Package ‘mmm’

February 20, 2015

Type Package

Title an R package for analyzing multivariate longitudinal data with multivariate marginal models

Version 1.4

Date 2014-01-01

Author Ozgur Asar, Ozlem Ilk

Depends gee

Maintainer Ozgur Asar <o.asar@lancaster.ac.uk>

Description fits multivariate marginal models for multivariate longitudinal data for both continuous and discrete responses

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2014-01-01 05:19:53

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmm-package</td>
<td>2</td>
</tr>
<tr>
<td>mmm</td>
<td>2</td>
</tr>
<tr>
<td>motherStress</td>
<td>8</td>
</tr>
<tr>
<td>multiLongCount</td>
<td>9</td>
</tr>
<tr>
<td>multiLongGaussian</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 12
mmm-package

mmm: an R package for analyzing multivariate longitudinal data with multivariate marginal models

Description

fits multivariate marginal models for multivariate longitudinal data for both continuous and discrete responses

Details

Package: mmm
Type: Package
Version: 1.4
Date: 2013-01-01
License: GPL (>=2)

mmm

an R function to fit the multivariate marginal models to analyze multivariate longitudinal data

Description

fits multivariate marginal models to analyze multivariate longitudinal data, for both continuous and discrete responses

Usage

mmm(formula, id, data = NULL, correlation = NULL, initEstim = NULL, tol = 0.001, maxiter = 25, family = "gaussian", corStruct = "independence", Mv = 1, silent = TRUE, scale.fix = FALSE, scale.value = 1)

Arguments

formula a formula expression, see the examples given below.
id a vector for identification of the clusters.
data an optional data frame.
correlation user specified square matrix for the working correlation matrix, appropriate when corstr="fixed".

initEstim user specified initials for the parameter estimates.

tol the tolerance which specifies the convergency of the algorithm.

maxiter the maximum number of iterations to be consumed by the algorithm.

family an object which defines the link and variance function. The possible choices are same with the ones in the "gee" package. For details see the gee documentation. Note that family=binomial handles multivariate longitudinal binary data, family=poisson handles multivariate longitudinal count data, family=gaussian handles multivariate longitudinal (normal type) continuous data and family=gamma handles multivariate longitudinal (gamma type) continuous data.

corStruct a character string which defines the structure of the working correlation matrix. For details see the gee documentation.

Mv specifies the lag value, e.g. specification of "corstr=AR-M" and "Mv=1" indicates AR(1).

silent a logical variable which decides the print of the iterations.

scale.fix a logical variable for fixing the scale parameter to a user specified value.

scale.value a user specified scale parameter value, appropriate when scale.fix=TRUE.

Value

Returns an object of the results. See the examples given below.

Note

Version 1.1.

Author(s)

Ozgur Asar, Ozlem Ilk

References

See Also

gee

Examples

Binary data example

data(motherStress)
fit1 <- mmm(formula = cbind(stress, illness) ~ married + education +
employment + chlth + mlth + race + csex + housize + bstress + billness +
week, id = motherStress$id, data = motherStress, family = binomial,
corStruct = "exchangeable")
summary(fit1)

Count data example

First we illustrate how the data set is simulated
Then the R script to analyze the data set by mmm is given
Note: no need to run the script to generate the data set, unless of interest

Not run:
Generating the data by the help of 'corcounts' package

loading the package 'corcounts'
library("corcounts")

setting the seed to 12
set.seed(12)

number of subjects in the study
n1 <- 500

defining the response and covariate families (Poi indicates Poisson distribution)

the means of the responses and covariate. while 5 and 8 are the means of the responses
20 is the mean of the time independent covariate
mu <- c(5, 8, 20, 5, 8, 5, 8, 5, 8)

the correlation structure which 'corcounts' uses to generate correlated count data
(unstr indicates unstructured correlation structure)
corstr <- "unstr"

the correlation matrix corcounts assumes the correlated count data have
corpar <- matrix(c(1, 0.4, 0.6, 0.9, 0.37, 0.8, 0.34, 0.7, 0.31,
 0.4, 1, 0.6, 0.37, 0.9, 0.34, 0.8, 0.31, 0.7,
 0.6, 0.6, 1, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6,
 0.9, 0.37, 0.6, 1, 0.4, 0.9, 0.37, 0.8, 0.34,
 0.37, 0.9, 0.6, 0.4, 1, 0.37, 0.9, 0.34, 0.8,
 0.31, 0.7, 0.6, 0.9, 0.37, 0.8, 0.34, 0.7, 0.31,
 0.34, 0.8, 0.34, 0.9, 0.37, 0.8, 0.34, 0.7, 0.31))
0.8, 0.34, 0.6, 0.9, 0.37, 1.0, 0.9, 0.37,
0.34, 0.8, 0.6, 0.37, 0.9, 0.4, 1.0, 0.37, 0.9,
0.7, 0.31, 0.6, 0.8, 0.34, 0.9, 0.37, 1.0, 0.4,
0.31, 0.7, 0.6, 0.34, 0.8, 0.37, 0.9, 0.4, 1), ncol=9, byrow=1)

generating the correlated count data by 'rcounts' function available in 'corcounts'
data1 <- rcounts(N=n1, margins=margins, mu=mu, corstr=corstr, corpar=corpar)

The reconstruction of the generated correlated count data to
the longitudinal data (long) format

separating the bivariate responses measured at the first point and the time independent covariate
time1 <- data1[,1:3]

separating the bivariate responses measured at the second point and combining them with the time independent covariate
time12 <- cbind(data1[,4:5], data1[,3])

separating the bivariate responses measured at the third point and combining them with the time independent covariate
time13 < - cbind(data1[,6:7], data1[,3])

separating the bivariate responses measured at the fourth point and combining them with the time independent covariate
time14 <- cbind(data1[,8:9], data1[,3])

combining the data for all the time points
data12 <- rbind(time1, time12, time13, time14)

constructing the time variable
time1 <- matrix(rep(seq(1:T), each=n1))

constructing the id variable
id1 <- matrix(rep(seq(1:n1), 4))

combining the id of the subjects, the simulated data and the time variable
data13 <- cbind(id1, data12, time1)

reconstructing the data subject by subject which 'mmm' expects it has
data14 <- NULL
for (i in 1:n1) data14 <- rbind(data14, data13[data13[,1]==i,])

Data manipulations on the covariates

taking natural logarithm of the time independent covariate
data14[,4] <- log(data14[,4])

standardizing time variable
data14[,5] <- scale(data14[,5])

adding the interaction of the time independent covariate
and time as a new covariate
multilongCount<-as.data.frame(cbind(data14, data14[4,] + data14[,5]))
names(multilongCount)<-c("ID", "resp1", "resp2", "X", "time", "X.time")

End (Not run)

R script to analyze the count data set
It is already stored in mmm package

data(multilongCount)
fit2<-mmm(formula=cbind(resp1, resp2)~X+time+X.time, id=multilongCount$ID, data=multilongCount, family=poisson, corStruct="unstructured")
summary(fit2)

###
Continuous data example
###

First we illustrate how the data set is simulated
Then the R script to analyze the data set by mmm is given
Note: no need to run the script to generate the data set, unless of interest

Not run:
Generating the data by the help of mvtnorm package

loading package 'mvtnorm'
library("mvtnorm")

number of subjects in the study
n2<-500

setting the seed to 12
set.seed(12)

specifying the correlation matrix which 'mvtnorm' assumes the correlated data have
cormat<-matrix(c(1, 0.4, 0.6, 0.9, 0.37, 0.8, 0.34, 0.7, 0.31,
0.4, 1, 0.6, 0.37, 0.9, 0.34, 0.8, 0.31, 0.7,
0.6, 0.6, 1, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6,
0.9, 0.37, 0.6, 1, 0.4, 0.9, 0.37, 0.8, 0.34,
0.37, 0.9, 0.6, 0.4, 1, 0.37, 0.9, 0.34, 0.8,
0.8, 0.34, 0.6, 0.9, 0.37, 1, 0.4, 0.9, 0.37,
0.34, 0.8, 0.6, 0.37, 0.9, 0.4, 1, 0.37, 0.9,
0.7, 0.31, 0.6, 0.8, 0.34, 0.9, 0.37, 1, 0.4,
0.31, 0.7, 0.6, 0.34, 0.8, 0.37, 0.9, 0.4, 1), ncol=9, byrow=T)

variances of the responses and time independent covariate
while 0.97 and 1.1 correspond to the variances of the bivariate responses
4 corresponds to the variance of the time independent covariate
variance<-c(0.97, 1.1, 1.4, 0.97, 1.1, 0.97, 7.1, 0.97, 1.1)

constructing the (diagonal) standard deviation matrix
std<-diag(sqrt(variance), 9)

constructing the variance covariance matrix, sigma
sigma<-std

generating the correlated continuous data utilizing 'rmvnorm' function available
in 'mvtnorm'; method="svd" indicates use of 'singular value decomposition method
data2<-rmvnorm(n2,mean = rep(0,nrow(sigma)),sigma=sigma,method="svd")

The reconstruction of the generated correlated continuous data to the
longitudinal data (long) format

sepearating the bivariate responses measured at first time point
and the time independent covariate
time21<-data2[,1:3]

sepearating the bivariate responses measured at second time point
and combining them with the time independent covariate
time22<-cbind(data2[,4:5],data2[,3])

sepearating the bivariate responses measured at third time point
and combining them with the time independent covariate
time23<-cbind(data2[,6:7],data2[,3])

sepearating the bivariate responses measured at fourth time point
and combining them with the time independent covariate
time24<-cbind(data2[,8:9],data2[,3])

combining the data for all the time points
data22<-rbind(time21,time22,time23,time24)

constructing the time variable
time2<-matrix(rep(seq(1:4),each=n2))

constructing the id variable
id2<-matrix(rep(seq(1:n2),4))

combining the id of the subjects, the generated data and the time variable
data23<-cbind(id2,data22,time2)

reconstructing the data subject by subject which 'mmm' expects it has
data24<-NULL
for (i in 1:n2) data24<-rbind(data24,data23[data23[,1]==i,])

Data manipulations on the covariates

standardizing the time variable
data24[,5]<-scale(data24[,5])

adding the interaction of the time independent covariate
and time as a new covariate
multilongGaussian<-as.data.frame(cbind(data24,data24[,4]*data24[,5]))
names(multilongGaussian)<-c("ID","resp1","resp2","X","time","X.time")

End(Not run)
R script to analyze the continuous data set
It is already stored in mmm package

data(multiLongGaussian)
fit3<-mmm(formula=cbind(resp1,resp2)=X+time+X.time,
 id=multiLongGaussian$ID,data=multiLongGaussian,family=gaussian,corStruct="unstructured")
summary(fit3)

motherStress

Mother’s Stress and Children’s Morbidity Study

Description

A data frame with 2004 observations on the following 14 variables. motherStress is a longitudinal dataset which includes daily information of the participants. There are 167 mothers and children enrolled in the study.

Usage

data(motherStress)

Format

The details of the columns of the data frame are given below.

- **id** a vector for subject id
- **stress** a vector for mother’s stress at time t: 1=presence, 0=absence
- **illness** a vector for children’s illness at time t: 1=presence, 0=absence
- **married** a vector for marriage status of mother: 1=married, 0=other
- **education** a vector for mother’s education level: 0=high school or less, 1=high school graduate
- **employed** a numeric vector for mother’s employment status: 1=employed, 0=unemployed
- **chlth** a vector for children’s health status at baseline: 0=very poor/poor, 1=fair, 2=good, 3=very good
- **mhlth** a vector for mother’s health status at baseline: 0=very poor/poor, 1=fair, 2=good, 3=very good
- **race** a vector for child’s race: 1=non-white, 0=white
- **csex** a vector for child’s gender: 1=female, 0=male
- **housize** a vector for the size of the household: 0=2-3 people, 1=more than 3 people
- **bstress** a vector for the baseline stress for the period of day 1 to 16; calculated as the mean of the stress status of the subjects in the period of day 1 to 16
- **billness** a vector for the baseline illness for the period of day 1 to 16; calculated as the mean of the illness status of the subjects in the period of day 1 to 16
- **week** a numeric vector for time: (day-22)/7
Details

The original data contains the information of the mothers and children in the study for 28 days. Because of the weak serial correlation in the period of day 1 to 16, it is ignored. Only the period of day 17 to 28 is included here. To catch the specific characteristic of the mothers and children, the averages of the stress and illness status of them are added as new covariates; bstress and billness. While the covariates have no missing observation, responses have very low percentages of missing values, 0.97

Source

http://faculty.washington.edu/heagerty/Books/AnalysisLongitudinal/datasets.html

References

Examples

```r
data(motherstress)
head(motherstress,10)
require(graphics)
mosaicplot(~motherstress$employed+motherstress$housize+motherstress$stress,color=TRUE)
```

multilongcount

Multivariate Longitudinal Count Data

Description

A data frame with 2000 observations on the following 6 variables. multilongcount is a simulated bivariate longitudinal count dataset assuming there are 500 subjects in the study whose data are collected at 4 equally-spaced time points.

Usage

```r
data(multilongcount)
```
Format

A data frame with 2000 observations on the following 6 variables.

- **ID**: a numeric vector for subject ID
- **resp1**: a numeric vector for the first longitudinal count response
- **resp2**: a numeric vector for the second longitudinal count response
- **x**: a numeric vector for the covariate, X
- **time**: a numeric vector for the time point at which observations are collected
- **x.time**: a numeric vector for the interaction between X and time

Details

The covariates, X and time are the standardized values indeed. The related interaction is calculated by using these standardized values. X is a time-independent covariate. The R script to generate the data set is given in the Examples section of the mmm function.

References

Examples

```r
data(multiLongCount)
plot(multiLongCount$X, multiLongCount$resp1)
```

multiLongGaussian
Multivariate Longitudinal Continuous (Gaussian) Data

Description

A data frame with 2000 observations on the following 6 variables. `multiLongGaussian` is a simulated bivariate longitudinal continuous dataset assuming there are 500 subjects in the study whose data are collected at 4 equally-spaced time points.

Usage

```r
data(multiLongGaussian)
```
multiLongGaussian

Format

A data frame with 2000 observations on the following 6 variables.

- **id**: a numeric vector for subject ID
- **resp1**: a numeric vector for the first longitudinal count response
- **resp2**: a numeric vector for the second longitudinal count response
- **X**: a numeric vector for the covariate, X
- **time**: a numeric vector for the time point at which observations are collected
- **X.time**: a numeric vector for the interaction between X and time

Details

The covariates, X and time are the standardized values indeed. The related interaction is calculated by using these standardized values. X is a time-independent covariate. The R script to generate the data set is given in the Examples section of the mmm function.

References

Examples

data(multiLongGaussian)
plot(multiLongGaussian$X,multiLongGaussian$resp1)
Index

*Topic **datasets**
 - motherStress, 8
 - multiLongCount, 9
 - multiLongGaussian, 10

*Topic **generalized estimating equations**
 - mmm, 2

gee, 3, 4

mmm, 2
mmm-package, 2
motherStress, 8
multiLongCount, 9
multiLongGaussian, 10