Package ‘mlr3viz’

May 25, 2022

Title Visualizations for 'mlr3'

Version 0.5.9

Description Provides visualizations for 'mlr3' objects such as tasks, predictions, resample results or benchmark results via the autoplot() generic of 'ggplot2'. The returned 'ggplot' objects are intended to provide sensible defaults, yet can easily be customized to create camera-ready figures. Visualizations include barplots, boxplots, histograms, ROC curves, and Precision-Recall curves.

License LGPL-3

BugReports https://github.com/mlr-org/mlr3viz/issues

Depends R (>= 3.1.0)

Imports checkmate, data.table, ggplot2 (>= 3.3.0), mlr3misc (>= 0.7.0), scales, utils, viridis

Suggests bbotk, cluster, distr6 (>= 1.6.9), factoextra, GGally, ggpertiy (>= 0.4.11), ggparty, glmnet, knitr, lgr, mlr3 (>= 0.6.0), mlr3cluster, mlr3filters, mlr3learners, mlr3tuning (>= 0.9.0), paradox, partykit, patchwork (>= 1.1.1), precrc, ranger, rpart, stats, testthat (>= 3.0.0), vdifftr (>= 1.0.2), xgboost

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.2.0

Collate 'BenchmarkResult.R' 'Filter.R' 'LearnerClassifCVGlmlnet.R'
'LearnerClassifGlmlnet.R' 'LearnerClassifRpart.R'
'LearnerClustHierarchical.R' 'LearnerRegrCVGlmlnet.R'
'LearnerRegrGlmlnet.R' 'LearnerRegrRpart.R'
'OptimInstanceSingleCrit.R' 'Prediction.R'
'PredictionClassif.R' 'PredictionClust.R' 'PredictionRegr.R'
mlr3viz-package

mlr3viz: Visualizations for 'mlr3'

Description

Provides visualizations for 'mlr3' objects such as tasks, predictions, resample results or benchmark results via the autoplot() generic of 'ggplot2'. The returned 'ggplot' objects are intended to provide sensible defaults, yet can easily be customized to create camera-ready figures. Visualizations include barplots, boxplots, histograms, ROC curves, and Precision-Recall curves.
as_precrec

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Authors:

- Patrick Schratz <patrick.schratz@gmail.com> (ORCID)
- Raphael Sonabend <raphael.sonabend.15@ucl.ac.uk> (ORCID)
- Marc Becker <marcbecker@posteo.de> (ORCID)
- Jakob Richter <jakob1richter@gmail.com> (ORCID)

Other contributors:

- Damir Pulatov <dpulatov@uwyo.edu> [contributor]

See Also

Useful links:

- https://mlr3viz.mlr-org.com
- https://github.com/mlr-org/mlr3viz

Report bugs at https://github.com/mlr-org/mlr3viz/issues

as_precrec

Convert to 'precrec' Format

Description

Converts to a format which is understood by `precrec::evalmod()` of package `precrec`.

Usage

```r
as_precrec(object)
```

```r
## S3 method for class 'PredictionClassif'
as_precrec(object)
```

```r
## S3 method for class 'ResampleResult'
as_precrec(object)
```

```r
## S3 method for class 'BenchmarkResult'
as_precrec(object)
```

Arguments

- `object`: (any)

 Object to convert.
Value

Object as created by `precrec::mmdata()`.

References

S3 method for class 'BenchmarkResult'

autoplot(object, type = "boxplot", measure = NULL, ...)

Arguments

- **object**: (mlr3::BenchmarkResult).
- **type**: (character(1)): Type of the plot. See description.
- **measure**: (mlr3::Measure) Performance measure to use.
- **...**: (any): Additional arguments, passed down to the respective `geom` or plotting function.

Value

`ggplot2::ggplot()` object.
Theme

The `theme_mlr3()` and `viridis` color maps are applied by default to all `autoplot()` methods. To change this behavior set `options(mlr3.theme = FALSE)`.

References

Examples

```r
library(mlr3)
library(mlr3viz)

tasks = tsks(c("pima", "sonar"))
learner = lrns(c("classif.featureless", "classif.rpart"),
   predict_type = "prob")
resampling = rsmps("cv")
object = benchmark(benchmark_grid(tasks, learner, resampling))

head(fortify(object))
autoplot(object)
autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc")
```

Description

Generates plots for `mlr3filters::Filter`, depending on argument type:

- "barplot" (default): Bar plot of filter scores.

Usage

```r
## S3 method for class 'Filter'
autoplot(object, type = "boxplot", n = Inf, ...)
```

Arguments

- **object** *(mlr3filters::Filter)*:
- **type** *(character(1)):
Type of the plot. See description.*
- **n** *(integer(1)):
Only include the first n features with highest importance. Defaults to all features.*
- **...** *(any)*: Additional argument, passed down to the respective geom.*
Value

\texttt{ggplot2::ggplot()} object.

Theme

The \texttt{theme_mlr3()} and viridis color maps are applied by default to all \texttt{autoplot()} methods. To change this behavior set \texttt{options(mlr3.theme = FALSE)}.

Examples

```r
library(mlr3)
library(mlr3viz)
library(mlr3filters)

task = tsk("mtcars")
f = flt("correlation")
f$calculate(task)

head(fortify(f))
autoplot(f, n = 5)
```

\textbf{autoplot.LearnerClassifCVGlmnet}

\textit{Plot for LearnerClassifGlmnet / LearnerRegrGlmnet / LearnerClassifCVGlmnet / LearnerRegrCVGlmnet}

Description

Visualizations for \texttt{mlr3learners::mlr_learners_classif_glmnet}, \texttt{mlr3learners::mlr_learners_regr_glmnet}, \texttt{mlr3learners::mlr_learners_classif_cv_glmnet} and \texttt{mlr3learners::mlr_learners_regr_cv_glmnet} using the package \texttt{ggfortify}.

Note that learner-specific plots are experimental and subject to change.

Usage

```r
## S3 method for class 'LearnerClassifCVGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerClassifGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerRegrCVGlmnet'
autoplot(object, ...)

## S3 method for class 'LearnerRegrGlmnet'
autoplot(object, ...)
```
Arguments

object (mlr3learners::LearnerClassifGlmnet | mlr3learners::LearnerRegrGlmnet | mlr3learners::LearnerRegrCVGlmnet | mlr3learners::LearnerRegrCVGlmnet).

... (any): Additional arguments, passed down to ggparty::autoplot.party().

Value

ggplot2::ggplot() object.

Theme

The theme_mlr3() and viridis color maps are applied by default to all autoplot() methods. To change this behavior set options(mlr3.theme = FALSE).

References

Examples

```r
## Not run:
library(mlr3)
library(mlr3viz)
library(mlr3learners)

# classification
task = tsk("sonar")
learner = lrn("classif.glmnet")
learner$train(task)
autoplot(learner)

# regression
task = tsk("mtcars")
learner = lrn("regr.glmnet")
learner$train(task)
autoplot(learner)

## End(Not run)
```
Description

Visualize trees for mlr3::mlr_learners_classif.rpart and mlr3::mlr_learners_regr.rpart using the package ggparty.

Contrary to ggparty, boxplots are shown in the terminal nodes for regression trees.

Note that learner-specific plots are experimental and subject to change.

Usage

```r
## S3 method for class 'LearnerClassifRpart'
autoplot(object, ...)

## S3 method for class 'LearnerRegrRpart'
autoplot(object, ...)
```

Arguments

- **object** (mlr3::LearnerClassifRpart | mlr3::LearnerRegrRpart).
- **...** (any): Additional arguments, passed down to ggparty::autoplot.party().

Value

ggplot2::ggplot() object.

Theme

The theme_mlr3() and viridis color maps are applied by default to all autoplot() methods. To change this behavior set options(mlr3.theme = FALSE).

Examples

```r
library(mlr3)
library(mlr3viz)

# classification
task = tsk("iris")
learner = lrn("classif.rpart", keep_model = TRUE)
learner$train(task)
autoplot(learner)

# regression
task = tsk("mtcars")
learner = lrn("regr.rpart", keep_model = TRUE)
learner$train(task)
autoplot(learner)
```
Description

Generates plots for hierarchical clusterers, depending on argument type:

- "dend" (default): dendrograms using `factoextra` package.
- "scree": scree plot that shows the number of possible clusters on x-axis and the height on the y-axis.

Note that learner-specific plots are experimental and subject to change.

Usage

```r
## S3 method for class 'LearnerClustHierarchical'
autoplot(object, type = "dend", ...)
```

Arguments

- `object` (mlr3cluster::LearnerClustAgnes | mlr3cluster::LearnerClustDiana | mlr3cluster::LearnerClustHclust).
- `type` (character(1)): Type of the plot. See description.
- `...` (any): Additional arguments, passed down to function `factoextra::fviz_dend()` in package `factoextra`.

Value

`ggplot2::ggplot()` object.

Theme

The `theme_mlr3()` and viridis color maps are applied by default to all `autoplot()` methods. To change this behavior set `options(mlr3.theme = FALSE)`.

Examples

```r
library(mlr3)
library(mlr3cluster)
library(mlr3viz)

task = mlr_tasks$get("usarrests")

# agnes clustering
learner = mlr_learners$get("clust.agnes")
learner$train(task)
autoplot(learner)
```
diana clustering
learner = mlr_learners$get("clust.diana")
learner$train(task)
autoplot(learner,
 k = learner$param_set$values$k,
 rect_fill = TRUE,
 rect = TRUE, rect_border = "red")

hclust clustering
learner = mlr_learners$get("clust.hclust")
learner$train(task)
autoplot(learner, type = "scree")

autoplot.OptimInstanceSingleCrit

Plot for OptimInstanceSingleCrit

Description

Generates plots for bbotk::OptimInstanceSingleCrit.

Usage

```r
## S3 method for class 'OptimInstanceSingleCrit'
autoplot(
    object,
    type = "marginal",
    cols_x = NULL,
    trafo = FALSE,
    learner = mlr3::lrn("regr.ranger"),
    grid_resolution = 100,
    batch = NULL,
    ... )
```

Arguments

- **object** *(bbotk::OptimInstanceSingleCrit.)*
- **type** *(character(1)): Type of the plot. Available choices:
 - "marginal": scatter plots of x versus y. The colour of the points shows the batch number.
 - "performance": scatter plots of batch number versus y
 - "parameter": scatter plots of batch number versus input. The colour of the y values.
 - "parallel": parallel coordinates plot. x values are rescaled by `(x - mean(x)) / sd(x)."*
autoplot.OptimInstanceSingleCrit

- "points": scatter plot of two x dimensions versus y. The colour of the points shows the y values.
- "surface": surface plot of two x dimensions versus y values. The y values are interpolated with the supplied `mlr3::Learner`.
- "pairs": plots all x and y values against each other.

`cols_x` (character())
Column names of x values. By default, all untransformed x values from the search space are plotted. Transformed hyperparameters are prefixed with `x_domain_`.

`trafo` (logical(1))
Determines if untransformed (FALSE) or transformed (TRUE) x values are plotted.

`learner` (mlr3::Learner)
Regression learner used to interpolate the data of the surface plot.

`grid_resolution` (numeric())
Resolution of the surface plot.

`batch` (integer())
The batch number(s) to limit the plot to. Default is all batches.

... (any): Additional arguments, possibly passed down to the underlying plot functions.

Value

`ggplot2::ggplot()` object.

Theme

The `theme_mlr3()` and viridis color maps are applied by default to all `autoplot()` methods. To change this behavior set `options(mlr3.theme = FALSE)`.

Examples

```r
if (requireNamespace("bbotk") & requireNamespace("patchwork")) {
  library(bbotk)
  library(paradox)

  fun = function(xs) {
    c<y = -(xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10
  }
  domain = ps(
    x1 = p_dbl(-10, 10),
    x2 = p_dbl(-5, 5)
  )
  codomain = ps(
    y = p_dbl(tags = "maximize")
  )
  obfun = ObjectiveRFun$new(
    fun = fun,
    domain = domain,
    codomain = codomain
  )
  autoplot("points", obfun, cols_x = c("x1", "x2"), trafo = TRUE)
}
```
```r
instance = OptimInstanceSingleCrit$new(objective = obfun, terminator = trm("evals", n_evals = 20))

optimizer = opt("random_search", batch_size = 2)
optimizer$optimize(instance)

# plot y versus batch number
autoplot(instance, type = "performance")

# plot x1 values versus performance
autoplot(instance, type = "marginal", cols_x = "x1")

# plot parallel coordinates plot
autoplot(instance, type = "parallel")

# plot pairs
autoplot(instance, type = "pairs")
```

autoplot.PredictionClassif

Plot for PredictionClassif

Description

Generates plots for `mlr3::PredictionClassif`, depending on argument `type`:

- "stacked" (default): Stacked barplot of true and estimated class labels.
- "roc": ROC curve (1 - specificity on x, sensitivity on y). Requires package `precrec`.
- "prc": Precision recall curve. Requires package `precrec`.
- "threshold": Systematically varies the threshold of the `mlr3::PredictionClassif` object and plots the resulting performance as returned by `measure`.

Usage

```r
## S3 method for class 'PredictionClassif'
autoplot(object, type = "stacked", measure = NULL, ...)
```

Arguments

- **object** (`mlr3::PredictionClassif`).
- **type** ([character(1)]):

 Type of the plot. See description.
- **measure** (`mlr3::Measure`)

 Performance measure to use.
- **...** ([any]): Additional arguments, passed down to the respective `geom` or plotting function.
Value

\texttt{ggplot2::ggplot()} object.

Theme

The \texttt{theme_mlr3()} and viridis color maps are applied by default to all \texttt{autoplot()} methods. To change this behavior set \texttt{options(mlr3.theme = FALSE)}.

References

Examples

```r
library(mlr3)
library(mlr3viz)

task = tsk("spam")
learner = lrn("classif.rpart", predict_type = "prob")
object = learner$train(task)$predict(task)

head(fortify(object))
autoplot(object)
autoplot(object, type = "roc")
autoplot(object, type = "prc")
```

Description

Generates plots for \texttt{mlr3cluster::PredictionClust}, depending on argument \texttt{type}:

- "scatter" (default): scatterplot with correlation values and colored cluster assignments.
- "sil": Silhouette plot with mean silhouette value as a reference line. Requires package \texttt{ggfortify}.
- "pca": Perform PCA on data and color code cluster assignments. Inspired by and uses \texttt{ggfortify::autoplot.kmeans}.

Usage

```r
## S3 method for class 'PredictionClust'
autoplot(object, task, row_ids = NULL, type = "scatter", ...)
```
autoplot.PredictionRegr

Arguments

object (mlr3cluster::PredictionClust).
task (mlr3cluster::TaskClust).
row_ids row ids to subset task data to ensure that only the data used to make predictions are shown in plots.
type (character(1)): Type of the plot. See description.
... (any): Additional arguments, passed down to the respective geom.

Value

ggplot2::ggplot() object.

Theme

The theme_mlr3() and viridis color maps are applied by default to all autoplot() methods. To change this behavior set options(mlr3.theme = FALSE).

References

Examples

library(mlr)
library(mlr3cluster)
library(mlr3viz)

task = tsk("usarrests")
learner = lrn("clust.kmeans", centers = 3)
object = learner$train(task)$predict(task)

head(fortify(object))
autoplot(object, task)

Description

Generates plots for mlr3::PredictionRegr, depending on argument type:

- "xy" (default): Scatterplot of "true" response vs. "predicted" response. By default a linear model is fitted via geom_smooth(method = "lm") to visualize the trend between x and y (by default colored blue).
- In addition `geom_abline()` with slope = 1 is added to the plot.
- Note that `geom_smooth()` and `geom_abline()` may overlap, depending on the given data.

- "histogram": Histogram of residuals: $r = y - \hat{y}$.
- "residual": Plot of the residuals, with the response \hat{y} on the "x" and the residuals on the "y" axis.

- By default a linear model is fitted via `geom_smooth(method = "lm")` to visualize the trend between x and y (by default colored blue).

Usage

```r
## S3 method for class 'PredictionRegr'
autoplot(object, type = "xy", ...)
```

Arguments

- `object` (`mlr3::PredictionRegr`).
- `type` (character(1)): Type of the plot. See description.
- `...` (any): Additional arguments, passed down to the respective `geom`.

Value

`ggplot2::ggplot()` object.

Theme

The `theme_mlr3()` and viridis color maps are applied by default to all `autoplot()` methods. To change this behavior set `options(mlr3.theme = FALSE)`.

Examples

```r
library(mlr3)
library(mlr3viz)

task = tsk("boston_housing")
learner = lrn("regr.rpart")
object = learner$train(task)$predict(task)

head(fortify(object))
autoplot(object)
autoplot(object, type = "histogram", binwidth = 1)
autoplot(object, type = "residual")
```
autoplot.ResampleResult

Plot for ResampleResult

Description

Generates plots for mlr3::ResampleResult, depending on argument type:

- "boxplot" (default): Boxplot of performance measures.
- "histogram": Histogram of performance measures.
- "roc": ROC curve (1 - specificity on x, sensitivity on y). The predictions of the individual mlr3::Resamplings are merged prior to calculating the ROC curve (micro averaged). Requires package precrec. Additional arguments will be passed down to the respective autoplot() function in package precrec. Arguments calc_avg and cb_alpha are passed to precrec::evalmod().
- "prc": Precision recall curve. See "roc".
- "prediction": Plots the learner prediction for a grid of points. Needs models to be stored. Set store_models = TRUE for [mlr3::resample]. For classification, we support tasks with exactly two features and learners with predict_type= set to "response" or "prob". For regression, we support tasks with one or two features. For tasks with one feature we can print confidence bounds if the predict type of the learner was set to "se". For tasks with two features the predict type will be ignored.

Usage

```r
## S3 method for class 'ResampleResult'
autoplot(object, type = "boxplot", measure = NULL, predict_sets = "test", ...)
```

Arguments

- `object` (mlr3::ResampleResult).
- `type` (character(1)): Type of the plot. See description.
- `measure` (mlr3::Measure) Performance measure to use.
- `predict_sets` (character()) Only for type set to "prediction". Which points should be shown in the plot? Can be a subset of ("train", "test") or empty.
- `...` (any): Additional arguments, passed down to the respective geom or plotting function.

Value

`ggplot2::ggplot()` object.
Theme

The `theme_mlr3()` and viridis color maps are applied by default to all autoplot() methods. To change this behavior set `options(mlr3.theme = FALSE).

References

Examples

```r
library(mlr3)
library(mlr3viz)

task = tsk("sonar")
learner = lrn("classif.rpart", predict_type = "prob")
resampling = rsmp("cv")
object = resample(task, learner, resampling)

head(fortify(object))

# Default: boxplot
autoplot(object)

# Histogram
autoplot(object, type = "histogram", bins = 30)

# ROC curve, averaged over resampling folds:
autoplot(object, type = "roc")

# ROC curve of joint prediction object:
autoplot(object$prediction(), type = "roc")

# Precision Recall Curve
autoplot(object, type = "prc")

# Prediction Plot
task = tsk("iris")$select(c("Sepal.Length", "Sepal.Width"))
resampling = rsmp("cv", folds = 3)
object = resample(task, learner, resampling, store_models = TRUE)
autoplot(object, type = "prediction")
```

autoplot.TaskClassif Plot for Classification Tasks

Description

Generates plots for mlr3::TaskClassif, depending on argument type:

- "target" (default): Bar plot of the target variable (default).
• "duo": Passes data and additional arguments down to \texttt{GGally::ggduo()}.
 \texttt{columnsX} is target, \texttt{columnsY} is features.

• "pairs": Passes data and additional arguments down to \texttt{GGally::ggpairs()}. Color is set to target column.

Usage

S3 method for class 'TaskClassif'
autoplot(object, type = "target", ...)

Arguments

- **object** \texttt{(mlr3::TaskClassif)}
- **type** \texttt{(character(1))}: Type of the plot. See description.
- **...** \texttt{(any)}: Additional argument, possibly passed down to the underlying plot functions.

Value

\texttt{ggplot2::ggplot()} object.

Theme

The \texttt{theme_mlr3()} and viridis color maps are applied by default to all autoplot() methods. To change this behavior set \texttt{options(mlr3.theme = FALSE)}.

Examples

```r
library(mlr3)
library(mlr3viz)

task = tsk("iris")

head(fortify(task))
autoplot(task)
autoplot(task$clone()$select(c("Sepal.Length", "Sepal.Width")),
  type = "pairs")
autoplot(task, type = "duo")
```

autplot.TaskClust \textit{Plot for Clustering Tasks}

Description

Generates plots for \texttt{mlr3cluster::TaskClust}, depending on argument type:

- "pairs": Passes data and additional arguments down to \texttt{GGally::ggpairs()} (default).
autoplot.TaskRegr

Usage

```r
## S3 method for class 'TaskClust'
autoplot(object, type = "pairs", ...)
```

Arguments

- **object**: (mlr3cluster::TaskClust).
- **type**: (character(1)): Type of the plot. See description.
- **...**: (any): Additional argument, passed down to the underlying geom or plot functions.

Value

`ggplot2::ggplot()` object.

Theme

The `theme_mlr3()` and viridis color maps are applied by default to all `autoplot()` methods. To change this behavior set `options(mlr3.theme = FALSE)`.

Examples

```r
library(mlr3)
library(mlr3cluster)
library(mlr3viz)

task = mlr_tasks$get("usarrests")

head(fortify(task))
autoplot(task)
```

autoplot.TaskRegr

Plot for Regression Tasks

Description

Generates plots for `mlr3::TaskRegr`, depending on argument `type`:

- "target": Box plot of target variable (default).
- "pairs": Passes data and additional arguments down to `GGally::ggpairs()`. Color is set to target column.

Usage

```r
## S3 method for class 'TaskRegr'
autoplot(object, type = "target", ...)
```
Arguments

- **object**: (mlr3::TaskRegr).
- **type**: (character(1)):
 Type of the plot. See description.
- **...**: (any): Additional argument, passed down to the underlying geom or plot functions.

Value

ggplot2::ggplot() object.

Theme

The theme_mlr3() and viridis color maps are applied by default to all autoplot() methods. To change this behavior set options(mlr3.theme = FALSE).

Examples

```r
library(mlr3)
library(mlr3viz)

task = tsk("mtcars")
task$select(c("am", "carb"))

head(fortify(task))
autoplot(task)
autoplot(task, type = "pairs")
```

autoplot.TuningInstanceSingleCrit

Plot for TuningInstanceSingleCrit

Description

Generates plots for mlr3tuning::TuningInstanceSingleCrit.

Usage

```r
## S3 method for class 'TuningInstanceSingleCrit'
autoplot(
  object,
  type = "marginal",
  cols_x = NULL,
  trafo = FALSE,
  learner = mlr3::lrn("regr.ranger"),
  grid_resolution = 100,
  ...
)
```
Arguments

object (mlr3tuning::TuningInstanceSingleCrit.)

type (character(1)): Type of the plot. Available choices:
- "marginal": scatter plots of hyperparameter versus performance. The color of the points shows the batch number.
- "performance": scatter plots of batch number versus performance.
- "parameter": scatter plots of batch number versus hyperparameter. The color of the points shows the performance.
- "parallel": parallel coordinates plot. Parameter values are rescaled by \((x - \text{mean}(x)) / \text{sd}(x)\).
- "points": scatter plot of two hyperparameters versus performance. The color of the points shows the performance.
- "surface": surface plot of 2 hyperparameters versus performance. The performance values are interpolated with the supplied mlr3::Learner.
- "pairs": plots all hyperparameters and performance values against each other.

cols_x (character())
Column names of hyperparameters. By default, all untransformed hyperparameters are plotted. Transformed hyperparameters are prefixed with x_domain_.

trafo (logical(1))
Determines if untransformed (FALSE) or transformed (TRUE) hyperparameters are plotted.

learner (mlr3::Learner)
Regression learner used to interpolate the data of the surface plot.

grid_resolution (numeric())
Resolution of the surface plot.

... (any): Additional arguments, possibly passed down to the underlying plot functions.

Value

ggplot2::ggplot() object.

Theme

The theme_mlr3() and viridis color maps are applied by default to all autoplot() methods. To change this behavior set options(mlr3.theme = FALSE).

Examples

if (requireNamespace("mlr3tuning") && requireNamespace("patchwork")) {
 library(mlr3tuning)

 learner = lrn("classif.rpart")
 learner$param_set$values$cp = to_tune(0.001, 0.1)
learner$param_set$values$minsplit = to_tune(1, 10)

instance = TuningInstanceSingleCrit$new(
 task = tsk("iris"),
 learner = learner,
 resampling = rsmp("holdout"),
 measure = msr("classif.ce"),
 terminator = trm("evals", n_evals = 10))

tuner = tnr("random_search")

tuner$optimize(instance)

plot performance versus batch number
autoplot(instance, type = "performance")

plot cp values versus performance
autoplot(instance, type = "marginal", cols_x = "cp")

plot transformed parameter values versus batch number
autoplot(instance, type = "parameter", trafo = TRUE)

plot parallel coordinates plot
autoplot(instance, type = "parallel")

plot pairs
autoplot(instance, type = "pairs")

plot_learner_prediction

Plot for Learner Predictions

Description

Generates a plot for the mlr3::Prediction of a single mlr3::Learner on a single mlr3::Task.

- For classification we support tasks with exactly two features and learners with predict_type set to "response" or "prob".
- For regression we support tasks with one or two features. For tasks with one feature we print confidence bounds if the predict type of the learner was set to "se". For tasks with two features the predict type will be ignored.

Note that this function is a wrapper around autoplot.ResampleResult() for a temporary mlr3::ResampleResult using mlr3::mlr_resamplings_holdout with ratio 1 (all observations in training set).

Usage

plot_learner_prediction(learner, task, grid_points = 100L, expand_range = 0)
predict_grid

Arguments

- **learner** *(mlr3::Learner)*
- **task** *(mlr3::Task)*
- **grid_points** *(integer(1))* Resolution of the grid. For factors, ordered and logics this value is ignored.
- **expand_range** *(numeric(1))* Expand the prediction range for numerical features.

Value

`ggplot2::ggplot()` object.

Examples

```r
library(mlr3)
library(mlr3viz)

task = mlr3::tsk("pima")$select(c("age", "glucose"))
learner = lrn("classif.rpart", predict_type = "prob")
p = plot_learner_prediction(learner, task)
print(p)
```

Description

For each point we have the predicted class / regression value in column response. If the learner predicts probabilities, a column ".prob.response" is added that contains the probability of the predicted class.

Usage

`predict_grid(learners, task, grid_points, expand_range)`

Arguments

- **learners** list of trained learners, each learner belongs to one resampling iteration
- **task** the task all learners are trained on
- **grid_points** *(int)*: see sequenize
- **expand_range** see sequenize

Generates a data.table of evenly distributed points.
theme_mlr3
mlr-org ggplot2 theme

Description

The theme is heavily influenced and partly based on ggpubr::theme_pubr(). This theme is applied by default to all autoplot() methods in the mlr3 ecosystem. If you do not like it and want to use the default ggplot2 theme, you can add + theme_gray() to the autoplot() call.

Usage

theme_mlr3(
 base_size = 12,
 base_family = "",
 border = FALSE,
 margin = TRUE,
 legend = c("top", "bottom", "left", "right", "none"),
 x.text.angle = 0
)

Arguments

base_size [integer]
Text font size.

base_family [character]
Font family.

border [logical]
If TRUE, adds a panel border.

margin [logical]
If FALSE, reduces the plot margin(s).

legend [character]
Specifies the legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top".

x.text.angle [numeric]
Rotation angle of x axis tick labels. Default value is 0. Use 90 for vertical text.

Examples

library("ggplot2")
p = ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(aes(color = gear))

Default plot
p

theme_mlr3()
p + theme_mlr3()
Index

as_precrec, 3
autoplot(), 4, 16
autoplot.BenchmarkResult, 4
autoplot.Filter, 5
autoplot.LearnerClassifCVGlmnet, 6
autoplot.LearnerClassifGlmnet
 (autoplot.LearnerClassifCVGlmnet), 6
autoplot.LearnerClassifRpart, 7
autoplot.LearnerClustHierarchical, 9
autoplot.LearnerRegrCVGlmnet
 (autoplot.LearnerClassifCVGlmnet), 6
autoplot.LearnerRegrGlmnet
 (autoplot.LearnerClassifCVGlmnet), 6
autoplot.LearnerRegrRpart
 (autoplot.LearnerClassifRpart), 7
autoplot.OptimInstanceSingleCrit, 10
autoplot.PredictionClassif, 12
autoplot.PredictionClust, 13
autoplot.PredictionRegr, 14
autoplot.ResampleResult, 16
autoplot.ResampleResult(), 22
autoplot.TaskClassif, 17
autoplot.TaskClust, 18
autoplot.TaskRegr, 19
autoplot.TuningInstanceSingleCrit, 20
bbotk::OptimInstanceSingleCrit, 10
factoextra::fviz_dend(), 10
GGally::ggduo(), 18
GGally::ggpairs(), 18, 19
ggfortify::autoplot.kmeans, 13
ggparty::autoplot.party(), 7, 8
ggplot2::ggplot(), 4, 6–9, 11, 13–16, 18–21, 23
mlr3::BenchmarkResult, 4
mlr3::Learner, 4, 11, 21–23
mlr3::LearnerClassifRpart, 8
mlr3::LearnerRegrRpart, 8
mlr3::Measure, 4, 12, 16
mlr3::mlr_learners_classif.rpart, 8
mlr3::mlr_learners_regr.rpart, 8
mlr3::mlr_resamplings_holdout, 22
mlr3::Prediction, 22
mlr3::PredictionClassif, 12
mlr3::PredictionRegr, 14, 15
mlr3::ResampleResult, 16, 22
mlr3::Resampling, 4, 16
mlr3::Task, 4, 22, 23
mlr3::TaskClassif, 17, 18
mlr3::TaskRegr, 19, 20
mlr3cluster::LearnerClustAgnes, 9
mlr3cluster::LearnerClustDiana, 9
mlr3cluster::LearnerClustHclust, 9
mlr3cluster::PredictionClust, 13, 14
mlr3cluster::TaskClust, 14, 18, 19
mlr3filters::Filter, 5
mlr3learners::LearnerClassifGlmnet, 7
mlr3learners::LearnerRegrCVGlmnet, 7
mlr3learners::LearnerRegrGlmnet, 7
mlr3learners::mlr_learners_classif.cv_glmnet,
 6
mlr3learners::mlr_learners_classif.glmnet,
 6
mlr3learners::mlr_learners_regr.cv_glmnet,
 6
mlr3learners::mlr_learners_regr.glmnet,
 6
mlr3tuning::TuningInstanceSingleCrit, 20, 21
mlr3viz (mlr3viz-package), 2
mlr3viz-package, 2
plot_learner_prediction, 22
precrec::evalmod(), 3, 4, 16

25
precrec::mmdata(), 4
predict_grid, 23

theme_mlr3, 24
theme_mlr3(), 5–9, 11, 13–15, 17–21