Package ‘mlrintermbo’

October 13, 2022

Title Model-Based Optimization for ‘mlr3’ Through ‘mlrMBO’

Description
The ‘mlrMBO’ package can ordinarily not be used for optimization within ‘mlr3’, because of incompatibilities of their respective class systems. ‘mlrintermbo’ offers a compatibility interface that provides ‘mlrMBO’ as an ‘mlr3tuning’ ‘Tuner’ object, for tuning of machine learning algorithms within ‘mlr3’, as well as a ‘bbotk’ ‘Optimizer’ object for optimization of general objective functions using the ‘bbotk’ black box optimization framework. The control parameters of ‘mlrMBO’ are faithfully reproduced as a ‘paradox’ ‘ParamSet’.

URL https://github.com/mb706/mlrintermbo

BugReports https://github.com/mb706/mlrintermbo/issues

License LGPL-3

Encoding UTF-8

Imports backports, checkmate, data.table, mlr3misc (>= 0.1.4), paradox, R6, lhs, callr, bbotk, mlr3tuning

Suggests mlr, ParamHelpers, testthat, rgenoud, DiceKriging, emoa, cmaesr, randomForest, smoof, lgr, mlr3, mlr3learners, mlr3pipelines, mlrMBO, ranger, rpart

LazyData yes

ByteCompile yes

Version 0.5.0

RoxygenNote 7.1.1

NeedsCompilation no

Author Martin Binder [aut, cre]

Maintainer Martin Binder <developer.mb706@doublecaret.com>

Repository CRAN

Date/Publication 2021-03-01 09:00:06 UTC
R topics documented:

- `mlrintermbo-package` .. 2
- `makeMlr3Surrogate` ... 2
- `OptimizerInterMBO` .. 3

`mlrintermbo-package`

`mlrintermbo` *An `mlrMBO` `mlr3` Interface*

Description

Model-based optimization for `mlr3` through `mlrMBO`.

Author(s)

Maintainer: Martin Binder <developer.mb706@doublecaret.com>

See Also

Useful links:

- https://github.com/mb706/mlrintermbo

`makeMlr3Surrogate`

Create Surrogate Learner

Description

Creates the default `mlrMBO` surrogate learners as an `mlr3::Learner`.

This imitates the behaviour of `mlrCPO` when no `learner` argument is given to `mbo()` / `initSMBO()`.

Usage

```r
makeMlr3Surrogate(
  is.numeric = TRUE,
  is.noisy = TRUE,
  has.dependencies = !is.numeric
)
```
OptimizerInterMBO

Arguments

is.numeric (logical(1))
Whether only numeric parameters are present. If so, a LearnerRegrKM (DiceKriging package) is constructed. Otherwise a LearnerRegrRanger (random forest from the ranger package) is constructed. Default is TRUE.

is.noisy (logical(1))
Whether to use nugget estimation. Only considered when is.numeric is TRUE. Default is TRUE.

has.dependencies (logical(1))
Whether to anticipate missing values in the surrogate model design. This adds out-of-range imputation to the model. If more elaborate imputation is desired, it may be desirable to set this to FALSE and instead perform custom imputation using mlr3pipelines. Default is !numeric.

Examples

DiceKriging Learner:
makeMlr3Surrogate()

mlr3pipelines Graph: imputation %>>% 'ranger' (randomForest):
makeMlr3Surrogate(is.numeric = FALSE)

just the 'ranger' Learner:
makeMlr3Surrogate(is.numeric = FALSE, has.dependencies = FALSE)

OptimizerInterMBO Tuner and Optimizer using mlrMBO

Description

mlrMBO tuning object.

mlrMBO must not be loaded directly into R when using mlr3, for various reasons. TunerInterMBO and OptimizerInterMBO take care that this does not happen.

To optimize an objective (using the bbotk package), use the OptimizerInterMBO object, ideally obtained through the bbotk::opt() function: opt("intermbo").

To tune a machine learning method represented by a mlr3::Learner object, use the TunerInterMBO obtained ideally through mlr3tuning::tnr(): tnr("intermbo").

The ParamSet of the optimizer / tuner reflects the possible configuration options of mlrMBO. The control parameters map directly to the arguments of mlrMBO::makeMBOControl(), mlrMBO::setMBOControlInfill(), mlrMBO::setMBOControlMultiObj(), mlrMBO::setMBOControlMultiPoint(), and mlrMBO::setMBOControlTermination.

Format

R6::R6Class object inheriting from mlr3tuning::Tuner or bbotk::Optimizer.
Examples

```r
library("paradox")
library("bbotk")

# silly example function: minimize x^2 for -1 < x < 1
domain <- ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))
codomain <- ParamSet$new(list(ParamDbl$new("y", tags = "minimize")))
objective <- ObjectiveRFun$new(function(xs) list(y = xs$x^2), domain, codomain)

# initialize instance
instance <- OptimInstanceSingleCrit$new(objective, domain, trm("evals", n_evals = 6))

# use intermbo optimizer
optser <- opt("intermbo")

# optimizer has hyperparameters from mlrMBO
optser$param_set$values$final.method <- "best.predicted"

# optimization happens here.
optser$optimize(instance)

instance$result
```
Index

bbotk::opt(), 3
bbotk::Optimizer, 3

makeMlr3Surrogate, 2
mlr3::Learner, 2, 3
mlr3tuning::tnr(), 3
mlr3tuning::Tuner, 3
mlr_optimizers_intermbo
 (OptimizerInterMBO), 3
mlr_tuners_intermbo
 (OptimizerInterMBO), 3
mlrintermbo (mlrintermbo-package), 2
mlrintermbo-package, 2
mlrMBO::makeMBOControl(), 3
mlrMBO::setMBOControlInfill(), 3
mlrMBO::setMBOControlMultiObj(), 3
mlrMBO::setMBOControlMultiPoint(), 3
mlrMBO::setMBOControlTermination(), 3
OptimizerInterMBO, 3
ParamSet, 3
R6::R6Class, 3
TunerInterMBO (OptimizerInterMBO), 3