Package ‘mlr3fairness’

October 13, 2022

Type Package
Title Fairness Auditing and Debiasing for ‘mlr3’
Version 0.3.1
Description Integrates fairness auditing and bias mitigation methods for the ‘mlr3’ ecosystem. This includes fairness metrics, reporting tools, visualizations and bias mitigation techniques such as
``Reweighing`` described in ‘Kamiran, Calders’ (2012) <doi:10.1007/s10115-011-0463-8> and

URL https://mlr3fairness.mlr-org.com,
 https://github.com/mlr-org/mlr3fairness

BugReports https://github.com/mlr-org/mlr3fairness/issues
License LGPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0), mlr3 (>= 0.13.0)
Imports checkmate, R6 (>= 2.4.1), data.table (>= 1.13.6), paradox,
 mlr3measures, mlr3misc, mlr3pipelines, ggplot2
Suggests mlr3viz, rmarkdown, knitr, rpart, testthat (>= 3.0.0),
 patchwork, ranger, mlr3learners, linprog, posterdown,
 kableExtra, fairml, iml
RoxygenNote 7.2.1
VignetteBuilder knitr
NeedsCompilation no
Author Florian Pfisterer [cre, aut] (<https://orcid.org/0000-0001-8867-762X>),
 Wei Siyi [aut].
 Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>)
Maintainer Florian Pfisterer <pfistererf@googlemail.com>
Description

Dataset used to predict whether income exceeds $50K/yr based on census data. Also known as "Census Income" dataset Train dataset contains 13 features and 30178 observations. Test dataset contains 13 features and 15315 observations. Target column is "target": A binary factor where 1: <=50K and 2: >50K for annual income. The column "sex" is set as protected attribute.

Pre-processing

- fnlwgt Remove final weight, which is the number of people the census believes the entry represents
- native-country Remove Native Country, which is the country of origin for an individual
- Rows containing NA in workclass and occupation have been removed.
- Pre-processing inspired by article: @url https://cseweb.ucsd.edu/classes/sp15/cse190-c/reports/sp15/048.pdf
compare_metrics

Metadata

- (integer) age: The age of the individuals
- (factor) workclass: A general term to represent the employment status of an individual
- (factor) education: The highest level of education achieved by an individual.
- (integer) education_num: the highest level of education achieved in numerical form.
- (factor) marital_status: marital status of an individual.
- (factor) occupation: the general type of occupation of an individual
- (factor) relationship: whether the individual is in a relationship-
- (factor) race: Descriptions of an individual's race
- (factor) sex: the biological sex of the individual
- (integer) captain-gain: capital gains for an individual
- (integer) captain-loss: capital loss for an individual
- (integer) hours-per-week: the hours an individual has reported to work per week
- (factor) target: whether or not an individual makes more than $50,000 annually

Source

Examples

data("adult_test", package = "mlr3fairness")
data("adult_train", package = "mlr3fairness")

Compare different metrics

Description

Compare learners with respect to one or multiple metrics. Metrics can but are not limited to fairness metrics.

Usage

compare_metrics(object, ...)

Arguments

object
(PredictionClassif | BenchmarkResult | ResampleResult)

The object to create a plot for.

- If provided a (PredictionClassif). Then the visualization will compare the fairness metrics among the binary level from protected field through bar plots.
- If provided a (ResampleResult). Then the visualization will generate the boxplots for fairness metrics, and compare them among the binary level from protected field.
- If provided a (BenchmarkResult). Then the visualization will generate the boxplots for fairness metrics, and compare them among both the binary level from protected field and the models implemented.

... The arguments to be passed to methods, such as:

- **fairness_measures** (list of Measure)
 The fairness measures that will evaluated on object, could be single Measure or list of Measures. Default measure set to be msr("fairness.acc").
- **task** (TaskClassif)
 The data task that contains the protected column, only required when object is (PredictionClassif).

Value

A `ggplot2` object.

Examples

```r
library(mlr3learners)

# Setup the Fairness Measures and tasks
task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.ranger", predict_type = "prob")
learner$train(task)
predictions = learner$predict(task)

design = benchmark_grid(
  tasks = task,
  learners = lrns(c("classif.ranger", "classif.rpart"),
    predict_type = "prob", predict_sets = c("train", "predict")),
  resamplings = rsmps("cv", folds = 3)
)

bmr = benchmark(design)
fairness_measure = msr("fairness.tpr")
fairness_measures = msrs(c("fairness.tpr", "fairness.fnr", "fairness.acc"))

# Predictions
compare_metrics(predictions, fairness_measure, task)
compare_metrics(predictions, fairness_measures, task)

# BenchmarkResult and ResamplingResult
```
COMPAS Dataset

Description

The COMPAS dataset includes the processed COMPAS data between 2013-2014. The data cleaning process followed the guidance in the original COMPAS repo. Contains 6172 observations and 14 features. The target column could either be "is_recid" or "two_year_recid", but often "two_year_recid" is preferred. The column "sex" is set as protected attribute, but more often "race" is used.

A classification task for the compas data set.

A classification task for the compas data set. The observations have been filtered, keeping only observations with race "Caucasian" and "African-American". The protected attribute has been set to "race".

Format

- **R6::R6Class** inheriting from TaskClassif.
- **R6::R6Class** inheriting from TaskClassif.

Pre-processing

- Identifying columns are removed
- Removed the outliers for abs(days_b_screening_arrest) >= 30.
- Removed observations where is_recid != -1.
- Removed observations where c_charge_degree != "O".
- Removed observations where score_text != 'N/A'.
- Factorize the features that are categorical.
- Add length of stay (c_jail_out - c_jail_in) in the dataset.
- Pre-processing Resource: [@url](https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb)

Metadata

- **(integer) age**: The age of defendants.
- **(factor) c_charge_degree**: The charge degree of defendants. F: Felony M: Misdemeanor
- **(factor) race**: The race of defendants.
- **(factor) age_cat**: The age category of defendants.
- **(factor) score_text**: The score category of defendants.
- **(factor) sex**: The sex of defendants.
- **(integer) priors_count**: The prior criminal records of defendants.
• (integer) days_b_screening_arrest: The count of days between screening date and (original) arrest date. If they are too far apart, that may indicate an error. If the value is negative, that indicate the screening date happened before the arrest date.
• (integer) decile_score: Indicate the risk of recidivism (Min=1, Max=10)
• (integer) is_recid: Binary variable indicate whether defendant is rearrested at any time.
• (factor) two_year_recid: Binary variable indicate whether defendant is rearrested at within two years.
• (numeric) length_of_stay: The count of days stay in jail.

Construction

```r
mlr_tasks$get("compas")
tsk("compas")

mlr_tasks$get("compas_race_binary")
tsk("compas_race_binary")
```

Source

https://github.com/propublica/compas-analysis

Examples

```r
data("compas", package = "mlr3fairness")
```

fairness_accuracy_tradeoff

Plot Fairness Accuracy Trade-offs

Description

Provides visualization wrt. trade-offs between fairness and accuracy metrics across learners and resampling iterations. This can assist in gauging the optimal model from a set of options along with estimates of variance (through individual resampling iterations).

Usage

```r
fairness_accuracy_tradeoff(object, ...)
```

Arguments

- **object** *(PredictionClassif | BenchmarkResult | ResampleResult)*
The binary class prediction object that will be evaluated.
 - If provided a PredictionClassif. Then only one point will indicate the accuracy and fairness metrics for the current predictions. Requires also passing a Task.
• If provided a ResampleResult. Then the plot will compare the accuracy and fairness metrics for the same model, but different resampling iterations as well as the aggregate indicated by a cross.

• If provided a BenchmarkResult. Then the plot will compare the accuracy and fairness metrics for all models and all resampling iterations. Points are colored according to the learner_id and faceted by task_id. The aggregated score is indicated by a cross.

Arguments to be passed to methods. Such as:

• fairness_measure (Measure)
The fairness measures that will evaluated. Default measure set to be msr("fairness.fpr")

• accuracy_measure (Measure)
The accuracy measure that will evaluated. Default measure set to be msr("classif.acc")

• task (TaskClassif)
The data task that contains the protected column, only required when the class of object is (PredictionClassif)

Value

A 'ggplot2' object.

Examples

library(mlr3learners)
library(ggplot2)

Setup the Fairness measure and tasks
task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.ranger", predict_type = "prob")
fairness_measure = msr("fairness.tpr")

Example 1 - A single prediction
learner$train(task)
predictions = learner$predict(task)
fairness_accuracy_tradeoff(predictions, fairness_measure, task = task)

Example2 - A benchmark
design = benchmark_grid(
 tasks = task,
 learners = lrns(c("classif.featureless", "classif.rpart"),
 predict_type = "prob", predict_sets = c("train", "test")),
 resamplings = rsmps("cv", folds = 2)
)
bmr = benchmark(design)
fairness_accuracy_tradeoff(bmr, fairness_measure)
fairness_prediction_density

Probability Density Plot

Description

Visualizes per-subgroup densities across learners, task and class. The plot is a combination of boxplot and violin plot. The y-axis shows the levels in protected columns. And the x-axis shows the predicted probability. The title for the plot will demonstrate which class for predicted probability.

Usage

```r
fairness_prediction_density(object, ...)
```

Arguments

- `object`
 (PredictionClassif | ResampleResult | BenchmarkResult)
 The binary class prediction object that will be evaluated. If `PredictionClassif`, a `Task` is required.

- `...`
 The arguments to be passed to methods, such as:
 - `task` (TaskClassif)
 The data task that contains the protected column.
 - `type` character
 The plot type. Either `violin` or `density`.

Value

A `ggplot2` object.

Examples

```r
library(mlr3learners)

task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.rpart", predict_type = "prob", cp = 0.001)
learner$train(task)

# For prediction
predictions = learner$predict(task)
fairness_prediction_density(predictions, task)

# For resampling
rr = resample(task, learner, rsmp("cv"))
fairness_prediction_density(rr)
```
fairness_tensor

Compute the Fairness Tensor given a Prediction and a Task

Description

A fairness tensor is a list of groupwise confusion matrices.

Usage

fairness_tensor(object, ...)

```r
## S3 method for class 'data.table'
fairness_tensor(object, task, ...)

## S3 method for class 'PredictionClassif'
fairness_tensor(object, task, ...)

## S3 method for class 'ResampleResult'
fairness_tensor(object, ...)
```

Arguments

- `object` *(data.table() | PredictionClassif | ResampleResult)*
 A data.table with columns `truth` and `prediction`, a `PredictionClassif` or a `ResampleResult`.

- `...` *(any)*
 Currently not used.

- `task` *(TaskClassif)*
 A TaskClassif. Needs `col_role"pta"` to be set.

Value

- `list()` of confusion matrix for every group in "pta".

Examples

```r
task = tsk("compas")
prediction = lrn("classif.rpart")$train(task)$predict(task)
fairness_tensor(prediction, task)
```
groupwise_metrics

Groupwise Operations

Description

groupdiff_tau() computes min(x/y, y/x), i.e. the smallest symmetric ratio between x and eqny that is smaller than 1. If x is a vector, the symmetric ratio between all elements in x is computed.
groupdiff_absdiff() computes max(abs(x - y, y - x)), i.e. the smallest absolute difference between x and y. If x is a vector, the symmetric absolute difference between all elements in x is computed.

Usage

groupdiff_tau(x)
groupdiff_absdiff(x)
groupdiff_diff(x)

Arguments

x (numeric())
Measured performance in group 1, 2, ...

Value

A single numeric.

Examples

groupdiff_tau(1:3)
groupdiff_diff(1:3)
groupdiff_absdiff(1:3)

groupwise_metrics

Evaluate a metric on each protected subgroup in a task.

Description

Instantiates one new measure per protected attribute group in a task. Each metric is then evaluated only on predictions made for the given specific subgroup.

Usage

groupwise_metrics(base_measure, task, intersect = TRUE)
MeasureFairness

Arguments

- base_measure (Measure())
 The base metric evaluated within each subgroup.

- task Task
 mlr3::Task() to instantiate measures for.

- intersect logical
 Should multiple pta groups be intersected? Defaults to TRUE. Only relevant if more than one pta columns are provided.

Value

- list
 List of mlr3::Measures.

See Also

- MeasureSubgroup

Examples

```r
  t = tsk("compas")
  l = lrn("classif.rpart")
  m = groupwise_metrics(msr("classif.acc"), t)
  l$train(t)$predict(t)$score(m, t)
```

Description

This measure extends mlr3::Measure() with statistical group fairness: A common approach to quantifying a model’s fairness is to compute the difference between a protected and an unprotected group according w.r.t. some performance metric, e.g. classification error (mlr_measures_classif.ce) or false positive rate (mlr_measures_classif.fpr). The operation for comparison (e.g., difference or quotient) can be specified using the operation parameter, e.g. groupdiff_absdiff() or groupdiff_tau().

Composite measures encompassing multiple fairness metrics can be built using MeasureFairness-Composite.

Some popular predefined measures can be found in the dictionary mlr_measures.

Super class

- mlr3::Measure -> MeasureFairness
Public fields

- **base_measure (Measure())**
 The base measure to be used by the fairness measures, e.g. `mlr_measures_classif.fpr` for the false positive rate.

- **operation (function())**
 The operation used to compute the difference. A function with args 'x' and 'y' that returns a single value. Defaults to `abs(x - y)`.

Methods

Public methods:

- `MeasureFairness$new()`
- `MeasureFairness$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
MeasureFairness$new(id = NULL, base_measure, operation = groupdiff_absdiff, minimize = TRUE, range = c(-Inf, Inf))
```

Arguments:

- **id (character)**
 The measure’s id. Set to ‘fairness.<base_measure_id>’ if omitted.

- **base_measure (Measure())**
 The base metric evaluated within each subgroup.

- **operation (function())**
 The operation used to compute the difference. A function that returns a single value given input: computed metric for each subgroup. Defaults to `groupdiff_absdiff`.

- **minimize (logical())**
 Should the measure be minimized? Defaults to `TRUE`.

- **range (numeric(2))**
 Range of the resulting measure. Defaults to `c(-Inf, Inf)`.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```r
MeasureFairness$clone(deep = FALSE)
```

Arguments:

- **deep**
 Whether to make a deep clone.

See Also

- `MeasureFairnessComposite`
Examples

```r
# Create MeasureFairness to measure the Predictive Parity.
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("fairness", base_measure = msr("classif.ppv"))
predictions = learner$predict(t)
predictions$score(measure, task = t)
```

MeasureFairnessComposite

Composite Fairness Measure

Description

Computes a composite measure from multiple fairness metrics and aggregates them using `aggfun` (defaulting to `mean()`).

Super class

`mlr3::Measure` \rightarrow `MeasureFairnessComposite`

Methods

Public methods:

- `MeasureFairnessComposite$new()`
- `MeasureFairnessComposite$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
MeasureFairnessComposite$new(
  id = NULL,
  measures,
  aggfun = function(x) mean(x, na.rm = TRUE),
  operation = groupdiff_absdiff,
  minimize = TRUE,
  range = c(-Inf, Inf)
)
```

Arguments:

- `id` (character(1))
 Id of the measure. Defaults to the concatenation of ids in `measure`.
- `measures` (list of `MeasureFairness`)
 List of fairness measures to aggregate.
- `aggfun` (function())
 Aggregation function used to aggregate results from respective measures. Defaults to `sum`.

operation (function())
 The operation used to compute the difference. A function that returns a single value given
 input: computed metric for each subgroup. Defaults to `groupdiff_absdiff`. See `MeasureFairness`
 for more information.
minimize (logical(1))
 Should the measure be minimized? Defaults to `TRUE`.
range (numeric(2))
 Range of the resulting measure. Defaults to `c(-Inf, Inf)`.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureFairnessComposite$clone(deep = FALSE)

Arguments:
 deep Whether to make a deep clone.

Examples

Equalized Odds Metric
MeasureFairnessComposite$new(measures = msrs(c("fairness.fpr", "fairness.tpr")))

Other metrics e.g. based on negative rates
MeasureFairnessComposite$new(measures = msrs(c("fairness.fnr", "fairness.tnr")))

MeasureFairnessConstraint

Fairness Constraint Measure

Description

This measure allows constructing for ‘constraint’ measures of the following form:

\[
\min_{\text{performance}} \text{subject to } \text{fairness} < \epsilon
\]

Super class

`mlr3::Measure` -> `MeasureFairnessConstraint`

Public fields

 performance_measure (Measure())
 The performance measure to be used.

 fairness_measure (Measure())
 The fairness measure to be used.

 epsilon (numeric)
 Deviation from perfect fairness that is allowed.
MeasureFairnessConstraint

Methods

Public methods:

• MeasureFairnessConstraint$new()
• MeasureFairnessConstraint$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureFairnessConstraint$new(
 id = NULL,
 performance_measure,
 fairness_measure,
 epsilon = 0.01,
 range = c(-Inf, Inf)
)

Arguments:

id (character)
 The measure's id. Set to 'fairness.<base_measure_id>' if omitted.

performance_measure (Measure())
 The measure used to measure performance (e.g. accuracy).

fairness_measure (Measure())
 The measure used to measure fairness (e.g. equalized odds).

epsilon (numeric)
 Allowed divergence from perfect fairness. Initialized to 0.01.

range (numeric)
 Range of the resulting measure. Defaults to c(-Inf, Inf).

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureFairnessConstraint$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

mlr_measures_fairness

Examples

Accuracy subject to equalized odds fairness constraint:
library(mlr3)
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("fairness.constraint", id = "acc_tpr", msr("classif.acc"), msr("fairness.tpr"))
predictions = learner$predict(t)
predictions$score(measure, task = t)
MeasureSubgroup Evaluate a metric on a subgroup

Description

Allows for calculation of arbitrary `mlr3::Measure()`s on a selected sub-group.

Super class

`mlr3::Measure` -> `MeasureSubgroup`

Public fields

- `base_measure` (`Measure()`)
 The base measure to be used by the fairness measures, e.g. `mlr_measures_classif.fpr` for the false positive rate.
- `subgroup` (character)(integer)
 Subgroup identifier.
- `intersect` (logical)
 Should groups be intersected?

Methods

Public methods:
- `MeasureSubgroup$new()`
- `MeasureSubgroup$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:
`MeasureSubgroup$new(id = NULL, base_measure, subgroup, intersect = TRUE)`

Arguments:
- `id` (character)
 The measure’s id. Set to ’fairness.<base_measure_id>’ if omitted.
- `base_measure` (`Measure()`)
 The measure used to measure fairness.
- `subgroup` (character)(integer)
 Subgroup identifier. Either value for the protected attribute or position in task$levels.
- `intersect` (logical)
 Should multiple pta groups be intersected? Defaults to TRUE. Only relevant if more than one pta columns are provided.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
`MeasureSubgroup$clone(deep = FALSE)`

Arguments:
- `deep` Whether to make a deep clone.
See Also

MeasureFairness, groupwise_metrics

Examples

Create MeasureFairness to measure the Predictive Parity.
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("subgroup", base_measure = msr("classif.acc"), subgroup = "Female")
predictions = learner$predict(t)
predictions$score(measure, task = t)
Description

Fairness Measures in mlr3

Usage

mlr_measures_fairness

Format

An object of class data.table (inherits from data.frame) with 18 rows and 2 columns.

Value

A data.table containing an overview of available fairness metrics.

Predefined measures

mlr3fairness comes with a set of predefined fairness measures as listed below. For full flexibility, MeasureFairness can be used to construct classical group fairness measures based on a difference between a performance metrics across groups by combining a performance measure with an operation for measuring differences. Furthermore MeasureSubgroup can be used to measure performance in a given subgroup, or alternatively groupwise_metrics(measure, task) to instantiate a measure for each subgroup in a Task.

<table>
<thead>
<tr>
<th>key</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fairness.acc</td>
<td>Absolute differences in accuracy across groups</td>
</tr>
<tr>
<td>fairness.mse</td>
<td>Absolute differences in mean squared error across groups</td>
</tr>
<tr>
<td>fairness.fnr</td>
<td>Absolute differences in false negative rates across groups</td>
</tr>
<tr>
<td>fairness.fpr</td>
<td>Absolute differences in false positive rates across groups</td>
</tr>
<tr>
<td>fairness.tnr</td>
<td>Absolute differences in true negative rates across groups</td>
</tr>
<tr>
<td>fairness.tpr</td>
<td>Absolute differences in true positive rates across groups</td>
</tr>
<tr>
<td>fairness.npy</td>
<td>Absolute differences in negative predictive values across groups</td>
</tr>
<tr>
<td>fairness.ppv</td>
<td>Absolute differences in positive predictive values across groups</td>
</tr>
<tr>
<td>fairness.fomr</td>
<td>Absolute differences in false omission rates across groups</td>
</tr>
<tr>
<td>fairness.fp</td>
<td>Absolute differences in false positives across groups</td>
</tr>
<tr>
<td>fairness.tp</td>
<td>Absolute differences in true positives across groups</td>
</tr>
<tr>
<td>fairness.tn</td>
<td>Absolute differences in true negatives across groups</td>
</tr>
<tr>
<td>fairness.fn</td>
<td>Absolute differences in false negatives across groups</td>
</tr>
<tr>
<td>fairness.cv</td>
<td>Difference in positive class prediction, also known as Calders-Wevers gap or demographic parity</td>
</tr>
<tr>
<td>fairness.eod</td>
<td>Equalized Odds: Sum of absolute differences between true positive and false positive rates across groups</td>
</tr>
<tr>
<td>fairness.pp</td>
<td>Predictive Parity: Sum of absolute differences between ppv and npv across groups</td>
</tr>
<tr>
<td>fairness.acc_eod=.05</td>
<td>Accuracy under equalized odds < 0.05 constraint</td>
</tr>
<tr>
<td>fairness.acc_ppv=.05</td>
<td>Accuracy under ppv difference < 0.05 constraint</td>
</tr>
</tbody>
</table>
Examples

Predefined measures:
mlr_measures_fairness$key

mlr_measures_positive_probability

Positive Probability Measure

Description

Return the probability of a positive prediction, often known as ‘Calders-Wevers’ gap. This is defined as count of positive predictions divided by the number of observations.

Super class

mlr3::Measure -> MeasurePositiveProbability

Methods

Public methods:

• MeasurePositiveProbability$new()
• MeasurePositiveProbability$clone()

Method new(): Initialize a Measure Positive Probability Object

Usage:
MeasurePositiveProbability$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasurePositiveProbability$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Create Positive Probability Measure
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("classif.pp")
predictions = learner$predict(t)
predictions$score(measure, task = t)
mlr_pipeops_equalized_odds

Equalized Odds Debiasing

Description
Fairness post-processing method to achieve equalized odds fairness. Works by randomly flipping a subset of predictions with pre-computed probabilities in order to satisfy equalized odds constraints. NOTE: Carefully assess the correct privileged group.

Format

- R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpE0d$new(id = "eod", param_vals = list())

- id (character(1)).
- param vals (list())

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction. The output during training is the input Task. The output during prediction is a PredictionClassif with partially flipped predictions.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

- alpha (numeric()): A number between 0 (no debiasing) and 1 (full debiasing). Controls the debiasing strength by multiplying the flipping probabilities with alpha.
- privileged (character()): The privileged group.

Fields

Methods

Super class

`mlr3pipelines::PipeOp` -> `PipeOpEOd`

Methods

Public methods:

- `PipeOpEOd$new()`
- `PipeOpEOd$clone()`

Method new(): Creates a new instance of this class.

Usage:

`PipeOpEOd$new(id = "EOd", param_vals = list())`

Arguments:

- `id` character
 - The PipeOps identifier in the PipeOps library.
- `param_vals` list
 - The parameter values to be set. See Parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:

`PipeOpEOd$clone(deep = FALSE)`

Arguments:

- `deep` Whether to make a deep clone.

References

See Also

Other PipeOps: `mlr_pipeops_explicit_pta`, `mlr_pipeops_reequalling`

Examples

```r
library(mlr3pipelines)

eod = po("EOd")
learner_po = po("learner_cv",
  learner = lrn("classif.rpart")),
```
resampling.method = "insample"
)

task = tsk("compas")
graph = learner_po %>>% eod
glrn = GraphLearner$new(graph)
glrn$train(task)

On a Task
glrn$predict(task)

On newdata
glrn$predict_newdata(task$data(cols = task$feature_names))

mlr_pipeops_explicit_pta

PipeOpExplicitPta

Description

Turns the column with column role 'pta' into an explicit separate column prefixed with "..internal_pta". This keeps it from getting changed or adapted by subsequent pipelines that operate on the feature pta.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpExplicitPta$new(id = "reweighing", param_vals = list())

• id(character(1)).
• param_vals(list())

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction.

The output during training is the input Task with added weights column according to target class. The output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The PipeOp does not have any hyperparameters.
Internals

Copies the existing pta column to a new column.

Fields

Methods

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpExplicitPta

Methods

Public methods:

- PipeOpExplicitPta$new()
- PipeOpExplicitPta$clone()

Method new(): Creates a new instance of this [R6][R6::R6Class][PipeOp] R6 class.

Usage:
PipeOpExplicitPta$new(id = "explicit_pta", param_vals = list())

Arguments:

- id character
 - The PipeOps identifier in the PipeOps library.
- param_vals list
 - The parameter values to be set. See Parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpExplicitPta$clone(deep = FALSE)

Arguments:

- deep Whether to make a deep clone.

See Also

Other PipeOps: mlr_pipeops_equalized_odds, mlr_pipeops_reweighing

Examples

library(mlr3pipelines)
epta = po("explicit_pta")
new = epta$train(list(tsk("adult_train")))
Reweighing to balance disparate impact metric

Description

Adjusts class balance and protected group balance in order to achieve fair(er) outcomes.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

PipeOpReweighingWeights

Adds a class weight column to the Task that different Learners may be using. In case initial weights are present, those are multiplied with new weights. Caution: Only fairness tasks are supported. Which means tasks need to have protected field. tskcol_rolespta.

PipeOpReweighingOversampling

Oversamples a Task for more balanced ratios in subgroups and protected groups. Can be used if a learner does not support weights. Caution: Only fairness tasks are supported. Which means tasks need to have protected field. tskcol_rolespta.

Construction

PipeOpReweighing$new(id = "reweighing", param_vals = list())

• id(character(1)).
• param_vals(list())

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction.

The output during training is the input Task with added weights column according to target class. The output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

• alpha(numeric()): A number between 0 (no debiasing) and 1 (full debiasing).
Internals

Introduces, or overwrites, the "weights" column in the Task. However, the Learner method needs to respect weights for this to have an effect.

The newly introduced column is named reweighing.WEIGHTS; there will be a naming conflict if this column already exists and is not a weight column itself.

Fields

Methods

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpReweighingWeights

Methods

Public methods:

- PipeOpReweighingWeights$new()
- PipeOpReweighingWeights$clone()

Method $new(): Creates a new instance of this [R6][R6::R6Class][PipeOp] R6 class.

Usage:

PipeOpReweighingWeights$new(id = "reweighing_wts", param_vals = list())

Arguments:

- id character
 - The PipeOps identifier in the PipeOps library.
- param_vals list
 - The parameter values to be set.
 - alpha: controls the proportion between initial weight (1 if non existing) and reweighing weight. Defaults to 1. Here is how it works: new_weight = (1 - alpha) * 1 + alpha * reweighing_weight final_weight = old_weight * new_weight

Method $clone(): The objects of this class are cloneable with this method.

Usage:

PipeOpReweighingWeights$clone(deep = FALSE)

Arguments:

- deep Whether to make a deep clone.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpReweighingOversampling
Methods

Public methods:

- PipeOpReweighingOversampling$new()
- PipeOpReweighingOversampling$clone()

Method new():

Usage:
PipeOpReweighingOversampling$new(id = "reweighing_os", param_vals = list())

Arguments:
- id ‘character’
 The PipeOp’s id.
- param_vals ‘list’
 A list of parameter values.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpReweighingOversampling$clone(deep = FALSE)

Arguments:
- deep Whether to make a deep clone.

References

Kamiran, Faisal, Calders, Toon (2012). “Data preprocessing techniques for classification without
discrimination.” Knowledge and Information Systems, 33(1), 1–33.

See Also

Other PipeOps: mlr_pipeops_equalized_odds, mlr_pipeops_explicit_pta

Examples

library(mlr3pipelines)

reweighing = po("reweighing_wts")
learner_po = po("learner", learner = lrn("classif.rpart"))

data = tsk("adult_train")
glrn = GraphLearner$new(reweighing %>>% learner_po)
glrn$train(data)
tem = glrn$predict(data)
tem$confusion
Create a Datasheet for Documenting a Dataset

Description

Creates a new rmarkdown template with a skeleton questionnaire for dataset documentation. Uses the awesome markdown template created by Chris Garbin from Github.

Usage

```r
report_datasheet(filename = "datasheet.Rmd", edit = FALSE, build = FALSE)
```

Arguments

- `filename` (character(1))
 File path or name for new file that should be created.
- `edit` (logical(1))
 TRUE to edit the template immediately.
- `build` (logical(1))
 Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).

References

See Also

Other fairness_reports: `report_fairness()`, `report_modelcard()`

Examples

```r
report_file = tempfile()
report_datasheet(report_file)
```
Create a Fairness Report

Description

Creates a new **rmarkdown** template with a skeleton of reported metrics and visualizations. Uses the awesome markdown template created by Chris Garbin from Github.

Usage

```r
report_fairness(
    filename = "fairness_report.Rmd",
    objects,
    edit = FALSE,
    check_objects = FALSE,
    build = FALSE
)
```

Arguments

- **filename** (character(1))
 File path or name for new file that should be created.

- **objects** (list())
 A named list of objects required for the fairness report. Objects are saved as `<name>.rds` in the new folder created for the report.

 - **task** :: The Task a report should be created for.
 - **resample_result** :: A `mlr3::ResampleResult` result to be analyzed.
 - **...** :: any other objects passed on for the report.

- **edit** (logical(1))
 TRUE to edit the template immediately.

- **check_objects** (logical(1))
 Should items in objects be checked? If FALSE, no checks on object are performed.

- **build** (logical(1))
 Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).

See Also

Other fairness_reports: `report_datasheet()`, `report_modelcard()`
Examples

```r
task = tsk("compas")
learner = lrn("classif.rpart", predict_type = "prob")
rr = resample(task, learner, rsmp("cv", folds = 3L))
report_fairness(report_file, list(task = task, resample_result = rr))
```

Description

Creates a new **rmarkdown** template with a skeleton questionnaire for a model card. Uses the awesome markdown template created by Chris Garbin [from Github](https://github.com).

Usage

```r
report_modelcard(filename = "modelcard.Rmd", edit = FALSE, build = FALSE)
```

Arguments

- **filename** (character(1))
 - File path or name for new file that should be created.
- **edit** (logical(1))
 - TRUE to edit the template immediately.
- **build** (logical(1))
 - Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).

References

See Also

Other fairness reports: `report_datasheet()`, `report_fairness()`

Examples

```r
report_file = tempfile()
report_modelcard(report_file)
```
Description

Create the general task documentation in a dataframe for fairness report. The information includes

- Audit Date
- Task Name
- Number of observations
- Number of features
- Target Name
- Feature Names
- The Protected Attribute

Usage

`task_summary(task)`

Arguments

`task` Task

Value

data.frame containing the reported information

Examples

`task_summary(tsk("adult_train"))`
Index

* **PipeOps**
 - mlr_pipeops_equalized_odds, 20
 - mlr_pipeops_explicit_pta, 22
 - mlr_pipeops_reweighing, 24
* **datasets**
 - mlr_learners_fairness, 17
 - mlr_measures_fairness, 18
* **data**
 - adult, 2
 - compas, 5
* **fairness reports**
 - report_datasheet, 27
 - report_fairness, 28
 - report_modelcard, 29
 - adult, 2
 - adult_test (adult), 2
 - adult_train (adult), 2
 - BenchmarkResult, 4, 6–8
 - character, 8
 - compare_metrics, 3
 - Compas (compas), 5
 - compas, 5, 5
 - data.table(), 9
 - dictionary, 11
 - fairness_accuracy_tradeoff, 6
 - fairness_prediction_density, 8
 - fairness_tensor, 9
 - groupdiff_absdiff, 12
 - groupdiff_absdiff (groupdiffTau), 10
 - groupdiff_absdiff(), 11
 - groupdiff_diff (groupdiffTau), 10
 - groupdiff_tauc, 10
 - groupdiff_tauc(), 11
 - groupwise_metrics, 10, 17
 - Learner, 24, 25
 - logical, 11, 16
 - mean(), 13
 - Measure, 4, 7
 - MeasureFairness, 11, 13, 17, 18
 - MeasureFairnessComposite, 11, 12, 13
 - MeasureFairnessConstraint, 14
 - MeasurePositiveProbability
 - (mlr_measures_positive_probability), 19
 - MeasureSubgroup, 11, 16, 18
 - mlr3::Measure, 11, 13, 14, 16, 19
 - mlr3::Measure(), 11, 16
 - mlr3::ResampleResult, 28
 - mlr3::Task(), 11
 - mlr3pipelines::PipeOp, 21, 23, 25
 - mlr3pipelines::PipeOpTaskPreproc, 23, 25
 - mlr_learners_fairness, 17
 - mlr_measures, 11
 - mlr_measures_classif.ce, 11
 - mlr_measures_classif.fpr, 11, 12, 16
 - mlr_measures_fairness, 18
 - mlr_measures_positive_probability, 19
 - mlr_pipeops_equalized_odds, 20, 23, 26
 - mlr_pipeops_explicit_pta, 21, 22, 26
 - mlr_pipeops_reweighing, 21, 23, 24
 - msr(classif.acc), 7
 - PipeOp, 20, 22–25
 - PipeOpEOd (mlr_pipeops_equalized_odds), 20
 - PipeOpExplicitPta
 - (mlr_pipeops_explicit_pta), 22
 - PipeOpReweighingOversampling
 - (mlr_pipeops_reweighing), 24
 - PipeOpReweighingWeights
 - (mlr_pipeops_reweighing), 24
 - PipeOpTaskPreproc, 20, 22–25
PredictionClassif, 4, 6–9, 20
R6, 12, 13, 15, 16
R6::R6Class, 5
R6Class, 20, 22, 24
report_datasheet, 27, 28, 29
report_fairness, 27, 28, 29
report_modelcard, 27, 28, 29
ResampleResult, 4, 6–9
Task, 6, 8, 11, 18, 20, 22, 24, 25, 28, 30
task_summary, 30
TaskClassif, 4, 5, 7–9, 20, 22, 24