Package ‘mmrm’

October 18, 2022

Type Package

Title Mixed Models for Repeated Measures

Version 0.1.5

Description Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20<2349::AID-SIM667>3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane and Schnell (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder (‘TMB’) which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite adjusted degrees of freedom, and extract least square means estimates by using 'emmeans'.

License Apache License 2.0

URL https://openpharma.github.io/mmrm/

BugReports https://github.com/openpharma/mmrm/issues

Depends R (>= 4.0)

Imports checkmate (>= 2.0), lifecycle, methods, nlme, numDeriv, parallel, Rcpp, stats, stringr, TMB (>= 1.9.1)

Suggests emmeans (>= 1.6), estimability, knitr, rmarkdown, testthat (>= 3.0.0), xml2

LinkingTo RcppEigen, testthat, TMB

VignetteBuilder knitr

RdMacros Rdpack

biocViews

Config/testthat/edition 3

Encoding UTF-8
Language en-US
LazyData true
NeedsCompilation yes
RoxygenNote 7.2.1
Collate 'catch-routine-registration.R' 'component.R' 'data.R'
 'emmeans.R' 'fit.R' 'mmrm-methods.R' 'mmrm-package.R' 'utils.R'
 'satterthwaite.R' 'tmb-methods.R' 'tmb.R'
Author Daniel Sabanes Bove [aut, cre],
 Julia Dedic [aut],
 Doug Kelkhoff [aut],
 Kevin Kunzmann [aut],
 Brian Matthew Lang [aut],
 Liming Li [aut],
 Ya Wang [aut],
 Craig Gower-Page [ctb],
 Boehringer Ingelheim Ltd. [cph, fnd],
 Gilead Sciences, Inc. [cph, fnd],
 F. Hoffmann-La Roche AG [cph, fnd],
 Merck Sharp & Dohme, Inc. [cph, fnd]
Maintainer Daniel Sabanes Bove <daniel.sabanes_bove@roche.com>
Repository CRAN
Date/Publication 2022-10-18 12:12:37 UTC

R topics documented:

mmrm-package .. 3
component .. 4
covariance_types .. 5
df_1d .. 7
df_md ... 7
etmeans_support ... 8
fev_data .. 9
fit_mmrm ... 10
fit_single_optimizer 11
free_cores ... 12
mmrm ... 13
mmrm_control ... 14
mmrm_tmb_methods .. 15
refit_multiple_optimizers 18

Index 20
Description

`mmrm` implements mixed models with repeated measures (MMRM) in R.

Author(s)

Maintainer: Daniel Sabanes Bove <daniel.sabanes_bove@roche.com>

Authors:

- Julia Dedic <julia.dedic@roche.com>
- Doug Kelkoff <kelkhoff.douglas@gene.com>
- Kevin Kunzmann <kevin.kunzmann@boehringer-ingelheim.com>
- Brian Matthew Lang <brian.lang@msd.com>
- Liming Li <liming.li@roche.com>
- Ya Wang <ya.wang10@gilead.com>

Other contributors:

- Craig Gower-Page <craig.gower-page@roche.com> [contributor]
- Boehringer Ingelheim Ltd. [copyright holder, funder]
- Gilead Sciences, Inc. [copyright holder, funder]
- F. Hoffmann-La Roche AG [copyright holder, funder]
- Merck Sharp & Dohme, Inc. [copyright holder, funder]

See Also

Useful links:

- https://openpharma.github.io/mmrm/
- Report bugs at https://github.com/openpharma/mmrm/issues
component

Component Access for mmrm_tmb Objects

Description

[Experimental]

Usage

component(
 object,
 name = c("cov_type", "n_theta", "n_subjects", "n_timepoints", "n_obs", "beta_vcov",
 "beta_vcov_complete", "varcor", "formula", "dataset", "n_groups", "reml",
 "convergence", "evaluations", "conv_message", "call", "theta_est", "beta_est",
 "beta_est_complete", "beta_aliased", "x_matrix", "y_vector", "neg_log_lik",
 "jac_list", "theta_vcov")
)

Arguments

object (mmrm_tmb)
 the fitted MMRM.
name (character)
 the component(s) to be retrieved.

Details

Available component() names are as follows:

- call: low-level function call which generated the model.
- formula: model formula.
- dataset: data set name.
- cov_type: covariance structure type.
- n_theta: number of parameters.
- n_subjects: number of subjects.
- n_timepoints: number of modeled time points.
- n_obs: total number of observations.
- reml: was REML used (ML was used if FALSE).
- neg_log_lik: negative log likelihood.
- convergence: convergence code from optimizer.
- conv_message: message accompanying the convergence code.
- evaluations: number of function evaluations for optimization.
covariance_types

- beta_vcov: estimated variance-covariance matrix of coefficients (excluding aliased coefficients).
- beta_vcov_complete: estimated variance-covariance matrix including aliased coefficients with entries set to NA.
- varcor: estimated covariance matrix for residuals. If there are multiple groups, a named list of estimated covariance matrices for residuals will be returned. The names are the group levels.
- theta_est: estimated variance parameters.
- beta_est: estimated coefficients (excluding aliased coefficients).
- beta_est_complete: estimated coefficients including aliased coefficients set to NA.
- beta_aliased: whether each coefficient was aliased (i.e. cannot be estimated) or not.
- theta_vcov: estimated variance-covariance matrix of variance parameters.
- x_matrix: design matrix used (excluding aliased columns).
- y_vector: response vector used.
- jac_list: Jacobian, see h_jac_list() for details.

Value

The corresponding component of the object, see details.

See Also

In the lme4 package there is a similar function getME().

Examples

```r
fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
# Get all available components.
component(fit)
# Get convergence code and message.
component(fit, c("convergence", "conv_message"))
# Get modeled formula as a string.
component(fit, c("formula"))
```

<table>
<thead>
<tr>
<th>covariance_types</th>
<th>covariance type</th>
</tr>
</thead>
</table>

Description

covariance type
Usage

cov_type

cov_type Spatial

Format

vector of supported covariance structures. cov_type for common time points covariance structures, cov_typeSpatial for spatial covariance structures.

Details

abbreviation for covariance structures

Common Covariance Structures:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
<th>Parameters</th>
<th>(i, j) element</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>Ante-dependence</td>
<td>m</td>
<td>$\sigma^2 \prod_{k=1}^{i=j} \rho_k$</td>
</tr>
<tr>
<td>adh</td>
<td>Heterogeneous ante-dependence</td>
<td>2m − 1</td>
<td>$\sigma_i \sigma_j \prod_{k=1}^{i=j} \rho_k$</td>
</tr>
<tr>
<td>ar</td>
<td>First-order auto-regressive</td>
<td>2</td>
<td>$\sigma^2 \rho^{i-j}$</td>
</tr>
<tr>
<td>ar1h</td>
<td>Heterogeneous first-order auto-regressive</td>
<td>m + 1</td>
<td>$\sigma_i \sigma_j \rho^{i-j}$</td>
</tr>
<tr>
<td>cs</td>
<td>Compound symmetry</td>
<td>2</td>
<td>$\sigma^2 \rho I(i \neq j) + I(i = j)$</td>
</tr>
<tr>
<td>csh</td>
<td>Heterogeneous compound symmetry</td>
<td>m + 1</td>
<td>$\sigma_i \sigma_j \rho I(i \neq j) + I(i = j)$</td>
</tr>
<tr>
<td>toep</td>
<td>Toeplitz</td>
<td>m</td>
<td>σ_{i-j+1}</td>
</tr>
<tr>
<td>toeph</td>
<td>Heterogeneous Toeplitz</td>
<td>2m − 1</td>
<td>$\sigma_i \sigma_j \rho^{i-j}$</td>
</tr>
<tr>
<td>us</td>
<td>Unstructured</td>
<td>m(m + 1)/2</td>
<td>σ_{ij}</td>
</tr>
</tbody>
</table>

where i and j denote i-th and j-th time points, respectively, out of total m time points, 1 ≤ i, j ≤ m.

Note the ante-dependence covariance structure in this package refers to homogeneous ante-dependence, while the ante-dependence covariance structure from SAS PROC MIXED refers to heterogeneous ante-dependence and the homogeneous version is not available in SAS.

Spatial Covariance structures:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
<th>Parameters</th>
<th>(i, j) element</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_exp</td>
<td>Spatial exponential</td>
<td>2</td>
<td>$\sigma^2 p^{-d_{ij}}$</td>
</tr>
</tbody>
</table>

where d_{ij} denotes the Euclidean distance between time points i and j.

Functions

- cov_type: non-spatial covariance structure
- cov_type Spatial: spatial covariance structure
df_1d Calculation of Satterthwaite Degrees of Freedom for One-Dimensional Contrast

Description

[Experimental]

Usage

df_1d(object, contrast)

Arguments

object (mmrm)
the MMRM fit.
contrast (numeric)
contrast vector. Note that this should not include elements for singular coefficient estimates, i.e. only refer to the actually estimated coefficients.

Value

List with est, se, df, t_stat and p_val.

Examples

object <- mmrm(
 formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
 data = fev_data
)
contrast <- numeric(length(object$beta_est))
contrast[3] <- 1
df_1d(object, contrast)

df_md Calculation of Satterthwaite Degrees of Freedom for Multi-Dimensional Contrast

Description

[Experimental]

Usage

df_md(object, contrast)

Examples

object <- mmrm(
 formula = FEV1 - RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
 data = fev_data
)
contrast <- numeric(length(object$beta_est))
contrast[3] <- 1
df_md(object, contrast)
Arguments

object (mmrm)
the MMRM fit.

contrast (matrix)
umERIC contrast matrix, if given a numeric then this is coerced to a row vector.
Note that this should not include elements for singular coefficient estimates, i.e.
only refer to the actually estimated coefficients.

Value

List with est, se, df, t_stat and p_val.

Examples

object <- mmrm(
 formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
 data = fev_data
)
contrast <- matrix(data = 0, nrow = 2, ncol = length(object$beta_est))
contrast[1, 2] <- contrast[2, 3] <- 1
df_md(object, contrast)

emmeans_support
Support for emmeans

Description

[Experimental]
This package includes methods that allow mmrm objects to be used with the emmeans package.
emmeans computes estimated marginal means (also called least-square means) for the coefficients
of the MMRM.

Examples

fit <- mmrm(
 formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
 data = fev_data
)
if (require(emmeans)) {
 emmeans(fit, ~ ARMCD | AVISIT)
}
Description

[Experimental]

Usage

fev_data

Format

A tibble with 800 rows and 7 variables:

- USUBJID: subject ID.
- AVISIT: visit number.
- ARMCD: treatment, TRT or PBO.
- RACE: 3-category race.
- SEX: sex.
- FEV1_BL: FEV1 at baseline (%).
- FEV1: FEV1 at study visits.
- WEIGHT: weighting variable.

Note

Measurements of FEV1 (forced expired volume in one second) is a measure of how quickly the lungs can be emptied. Low levels of FEV1 may indicate chronic obstructive pulmonary disease (COPD).

Source

This is an artificial dataset.
fit_mmrm

Low-Level Fitting Function for MMRM

Description

[Experimental]
This is the low-level function to fit an MMRM. Note that this does not try different optimizers or adds Jacobian information etc. in contrast to mmrm().

Usage

fit_mmrm(formula, data, weights, reml = TRUE, control = mmrm_control())

Arguments

- **formula** (formula)
 model formula with exactly one special term specifying the visits within subjects, see details.
- **data** (data.frame)
 input data containing the variables used in formula.
- **weights** (vector)
 input vector containing the weights.
- **reml** (flag)
 whether restricted maximum likelihood (REML) estimation is used, otherwise maximum likelihood (ML) is used.
- **control** (mmrm_control)
 list of control options produced by mmrm_control().

Details

The formula typically looks like: $FEV1 \sim RACE + SEX + ARMCD \times AVISIT + us(AVISIT \mid USUBJID)$ so specifies response and covariates as usual, and exactly one special term defines which covariance structure is used and what are the visit and subject variables.

Value

List of class mmrm_tmb, see h_mmrm_tmb_fit() for details.

Examples

```r
formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
data <- fev_data
system.time(result <- fit_mmrm(formula, data, rep(1, nrow(fev_data))))
```
fit_single_optimizer

Fitting an MMRM with Single Optimizer

Description

[Experimental]

This function helps to fit an MMRM using TMB with a single optimizer, while capturing messages and warnings.

Usage

```r
fit_single_optimizer(
    formula,
    data,
    weights,
    reml = TRUE,
    start = NULL,
    optimizer = c("L-BFGS-B", "BFGS", "CG", "nlminb"),
    accept_singular = TRUE
)
```

Arguments

- `formula` (formula): the model formula, see details.
- `data` (data): the data to be used for the model.
- `weights` (vector): an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector.
- `reml` (flag): whether restricted maximum likelihood (REML) estimation is used, otherwise maximum likelihood (ML) is used.
- `start` (numeric or NULL): optional start values for variance parameters.
- `optimizer` (string): optimizer to be used to generate the model.
- `accept_singular` (flag): whether singular design matrices are reduced to full rank automatically and additional coefficient estimates will be missing.

Value

The `mmrm_fit` object, with additional attributes containing warnings, messages, optimizer used and convergence status in addition to the `mmrm_tmb` contents.
Examples

```r
mod_fit <- fit_single_optimizer(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  weights = rep(1, nrow(fev_data)),
  optimizer = "nlminb"
)
attr(mod_fit, "converged")
```

free_cores

Get an approximate number of free cores.

Description

[Experimental]

Usage

```r
free_cores()
```

Details

- This uses the maximum load average at 1, 5 and 15 minutes on Linux and Mac machines to approximate the number of busy cores. For Windows, the load percentage is multiplied with the total number of cores.
- We then subtract this from the number of all detected cores. One additional core is not used for extra safety.

Value

The approximate number of free cores, which is an integer between 1 and one less than the total cores.

Note

If executed during a unit test and on CRAN then always returns 1 to avoid any parallelization.
mmrm

Fit an MMRM

Description

[Experimental]

This is the main function fitting the MMRM.

Usage

```r
mmrm(
  formula,
  data,
  weights = NULL,
  reml = TRUE,
  optimizer = "automatic",
  n_cores = 1L,
  accept_singular = TRUE
)
```

Arguments

- **formula** (formula) the model formula, see details.
- **data** (data) the data to be used for the model.
- **weights** (vector) an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector.
- **reml** (flag) whether restricted maximum likelihood (REML) estimation is used, otherwise maximum likelihood (ML) is used.
- **optimizer** (string) optimizer to be used to generate the model.
- **n_cores** (count) number of cores which could in principle be used for parallel computations on Linux or Mac machines.
- **accept_singular** (flag) whether singular design matrices are reduced to full rank automatically and additional coefficient estimates will be missing.
Details

The formula typically looks like: \(FEV1 \sim \text{RACE} + \text{SEX} + \text{ARMCD} \times \text{AVISIT} + \text{us}(\text{AVISIT} | \text{USUBJID}) \)
so specifies response and covariates as usual, and exactly one special term defines which covariance structure is used and what are the visit and subject variables.

The covariance structures in the formula can be found in \texttt{covariance_types}.

When setting \texttt{optimizer = "automatic"}, first the default optimizer (L-BFGS-B) is used to fit the model. If that converges, this is returned. If not, the other available optimizers from \texttt{refit_multiple_optimizers()} are tried (in parallel if \texttt{n_cores} is set and not on Windows, use e.g. \texttt{free_cores()}). If none of the optimizers converge, then the function fails. Otherwise the best fit is returned.

Value

An \texttt{mmrm} object.

Note

The \texttt{mmrm} object is also an \texttt{mmrm_fit} and an \texttt{mmrm_tmb} object, therefore corresponding methods also work (see \texttt{mmrm_tmb_methods}). In addition it contains the Jacobian information \texttt{jac_list} and the call. Use of the package \texttt{emmeans} is supported, see \texttt{emmeans_support}.

Examples

```r
fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
```

mmrm_control

\textit{Control Parameters for Fitting an MMRM}

Description

[Experimental]

Usage

```r
mmrm_control(
  optimizer = \texttt{stats::nlminb},
  optimizer_args = \texttt{list()},
  optimizer_control = \texttt{list()},
  start = \texttt{NULL},
  accept_singular = \texttt{TRUE}
)
```
Arguments

optimizer (function)
optimization function.

optimizer_args (list)
additional arguments to be passed to optimizer.

optimizer_control (list)
specific control argument for optimizer.

start (numeric or NULL)
optional start values for variance parameters.

accept_singular (flag)
whether singular design matrices are reduced to full rank automatically and additional coefficient estimates will be missing.

Value

List of class mmrm_control with the control parameters.

Examples

```r
mmrm_control(
  optimizer = stats::optim,
  optimizer_args = list(method = "L-BFGS-B")
)
```

Description

[Experimental]

Usage

```r
## S3 method for class 'mmrm_tmb'
coef(object, complete = TRUE, ...)

## S3 method for class 'mmrm_tmb'
fitted(object, ...)

## S3 method for class 'mmrm_tmb'
model.frame(formula, full = FALSE, ...)

## S3 method for class 'mmrm_tmb'
logLik(object, ...)
```
S3 method for class 'mmrm_tmb'
formula(x, ...)

S3 method for class 'mmrm_tmb'
vcov(object, complete = TRUE, ...)

S3 method for class 'mmrm_tmb'
VarCorr(x, sigma = NA, ...)

S3 method for class 'mmrm_tmb'
deviance(object, ...)

S3 method for class 'mmrm_tmb'
AIC(object, corrected = FALSE, ..., k = 2)

S3 method for class 'mmrm_tmb'
BIC(object, ...)

S3 method for class 'mmrm_tmb'
print(x, ...)

Arguments

- **object** (mmrm_tmb): the fitted MMRM object.
- **complete** (flag): whether to include potential non-estimable coefficients.
- **formula** (mmrm_tmb): same as object.
- **full** (flag): whether to include subject, visit and weight variables.
- **x** (mmrm_tmb): same as object.
- **sigma** cannot be used (this parameter does not exist in MMRM).
- **corrected** (flag): whether corrected AIC should be calculated.
- **k** (number): the penalty per parameter to be used; default k = 2 is the classical AIC.

Value

Depends on the method, see Functions.
Functions

- `coef(mmrm_tmb)`: obtains the estimated coefficients.
- `fitted(mmrm_tmb)`: obtains the fitted values.
- `model.frame(mmrm_tmb)`: obtains the model frame.
- `logLik(mmrm_tmb)`: obtains the attained log likelihood value.
- `formula(mmrm_tmb)`: obtains the used formula.
- `vcov(mmrm_tmb)`: obtains the variance-covariance matrix estimate for the coefficients.
- `VarCorr(mmrm_tmb)`: obtains the variance-covariance matrix estimate for the residuals.
- `deviance(mmrm_tmb)`: obtains the deviance, which is defined here as twice the negative log likelihood, which can either be integrated over the coefficients for REML fits or the usual one for ML fits.
- `AIC(mmrm_tmb)`: obtains the Akaike Information Criterion, where the degrees of freedom are the number of variance parameters (n_theta). If corrected, then this is multiplied with m / (m - n_theta - 1) where m is the number of observations minus the number of coefficients, or n_theta + 2 if it is smaller than that (Hurvich and Tsai 1989; Burnham and Anderson 1998).
- `BIC(mmrm_tmb)`: obtains the Bayesian Information Criterion, which is using the natural logarithm of the number of subjects for the penalty parameter k.
- `print(mmrm_tmb)`: prints the object.

References

Examples

```r
formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)
object <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)))

# Estimated coefficients:
coef(object)
# Fitted values:
fitted(object)
# Model frame:
model.frame(object)
model.frame(object, full = TRUE)
# Log likelihood given the estimated parameters:
logLik(object)
# Formula which was used:
formula(object)
# Variance-covariance matrix estimate for coefficients:
vcov(object)
# Variance-covariance matrix estimate for residuals:
VarCorr(object)
# REML criterion (twice the negative log likelihood):
```
Refitting MMRM with Multiple Optimizers

Description

[Experimental]

Usage

refit_multiple_optimizers(
 fit,
 n_cores = 1L,
 optimizers = c("L-BFGS-B", "BFGS", "CG", "nlminb"),
 accept_singular = TRUE
)

Arguments

fit (mmrm_fit)
 original model fit from fit_single_optimizer().
n_cores (count)
 number of cores which could in principle be used for parallel computations on Linux or Mac machines.
optimizers (character)
 all possible optimizers to be used for fitting.
accept_singular (flag)
 whether singular design matrices are reduced to full rank automatically and additional coefficient estimates will be missing.

Value

The best (in terms of log likelihood) fit which converged.

Note

For Windows, no parallel computations are currently implemented.
Examples

```r
fit <- fit_single_optimizer(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data,
  weights = rep(1, nrow(fev_data)),
  optimizer = "nlminb"
)
best_fit <- refit_multiple_optimizers(fit)
```
Index

* datasets
 covariance_types, 5
 fev_data, 9
 _PACKAGE (mmrm-package), 3
 AIC.mmrm_tmb (mmrm_tmb_methods), 15
 BIC.mmrm_tmb (mmrm_tmb_methods), 15
 coef.mmrm_tmb (mmrm_tmb_methods), 15
 component, 4
 cov_type (covariance_types), 5
 cov_type.spatial (covariance_types), 5
 covariance_types, 5, 14
 deviance.mmrm_tmb (mmrm_tmb_methods), 15
 df_1d, 7
 df_md, 7
 emmeans_support, 8, 14
 fev_data, 9
 fit.mmrm, 10
 fit_single_optimizer, 11
 fit_single_optimizer(), 18
 fitted.mmrm_tmb (mmrm_tmb_methods), 15
 formula.mmrm_tmb (mmrm_tmb_methods), 15
 free_cores, 12
 free_cores(), 14
 h_jac_list(), 5
 h_mmrm_tmb_fit(), 10
 logLik.mmrm_tmb (mmrm_tmb_methods), 15
 mmrm, 13
 mmrm(), 10
 mmrm-package, 3
 mmrm_control, 14
 mmrm_control(), 10
 mmrm_tmb_methods, 14, 15

model.frame.mmrm_tmb
 (mmrm_tmb_methods), 15
print.mmrm_tmb (mmrm_tmb_methods), 15
refit_multiple_optimizers, 18
refit_multiple_optimizers(), 14
VarCorr (mmrm_tmb_methods), 15
vcov.mmrm_tmb (mmrm_tmb_methods), 15