| Name | Last modified | Size | Description | |
|---|---|---|---|---|
| Parent Directory | - | |||
| README.html | 2020-10-01 11:10 | 11K | ||
Cluster analysis for mlr3
mlr3cluster is an extension package for cluster analysis within the mlr3 ecosystem. It is a successor of clustering capabilities of mlr2.
Install the development version from GitHub:
The current version of mlr3cluster contains:
Also, the package is integrated with mlr3viz which enables you to create great visualizations with just one line of code!
| ID | Learner | Package |
|---|---|---|
| clust.agnes | Agglomerative Hierarchical Clustering | cluster |
| clust.cmeans | Fuzzy C-Means Clustering | e1071 |
| clust.dbscan | Density-based Clustering | dbscan |
| clust.diana | Divisive Hierarchical Clustering | cluster |
| clust.fanny | Fuzzy Clustering | cluster |
| clust.featureless | Simple Featureless Clustering | mlr3cluster |
| clust.kmeans | K-Means Clustering | stats |
| clust.pam | Clustering Around Medoids | cluster |
| clust.xmeans | K-Means with Automatic Determination of k | RWeka |
| ID | Measure | Package |
|---|---|---|
| clust.db | Davies-Bouldin Cluster Separation | clusterCrit |
| clust.dunn | Dunn index | clusterCrit |
| clust.ch | Calinski Harabasz Pseudo F-Statistic | clusterCrit |
| clust.silhouette | Rousseeuw’s Silhouette Quality Index | clusterCrit |
library(mlr3)
library(mlr3cluster)
task = mlr_tasks$get("usarrests")
learner = mlr_learners$get("clust.kmeans")
learner$train(task)
preds = learner$predict(task = task)
Check out the blogpost for a more detailed introduction to the package. Also, mlr3book section on clustering is coming soon!
If you have any questions, feedback or ideas, feel free to open an issue here.