resample.fun = resample)

Arguments

- **learner** [Learner | character(1)]
  The learner. If you pass a string the learner will be created via `makeLearner`.

- **task** [Task]
  The task.

- **resampling** [ResampleInstance | ResampleDesc]
  Resampling strategy to evaluate points in hyperparameter space. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at `TuneMultiCritControl`.

- **measures** [list of Measure]
  Performance measures to optimize simultaneously.
**TuneResult**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par.set</td>
<td>Collection of parameters and their constraints for optimization. Dependent parameters with a <code>requires</code> field must use quote and not expression to define it.</td>
</tr>
<tr>
<td>control</td>
<td>Control object for search method. Also selects the optimization algorithm for tuning.</td>
</tr>
<tr>
<td>show.info</td>
<td>Print verbose output on console? Default is set via <code>configureMlr</code>.</td>
</tr>
<tr>
<td>resample.fun</td>
<td>The function to use for resampling. Defaults to <code>resample</code> and should take the same arguments as, and return the same result type as, <code>resample</code>.</td>
</tr>
</tbody>
</table>

**Value**

`TuneMultiCritResult`.

**See Also**

Other `tune_multicrit`: `TuneMultiCritControl`, `plotTuneMultiCritResultGGVIS`, `plotTuneMultiCritResult`

**Examples**

```r
multi-criteria optimization of (tpr, fpr) with NGS-A-II
lrn = makeLearner("classif.ksvm")
desc = makeResampleDesc("Holdout")
ps = makeParamSet(
 makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
 makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneMultiCritControlNGSA2(popsize = 4L, generations = 1L)
res = tuneParamsMultiCrit(lrnn, sonar.task, dscr, par.set = ps,
 measures = list(tpr, fpr), control = ctrl)
plotTuneMultiCritResult(res, path = TRUE)
```

---

**TuneResult**

*Result of tuning.*

**Description**

Container for results of hyperparameter tuning. Contains the obtained point in search space, its performance values and the optimization path which lead there.

Object members:

- **learner** [Learner ] Learner that was optimized.
control [TuneControl] Control object from tuning.

x [list] Named list of hyperparameter values identified as optimal. Note that when you have
trafos on some of your params, x will always be on the TRANSFORMED scale so you directly
use it.

y [numeric] Performance values for optimal x.

threshold [numeric] Vector of finally found and used thresholds if tune.threshold was enabled
in TuneControl, otherwise not present and hence NULL.

opt.path [OptPath] Optimization path which lead to x. Note that when you have trafos on some
of your params, the opt.path always contains the UNTRANSFORMED values on the original
scale. You can simply call trafoOptPath(opt.path) to transform them, or, as.data.frame(trafoOptPath(opt.pat
If mlr option on.error.dump is TRUE, OptPath will have a .dump object in its extra column
which contains error dump traces from failed optimization evaluations. It can be accessed by
getOptPathEl(opt.path)$extra$.dump.

tuneThreshold [TunePredictionThreshold]

Description

Optimizes the threshold of predictions based on probabilities. Works for classification and multi-
label tasks. Uses optimizeSubInts for normal binary class problems and cma.es for multiclass
and multilabel problems.

Usage

tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())

Arguments

pred [Prediction] Prediction object.

measure [Measure] Performance measure to optimize. Default is the default measure for the task.

task [Task] Learning task. Rarely needed, only when required for the performance measure.

model [WrappedModel] Fitted model. Rarely needed, only when required for the performance measure.

nsub [integer(1)] Passed to optimizeSubInts for 2class problems. Default is 20.

control [list] Control object for cma.es when used. Default is empty list.
Value

list. A named list with the following components: th is the optimal threshold, perf the performance value.

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom, makeTunewrapper, tuneParams

---

wpbc.task

Wisconsin Prognostic Breast Cancer (WPBC) survival task.

Description

Contains the task (wpbc.task).

References

See wpbc. Incomplete cases have been removed from the task.

---

yeast.task

Yeast multilabel classification task.

Description

Contains the task (yeast.task).

Source

http://sourceforge.net/projects/mulan/files/datasets/yeast.rar

References

Index

*Topic datasets
  aggregations, 9
  makeFilter, 125
  measures, 174

*Topic data
  agri.task, 11
  bc.task, 13
  bh.task, 16
  costiris.task, 25
  iris.task, 104
  lung.task, 111
  mtcars.task, 183
  pid.task, 188
  sonar.task, 232
  wpbc.task, 247
  yeast.task, 247

acc (measures), 174
addRRMeasure, 7, 88–90, 152, 154, 220, 221
Aggregation, 8, 10, 112, 135, 136, 225
aggregations, 8, 9, 112, 225
agriculture, 11
analyzeFeatSelResult, 11, 33, 71, 125, 224
arsq (measures), 174
as.data.frame, 15
asROCRPrediction, 12, 19, 85, 86, 211, 212, 228, 229
auc (measures), 174

b632 (aggregations), 9
b632plus (aggregations), 9
bac (measures), 174
batchmark, 12, 15, 24, 36, 40, 55–66, 189–191, 194, 213, 214
bc.task, 13
benchmark, 12, 13, 14, 15, 24, 36, 40, 48, 55–66, 189–191, 194, 214
BenchmarkResult, 12–15, 15, 23, 24, 35–37, 39, 40, 53–66, 180, 181, 188–191,

ber (measures), 174
bh.task, 16
bootstrapB632 (resample), 218
bootstrapB632plus (resample), 218
bootstrapOOB (resample), 218
BostonHousing, 16
BreastCancer, 13
brier (measures), 174
browseURL, 210

calculateConfusionMatrix, 16, 19, 22, 23, 29, 68, 118, 122, 136, 180, 187
calculateROCMeasures, 12, 17, 18, 18, 23, 29, 118, 122, 136, 180, 187, 211
CalibrationData
  (generateCalibrationData), 37
capLargeValues, 19, 26, 27, 181, 185, 217, 234
cindex (measures), 174
classif.featureless, 20
ClassifTask (makeClassifTask), 114
ClusterTask (makeClassifTask), 114
cma_es, 157, 158, 161, 164, 239, 241, 246
configureMlr, 14, 21, 30, 48, 70, 80, 84, 87, 104, 124, 133, 169, 214, 217, 219, 221, 224, 242, 245
ConfusionMatrix, 16, 17, 19, 22, 29, 118, 122, 136, 180, 187
convertBMRToRankMatrix, 13, 15, 23, 36, 40, 55–66, 189–191, 194, 214
costiris.task, 25
CostSensClassifModel
  (makeCostSensClassifWrapper), 118
CostSensClassifWrapper
  (makeCostSensClassifWrapper), 118
CostSensRegrModel (makeCostSensRegrWrapper), 119
CostSensRegrWrapper (makeCostSensRegrWrapper), 119
CostSensTask, 91
CostSensTask (makeClassifTask), 114
CostSensWeightedPairsModel (makeCostSensWeightedPairsWrapper), 120
CostSensWeightedPairsWrapper, 108
CostSensWeightedPairsWrapper (makeCostSensWeightedPairsWrapper), 120
createDummyFeatures, 20, 25, 27, 123, 181, 185, 217, 234
crossover, 26, 26
crossval (resample), 218
cv0 (makeResampleDesc), 151
cv2 (makeResampleDesc), 151
cv3 (makeResampleDesc), 151
cv5 (makeResampleDesc), 151
daisy, 231
data.frame, 213
data.table, 213
db (measures), 174
downsampel, 26, 122, 123
dropFeatures, 20, 26, 27, 181, 185, 217, 234
dunn (measures), 174
estimateRelativeOverfitting, 17, 19, 23, 28, 118, 122, 136, 180, 187
estimateResidualVariance, 29
expand.grid, 12
ExperimentRegistry, 213, 214
expvar (measures), 174
f1 (measures), 174
FailureModel, 22, 30, 84, 87, 221
fdr (measures), 174
featselcontrol, 11, 30, 33, 34, 71, 124, 125, 223, 224
FeatselControlExhaustive, 33
FeatselControlExhaustive (FeatselControl), 30
FeatselControlGA, 33
FeatselControlGA (FeatselControl), 30
FeatselControlRandom, 33
FeatselControlRandom (FeatselControl), 30
FeatselControlSequential, 33
FeatselControlSequential (FeatselControl), 30
FeatselResult, 11, 33, 55, 71, 224
FeatureImportanceData (generateFeatureImportanceData), 40
filterFeatures, 34, 43, 73, 74, 128, 129, 195
FilterValues, 34, 73, 194, 195
FilterValues (generateFilterValuesData), 42
fn (measures), 174
fnr (measures), 174
fp (measures), 174
fpr (measures), 174
friedman.test, 35, 36
friedmanPostHocTestBMR, 13, 15, 24, 35, 36, 40, 55–66, 189–191, 194, 214
friedmanTestBMR, 13, 15, 24, 36, 36, 40, 55–66, 189–191, 194, 214
FunctionalANOVAData (generateFunctionalANOVAData), 43
G1 (measures), 174
G2 (measures), 174
gc, 32, 158, 160, 161, 163, 164, 166, 167, 239, 240
generateCalibrationData, 37, 40, 42, 43, 45, 48, 52, 54, 74, 192, 195
generateCritDifferencesData, 13, 15, 24, 36, 38, 42, 43, 45, 48, 52, 54–66, 74, 189–191, 193–195, 214
generateDesign, 159
generateFeatureImportanceData, 38, 40, 40, 43, 45, 48, 52, 54, 74, 195
generateFilterValuesData, 34, 35, 38, 40, 42, 42, 45, 48, 52, 54, 73, 74, 129, 195
generateFunctionalANOVAData, 38, 40, 42, 43, 48, 52, 54, 74, 195
generateGridDesign, 162, 240
generateHyperParsEffectData, 46, 196–198, 243
genenerateLearningCurveData, 38, 40, 42, 43, 45, 47, 48, 52, 54, 74, 195, 200, 201
getBMRpredictions, 38, 40, 42, 43, 45, 48, 49, 54, 74, 195, 202–204
getBMRperformances, 38, 40, 42, 43, 45, 48, 52, 53, 74, 195, 205–208
getBMRmeasures, 36, 40, 54, 56–66, 189–191, 194, 214
getBMRmeasureids, 36, 40, 54, 56–66, 189–191, 194, 214
getBMRlearners, 36, 40, 54, 56–66, 189–191, 194, 214
getBMRfilteredfeatures, 36, 40, 54, 56–66, 189–191, 194, 214
getBMRfeatselresults, 36, 40, 54, 56–66, 189–191, 194, 214
getBMRtaskdescriptions, 63
getBMRtaskdescs, 36, 40, 55–63, 64, 65, 66, 189–191, 194, 214
getBMRtaskids, 36, 40, 55–63, 64, 65, 66, 189–191, 194, 214
getBMRtuneresults, 36, 40, 55–63, 64, 65, 66, 189–191, 194, 214
getcaretparamset, 66
getcodeclassweightparam, 68, 75, 77–80, 84, 107, 133, 134, 217, 226–229
getconfformats, 68
getdefaultmeasure, 8, 28, 53, 69, 124, 169, 187, 199, 219, 224, 242
getfailurermodeldump, 22, 70
getfailurermodelmsg, 70
getfeatselresult, 11, 33, 71, 124, 125, 224
getfeatureimportance, 71
getfilteredfeatures, 35, 43, 72, 74, 128, 129, 195
getfiltervalues, 35, 38, 40, 42, 43, 45, 48, 52, 54, 73, 129, 195
gethomogeneousensemblemodels, 74
gethyperpars, 68, 74, 75, 77–80, 84, 107, 133, 134, 217, 226–229
getlearnerid, 68, 75, 75, 77–80, 84, 107, 133, 134, 217, 226–229
getlearnermodel, 76, 113, 118–120, 140, 141, 143, 144, 146, 147
getlearnerpackages, 68, 75, 76, 77–80, 84, 107, 133, 134, 217, 226–229
getlearnerparams, 68, 75, 75, 77–80, 84, 107, 133, 134, 217, 226–229
getlearnerparamset, 68, 75, 77, 78–80, 84, 107, 133, 134, 217, 226–229
getlearnerparvals, 68, 75, 75, 77, 78–80, 84, 107, 133, 134, 217, 226–229
getlearnerpredicttype, 68, 75, 77, 78, 79, 80, 84, 107, 133, 134, 217, 226–229
getlearnerproperties, 136
getlearnerproperties
getmlroptions, 22, 80
getmultilabelbinaryperformances, 80, 141–143, 145, 146
getenestedtuneresultsoptpathdf, 81, 82, 100, 137, 139, 158, 160, 161, 163, 165, 167–169, 239, 243, 247
getenestedtuneresultsx, 81, 82, 100, 137, 139, 158, 160, 161, 163, 165, 167–169, 239, 243, 247
getonbmrpredictions, 83
getcarteresults, 22, 30, 84, 87, 221
getpredictionsup, 12, 85, 86, 211, 212, 228, 229
getpredictionsresponse, 12, 85, 86, 211, 212, 228, 229
getpredictionsse
impute, 102, 102, 130, 131, 215, 216
imputeConstant (imputations), 100
imputeHist (imputations), 100
imputeLearner (imputations), 100
imputeMax (imputations), 100
imputeMean (imputations), 100
imputeMedian (imputations), 100
imputeMin (imputations), 100
imputeMode (imputations), 100
imputeNormal (imputations), 100
imputeUniform (imputations), 100
integer, 153
irace, 158, 161, 163, 164, 239, 241
iris, 25, 104
iris.task, 104
isFailureModel, 104
jacobian, 49
joinClassLevels, 105
kappa (measures), 174
kendalltau (measures), 174
Learner, 13–15, 28, 29, 33, 36, 40, 47, 68, 69,
75–79, 83, 102, 106, 109, 113, 114,
117–120, 122–124, 126, 128, 131,
133, 134, 137, 139, 140, 142–150,
154–156, 165, 168–173, 188, 197,
198, 211, 217–219, 224–229, 236,
241, 242, 244, 245
Learner (makeLearner), 132
learnerArgsToControl, 105
LearnerParam, 68, 75, 78, 148
LearnerProperties, 68, 75, 77–80, 84, 106,
132–134, 217, 222, 226–229
learners, 107, 132, 222
LearningCurveData
  (generateLearningCurveData), 47
listFilterMethods, 34, 42, 73, 107, 125, 128
listLearnerProperties, 108
listLearners, 107, 108
listMeasureProperties, 110
listMeasures, 110, 174
listTaskTypes, 111
logloss (measures), 174
lsr (measures), 174
lung, 111
lung.task, 111
mae (measures), 174

hasLearnerProperties
  (LearnerProperties), 106
hasMeasureProperties
  (MeasureProperties), 173
hasProperties, 100
hist, 37, 101
holdout (resample), 218
hout (makeResampleDesc), 151
importance, 72, 125
imputations, 100, 102, 104, 130, 131, 216
191, 199–201, 205–207, 219, 224, 225, 241, 242, 244, 246
Measure (makeMeasure), 134
measureACC (measures), 174
measureAU1P (measures), 174
measureAU1U (measures), 174
measureAUC (measures), 174
measureAUNP (measures), 174
measureAUNU (measures), 174
measureBAC (measures), 174
measureBrier (measures), 174
measureBrierScaled (measures), 174
measureEXPVAR (measures), 174
measureFDR (measures), 174
measureFN (measures), 174
measureFNR (measures), 174
measureFP (measures), 174
measureFPR (measures), 174
measureGMean (measures), 174
measureGPR (measures), 174
measureKAPPA (measures), 174
measureKendallTau (measures), 174
measureLogLoss (measures), 174
measureLSR (measures), 174
measureMAE (measures), 174
measureMAPE (measures), 174
measureMCC (measures), 174
measureMEDAE (measures), 174
measureMEDSE (measures), 174
measureMMCE (measures), 174
measureMSE (measures), 174
measureMSLE (measures), 174
measureMulticlassBrier (measures), 174
measureMulticlassACC (measures), 174
measureMulticlassF1 (measures), 174
measureMulticlassHamloss (measures), 174
measureMulticlassPPV (measures), 174
measureMulticlassSubset01 (measures), 174
measureMulticlassTPR (measures), 174
measureNPV (measures), 174
measurePPV (measures), 174
MeasureProperties, 173
measureQSR (measures), 174
measureRAE (measures), 174
measureRMSE (measures), 174
measureRRSE (measures), 174
measureRSQ (measures), 174
measureSAE (measures), 174
measureSpearmanRho (measures), 174
measureSSE (measures), 174
measureSSR (measures), 174
measureTN (measures), 174
measureTNR (measures), 174
measureTP (measures), 174
measureTPR (measures), 174
measureWKAPPA (measures), 174
medae (measures), 174
medse (measures), 174
mergeBenchmarkResults, 180
mergeSmallFactorLevels, 20, 26, 27, 181, 185, 217, 234
mlrFamilies, 182
mmce (measures), 174
model.matrix, 25
ModelMultiplexer, 138
ModelMultiplexer
   (makeModelMultiplexer), 136
mse (measures), 174
msle (measures), 174
mtcars, 183
mtcars.task, 183
multiclass.au1p (measures), 174
multiclass.au1u (measures), 174
multiclass.au1n (measures), 174
multiclass.brier (measures), 174
multilabel.acc (measures), 174
multilabel.f1 (measures), 174
multilabel.hamloss (measures), 174
multilabel.ppv (measures), 174
multilabel.subset01 (measures), 174
multilabel.tpr (measures), 174
MultilabelTask (makeClassifTask), 114
normalize, 184, 185
normalizeFeatures, 20, 26, 27, 181, 184, 217, 234
npv (measures), 174
nsga2, 239
optimizeSubInts, 246
options, 21
OptPath, 34, 166, 241, 246
OptResult, 166
oversample, 148, 170, 171, 185, 232
parallelization, 186
parallelMap, 186
parallelStart, 186
parallelStop, 186
Param, 138
PartialDependenceData
  (generatePartialDependenceData), 49
performance, 17, 19, 23, 29, 112, 118, 122, 136, 180, 186
pid.task, 188
PimaIndiansDiabetes, 188
plotBMRRBoxplots, 13, 15, 24, 36, 40, 55–66, 188, 190–192, 194, 195, 200, 201, 203–205, 207, 208, 214
plotBMRRanksAsBarChart, 13, 15, 24, 36, 40, 55–66, 189, 189, 191, 192, 194, 195, 200, 201, 203–205, 207, 208, 214
plotBMRRSummary, 13, 15, 24, 36, 40, 55–66, 189, 190, 192, 194, 195, 200, 201, 203–205, 207, 208, 214
plotCalibration, 38, 189–191, 192, 194, 195, 200, 201, 203–205, 207, 208
plotFilterValues, 35, 38, 40, 42, 43, 45, 48, 52, 54, 73, 74, 129, 194, 195
plotHyperParamsEffect, 46, 196
plotLearnerPrediction, 198
plotPartialDependence, 49, 52, 189–192, 194, 195, 200, 201, 202, 204, 205, 207, 208
plotPartialDependenceGGVIS, 49, 52, 189–192, 194, 195, 200, 201, 203, 204, 205, 207, 208
plotResiduals, 189–192, 194, 195, 200, 201, 203, 204, 205, 207, 208
plotROCCurves, 54, 189–192, 194, 195, 200, 201, 203, 204, 205, 207, 208
plotThreshVsPerf, 54, 189–192, 194, 195, 200, 201, 203–205, 206, 208
plotTuneMultiCritResult, 208, 209, 241, 245
plotTuneMultiCritResultGGVIS, 209, 209, 241, 245
plotViperCharts, 12, 19, 85, 86, 210, 212, 228, 229
posthoc.friedman.nemenyi.test, 35, 39
ppv (measures), 174
predict, 45, 51
predict.WrappedModel, 12, 69, 85, 86, 211, 211, 212, 230, 237
Prediction, 12, 17, 18, 37, 53, 69, 80, 83–87, 112, 121, 135, 187, 204, 210–212, 220, 230, 246
predictLearner, 212
preProcess, 149
print.ConfusionMatrix
  (calculateConfusionMatrix), 16
print.ROCMeasures
  (calculateROCMeasures), 18
qsr (measures), 174
rae (measures), 174
randomForest, 214
ranger, 72
rank, 23, 189
reduceBatchmarkResults, 13, 15, 24, 36, 40, 55–66, 189–191, 194, 213
Registry, 13
regr.featureless, 214
regr.randomForest, 214
RegrTask, 29
RegrTask (makeClassifTask), 114
reimpute, 102, 104, 130, 131, 215
relative.influence, 71
removeConstantFeatures, 20, 26, 27, 150, 181, 185, 216, 234
removeHyperPars, 68, 75, 77–80, 84, 107, 133, 134, 217, 226–229
repcv (resample), 218
resample, 8, 46, 54, 61, 62, 87–90, 152, 154, 218, 220, 221, 242, 243, 245
ResampleDesc, 13, 14, 28, 47, 124, 152, 153, 156, 163, 168, 218, 219, 224, 242, 244
ResampleDesc (makeResampleDesc), 151
ResampleInstance, 14, 27, 47, 124, 130, 151, 154, 163, 168, 218, 219, 224, 242, 244
ResampleInstance (makeResampleInstance), 153
ResamplePrediction, 8, 53, 62, 88–90, 121, 152, 154, 220, 220, 221
ResampleResult, 8, 13–15, 30, 37, 46, 53, 81, 82, 84, 87–90, 152, 154, 210, 219, 220, 221
rf.importance (makeFilter), 125
rf.min.depth (makeFilter), 125
rfsrc, 125
R Learner, 212, 222, 223, 237
R LearnerClassif, 223
R LearnerClassif (R Learner), 222
R LearnerCluster, 223
R LearnerCluster (R Learner), 222
R LearnerMultilabel, 223
R LearnerMultilabel (R Learner), 222
R LearnerRegr, 223
R LearnerRegr (R Learner), 222
R LearnerSurv, 223
R LearnerSurv (R Learner), 222
rmse (measures), 174
rmsle (measures), 174
rpart, 76
rrse (measures), 174
rsq (measures), 174
sae (measures), 174
scale_x_log10, 190, 191
sd, 234
selectFeatures, 11, 30, 33, 71, 124, 125, 223
setAggregation, 112, 118, 152, 225
setHyperPars, 68, 75, 77–80, 84, 107, 133, 134, 217, 225, 227–229
setHyperPars2, 226
setId, 68, 75, 77–80, 84, 107, 133, 134, 217, 226, 227, 228, 229
setLearnerId, 68, 75, 77–80, 84, 107, 133, 134, 217, 226, 227, 227, 228, 229
setPredictThreshold, 12, 68, 75, 77–80, 84–86, 107, 133, 134, 211, 212, 217, 226–228, 228, 229
setPredictType, 12, 68, 75, 77–80, 84–86, 107, 113, 133, 134, 211, 212, 217, 226–228, 229
setThreshold, 132, 140, 211, 228, 230
silhouette (measures), 174
simplifyMeasureNames, 231
smote, 148, 154, 171, 185, 231
Sonar, 232
sonar.task, 232
spearmanr (measures), 174
sse (measures), 174
ssr (measures), 174
submitJobs, 12
subsetSample (resample), 218
subsetTask, 91, 93–99, 114, 233
summarizeColumns, 20, 26, 27, 181, 185, 217, 234
summarizeLevels, 235
summary, 234
Surv, 92, 116
SurvTask (makeClassifTask), 114
Task (makeClassifTask), 114
TaskDesc, 23, 38, 43, 45, 51, 63, 64, 69, 90, 93–97, 99, 114, 173, 235
test.join (aggregations), 9
test.max (aggregations), 9
test.mean, 136
test.mean (aggregations), 9
test.median (aggregations), 9
test.min (aggregations), 9
test.range (aggregations), 9
test.rmse (aggregations), 9
test.sd (aggregations), 9
test.sum (aggregations), 9
testgroup.mean (aggregations), 9
ThreshVsPerfData (generateThreshVsPerfData), 53
timeboth (measures), 174
timepredict (measures), 174
timetrain (measures), 174	nn (measures), 174
tnr (measures), 174
tp (measures), 174
	tpr (measures), 174
train, 29, 44, 49, 72, 76, 173, 211, 219, 236
	train.max (aggregations), 9
	train.median (aggregations), 9
	train.min (aggregations), 9
	train.range (aggregations), 9
	train.rmse (aggregations), 9
	train.sd (aggregations), 9
	train.sum (aggregations), 9
	trainLearner, 92, 237
TuneControl, 81, 82, 100, 137, 139, 158, 160, 161, 163, 165, 167–169, 238, 241–243, 246, 247
TuneControlCMAES, 158
TuneControlCMAES (makeTuneControlCMAES), 157
TuneControlDesign, 160
TuneControlDesign (makeTuneControlDesign), 159
TuneControlGenSA, 161
TuneControlGenSA (makeTuneControlGenSA), 160
TuneControlGrid, 163
TuneControlGrid (makeTuneControlGrid), 162
TuneControlIrace, 165
TuneControlIrace (makeTuneControlIrace), 163
TuneControlMBO, 166
TuneControlMBO (makeTuneControlMBO), 165
TuneControlRandom, 168
TuneControlRandom (makeTuneControlRandom), 167
TuneMultiCritControl, 209, 239, 241, 244, 245
TuneMultiCritControlGrid, 241
TuneMultiCritControlGrid (TuneMultiCritControl), 239
TuneMultiCritControlNSGA2, 241
TuneMultiCritControlNSGA2 (TuneMultiCritControl), 239
TuneMultiCritControlRandom, 241
TuneMultiCritControlRandom (TuneMultiCritControl), 239
TuneMultiCritResult, 208, 209, 241, 245
tuneParams, 46, 66, 81, 82, 100, 136, 137, 139, 158, 160–163, 165, 167–169, 239, 242, 247
tuneParamsMultiCrit, 208, 209, 241, 242, 244
TuneResult, 46, 65, 99, 243, 245
tuneThreshold, 32, 81, 82, 100, 137, 139, 140, 158–169, 238, 239, 243, 246
undersample, 170
undersample (oversample), 185
univariate (makeFilter), 125
varimp, 71
vimp, 72
waitForJobs, 12
wkappa (measures), 174
wpbc, 247
wpbc.task, 247
WrappedModel, 29, 30, 44, 49, 60, 70–73, 76, 83, 99, 104, 135, 173, 187, 211, 212, 219, 221, 236, 246
WrappedModel (makeWrappedModel), 172
yeast.task, 247