mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'

Extends the mlr3 ML framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: checkmate, data.table, ggplot2, mlr3 (≥ 0.7.0), mlr3misc (≥ 0.1.7), paradox, R6, testthat (≥ 3.0.0), utils
Suggests: bbotk, blockCV (≥ 2.1.1), CAST, ggsci, ggtext, GSIF, knitr, lgr, mlr3filters, mlr3pipelines, mlr3tuning, patchwork, plotly, rmarkdown, rpart, sf, skmeans, vdiffr, withr
Published: 2021-01-05
Author: Patrick Schratz ORCID iD [aut, cre], Marc Becker ORCID iD [aut], Jannes Muenchow ORCID iD [ctb], Michel Lang ORCID iD [ctb]
Maintainer: Patrick Schratz <patrick.schratz at gmail.com>
BugReports: https://github.com/mlr-org/mlr3spatiotempcv/issues
License: LGPL-3
URL: https://mlr3spatiotempcv.mlr-org.com/, https://github.com/mlr-org/mlr3spatiotempcv, https://mlr3book.mlr-org.com
NeedsCompilation: no
Materials: README NEWS
CRAN checks: mlr3spatiotempcv results

Downloads:

Reference manual: mlr3spatiotempcv.pdf
Vignettes: Getting Started
Spatiotemporal Visualization
Package source: mlr3spatiotempcv_0.1.1.tar.gz
Windows binaries: r-devel: mlr3spatiotempcv_0.1.1.zip, r-release: mlr3spatiotempcv_0.1.1.zip, r-oldrel: mlr3spatiotempcv_0.1.1.zip
macOS binaries: r-release: mlr3spatiotempcv_0.1.1.tgz, r-oldrel: mlr3spatiotempcv_0.1.1.tgz
Old sources: mlr3spatiotempcv archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mlr3spatiotempcv to link to this page.