Package ‘mnormt’

September 1, 2020

Version 2.0.2
Date 2020-08-31
Title The Multivariate Normal and t Distributions, and Their Truncated Versions
Author Adelchi Azzalini [aut, cre],
 Alan Genz [aut] (most Fortran code),
 Alan Miller [ctb] (Fortran routine PHI),
 Michael J. Wichura [ctb] (Fortran routine PHINV),
 G. W. Hill [ctb] (Fortran routine STDINV),
 Yihong Ge [ctb] (Fortran routines BNVU and MVBVU).
Maintainer Adelchi Azzalini <adelchi.azzalini@unipd.it>
Depends R (>= 2.2.0)
Imports tmvnsim (>= 1.0-2)
Description Functions are provided for computing the density and the
distribution function of d-dimensional normal and ``t'' random variables,
possibly truncated (on one side or two sides), and for generating random
vectors sampled from these distributions, except sampling from the truncated``t''. Moments of arbitrary order of a multivariate truncated normal are
computed, and converted to cumulants up to order 4.
Probabilities are computed via non-Monte Carlo methods; different routines
are used in the case d=1, d=2, d=3, d>3, if d denotes the dimensionality.
License GPL-2 | GPL-3
URL http://azzalini.stat.unipd.it/SW/Pkg-mnormt/
NeedsCompilation yes
Encoding UTF-8
Repository CRAN
Date/Publication 2020-09-01 12:50:07 UTC

R topics documented:
mnormt-package ... 2
The 'mnormt' package: summary information

Description

Functions are provided for computing the density and the distribution function of d-dimensional normal and t random variables, possibly truncated (on one side or two sides, with componentwise choice), and for generating random vectors sampled from these distributions, except sampling from the truncated t. Moments of arbitrary order of a truncated normal are computed, and converted to cumulants up to order 4.

Details

Probabilities are computed via non-Monte Carlo methods; different routines are used in the case d=1, d=2, d=3, d>2, if d denotes the dimensionality.

Licence

This package and its documentation are usable under the terms of the “GNU General Public License” version 3 or version 2, as you prefer; a copy of them is available from https://www.R-project.org/Licenses/.

Author(s)

Adelchi Azzalini (R code and package creation) and Alan Genz (Fortran code, see the references below; this code incorporates routines of other authors).

References

The multivariate normal distribution

Description

The probability density function, the distribution function and random number generation for the multivariate normal (Gaussian) distribution.

Usage

```
dmnorm(x, mean = rep(0, d), varcov, log = FALSE)
pmnorm(x, mean = rep(0, d), varcov, ...)  
rmnorm(n = 1, mean = rep(0, d), varcov, sqrt=NULL)
sadmvn(lower, upper, mean, varcov, maxpts = 2000*d, abseps = 1e-06, releps = 0)
```

Arguments

- **x**: either a vector of length d or a matrix with d columns, where d=ncol(varcov), representing the coordinates of the point(s) where the density must be evaluated.
- **mean**: either a vector of length d, representing the mean value, or (except for rmnorm) a matrix whose rows represent different mean vectors; in the matrix case, only allowed for dmnorm and pmnorm, its dimensions must match those of x.
- **varcov**: a symmetric positive-definite matrix representing the variance-covariance matrix of the distribution; a vector of length 1 is also allowed (in this case, d=1 is set).
- **sqrt**: if not NULL (default value is NULL), a square root of the intended varcov matrix; see 'Details' for a full description.
- **log**: a logical value (default value is FALSE); if TRUE, the logarithm of the density is computed.
- **...**: arguments passed to sadmvn, among maxpts, abseps, releps.
- **n**: the number of (pseudo) random vectors to be generated.
- **lower**: a numeric vector of lower integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed.
- **upper**: a numeric vector of upper integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed.
- **maxpts**: the maximum number of function evaluations (default value: 2000*d).
- **abseps**: absolute error tolerance (default value: 1e-6).
- **releps**: relative error tolerance (default value: 0).
Details

The dimension \(d \) cannot exceed 20 for \(\text{pmnorm} \).

The function \(\text{pmnorm} \) works by making a suitable call to \(\text{sadmvn} \) if \(d > 3 \), or to \(\text{ptriv.nt} \) if \(d = 3 \), or to \(\text{biv.nt.prob} \) if \(d = 2 \), or to \(\text{pnorm} \) if \(d = 1 \). If \(d > 2 \), function \(\text{sadmvn} \) is an interface to a Fortran-77 routine with the same name written by Alan Genz, available from his web page, which works using an adaptive integration method. This Fortran-77 routine makes uses of some auxiliary functions whose authors are documented in the code. If \(d = 2 \), a call to \(\text{sadmvn} \) is translated into one to \(\text{biv.nt.prob} \); if \(d = 1 \), \(\text{pnorm} \) is used.

If \(\text{sqrt=NULL} \) (default value), the working of \(\text{rmnorm} \) involves computation of a square root of \(\text{varcov} \) via the Cholesky decomposition. If a non-NULL value of \(\text{sqrt} \) is supplied, it is assumed that it represents a matrix, \(R \) say, such that \(R' R \) represents the required variance-covariance matrix of the distribution; in this case, the argument \(\text{varcov} \) is ignored. This mechanism is intended primarily for use in a sequence of calls to \(\text{rmnorm} \), all sampling from a distribution with fixed variance matrix; a suitable matrix \(\text{sqrt} \) can then be computed only once beforehand, avoiding that the same operation is repeated multiple times along the sequence of calls; see the examples below. Another use of \(\text{sqrt} \) is to supply a different form of square root of the variance-covariance matrix, in place of the Cholesky factor.

For efficiency reasons, \(\text{rmnorm} \) does not perform checks on the supplied arguments.

If, after setting the same seed value to \(\text{set.seed} \), two calls to \(\text{rmnorm} \) are made with the same arguments except that one generates \(n_1 \) vectors and the other \(n_2 \) vectors, with \(n_1 < n_2 \), then the \(n_1 \) vectors of the first call coincide with the initial \(n_2 \) vectors of the second call.

Value

\(\text{dmnorm} \) returns a vector of density values (possibly log-transformed); \(\text{pmnorm} \) returns a vector of probabilities, possibly with attributes on the accuracy in case \(x \) is a vector; \(\text{sadmvn} \) return a single probability with attributes giving details on the achieved accuracy; \(\text{rmnorm} \) returns a matrix of \(n \) rows of random vectors or a vector in case \(n=1 \).

Note

The attributes \(\text{error} \) and \(\text{status} \) of the probability returned by \(\text{pmnorm} \) and \(\text{sadmvn} \) indicate whether the function had a normal termination, achieving the required accuracy. If this is not the case, re-run the function with a higher value of \(\text{maxpts} \).

Author(s)

Fortran code of \(\text{SADMVN} \) and most auxiliary functions by Alan Genz, some additional auxiliary functions by people referred to within his program. Interface to \(\text{R} \) and additional \(\text{R} \) code (for \(\text{dmnormt}, \text{rmnormt} \), etc.) by Adelchi Azzalini.

References

mom.mtruncnorm

Moments and other quantities of a (possibly) truncated multivariate normal distribution

Description

Moments up to the specified orders of a possibly truncated d-dimensional normal distribution; the distribution must be non-degenerate. Each component variable can be truncated on one side (to the left or to the right) or on two sides or not truncated. After the initial stage, cumulants up to the fourth order and other quantities are computed, provided all moments of the required order had been computed in the first stage.
Usage

mom.mtruncnorm(powers=4, mean, varcov, lower, upper, cum = TRUE, ...)

Arguments

powers a vector of non-negative integer values representing the required order of moments for each component variable, or a single such value, in which case this value is repeated for all d components.

mean a vector representing the mean value of the pre-truncation normal random variable.

varcov a symmetric positive-definite matrix representing the variance matrix of the pre-truncation normal random variable.

lower a vector representing the lower truncation values of the component variables; -Inf values are allowed. If missing, it is set equal to rep(-Inf, d).

upper a vector representing the upper truncation values of the component variables; Inf values are allowed. If missing, it is set equal to rep(Inf, d).

cum a logical value; if codeTRUE (default value), cumulants are other quantities are computed up to the minimum between the fourth order and the maximum possible order, given the available moments.

... additional arguments passed to sadmvn; see ‘Details’ for a description.

Details

This function makes use of two workhorses, recintab and mom2cum, providing a user-friendly interface to these more basic tools. The first function computes an array of raw moments of the truncated normal; the second function translates them into cumulants and other quantities such as the Mardia’s measures of skewness and kurtosis, unless cum=FALSE. See the documentation of these two underlying functions for additional information about the arguments and the returned quantities. The argument ... is passed, via recintab, to sadmvn for regulation of its working.

Not all d component variables need to be truncated. In fact, the function works also with no truncated components (just omit lower and upper), although for this case there exist known formulae to do the job.

Value

A list with the following components:

mom an array with raw moments as produced by recintab, followed by normalization; see its documentation for a description.

cum1 the vector of first-order cumulants, AKA the expected value or the mean value, which will be there provided cum=TRUE and all elements of powers are not less than 1.

order2, ... additional lists with higher order terms up to order 4; these lists only exist when the available moments are of sufficiently high order. See mom2cum for a more detailed description.
mom2cum

Author(s)

Adelchi Azzalini

See Also

recintab, mom2cum, sadmvn

Examples

mu <- c(1, -0.5, 0)
Sigma <- toeplitz(1/(1:3))
lower <- c(-Inf, -3, -4)
upper <- c(1.5, Inf, 2)
m <- mom.mtruncnorm(1, mu, Sigma, lower, upper)
print(m$cum1)
#
mm <- mom.mtruncnorm(3, mu, Sigma, lower, upper)
print(m$order3$gamma1.marginal)
print(m$order3$gamma1.Mardia)
#
Example 2 of Leppard & Tallis (1989, Appl.Stat. vol.38, p.547)
truncp <- c(0, 1, 2)
U <- c(0, 0, 0)
V <- 0.5*(diag(3) + matrix(1, 3, 3))
m <- mom.mtruncnorm(2, U, V, truncp)
print(m$cum1, digits=9)
print(m$order2$cum2, digits=9)

mom2cum conversion of an array of moments to cumulants

Description

Given an array of moments of a multivariate distribution, the corresponding cumulants up to the 4th order and other connected quantities are computed, notably the Mardia’s measures of multivariate skewness and kurtosis.

Usage

mom2cum(mom)

Arguments

mom an array whose entries are assumed to represent moments of a multivariate distribution; see 'Details' for an extended description.
Details

The structure of the input array *mom* is of type M/M[1] where M represents the output from function *recintab*. For a d-dimensional random variable, *mom* is a k-fold d-dimensional array, where k is the highest order of moments being considered; see the documentation of *recintab* for a more detailed description. However, it is not necessary that *mom* originates from *recintab*; the moments can refer to any distribution, as long as *mom* has the appropriate structure and content.

Also, it is not necessary that all entries of *mom* are there; values not required for the processing can be left as NA. For computing cumulants of order k, say, we only need cross moments whose exponents add up to k or less.

Conversion from moments to cumulants is performed by using formulae (2.7) of McCullagh (1987). See also ρ^2_{23} in his (2.15) and ρ_4 in (2.16) for computing the Mardia’s (1970, 1974) measures of multivariate skewness and kurtosis.

In some cases, the function may report inconsistencies detected in the argument *mom*. A typical origin of this situation is in numerical inaccuracies of the returned value of *recintab*, as explained in more detail in its documentation. When detected, cases of these sort are flagged in the returned $message$ string, and a warning message is issued. The absence of such string does not represent a guarantee of perfect input.

Value

In the multivariate case, a list with the following elements, provided moments of the required order are available, up to the maximal order 4.

- **cum1**: the d-vector of first-order cumulants, AKA the expected value or the mean value; this will be there if *mom* contains all moments of order 1.
- **order2**: a list with the following components: m2, the (d,d) matrix of second order moments; cum2, the (d,d) matrix of second order cumulants, AKA the variance-covariance matrix, the variance matrix, the covariance matrix, the dispersion matrix; conc.matrix, the concentration matrix, that is, the inverse of cum2; log.det.cum2, the logarithm of the determinant of cum2.
- **order3**: a list with the following components: m3, array of third order moments, having dimension (d,d,d); cum3, array of third order cumulants, having dimension (d,d,d); m3.marginal, vector of third order marginal moments; centr.mom3.marginal, vector of third order marginal central moments; gamma1.marginal, vector of third order marginal standardized cumulants; gamma1.Mardia, the Mardia measure of multivariate skewness; beta1.Mardia, the Mardia measure of multivariate skewness, again.
- **order4**: a list with the following components: m4, array of fourth order moments, with dimension (d,d,d,d); cum4, array of fourth order cumulants, with dimension (d,d,d,d); m4.marginal, vector of fourth order marginal moments; centr.mom4.marginal, vector of fourth order marginal central moments; gamma2.marginal, vector of fourth order marginal standardized cumulants; gamma2.Mardia, the Mardia measure of multivariate kurtosis, $\gamma_{2,d}$; beta2.Mardia, the Mardia measure of multivariate kurtosis, $\beta_{2,d}$.
message possibly, a character string indicating that some inconsistency has been detected in the argument mom; see `Details`.

In the univariate case a list with elements:

- **cum** a vector of cumulants,
- **centr.mom** a vector of central moments,
- **std.cum** a vector with the third and the fourth standardized cumulants (when enough moments are available), representing common measures of skewness and kurtosis.
- **message** possibly, a character string indicating that some inconsistency has been detected in the argument mom; see ‘Details’.

Note

In the case of a multivariate truncated normal distribution, a user does not need to call this function; `mom.mtruncnorm` provides a more convenient interface for the same computations. The present function needs to be called only if the array mom represents the moments of some other distribution.

Author(s)

Adelchi Azzalini

References

See Also

`recintab`

Examples

```r
mu <- c(1, -0.5)
Sigma <- toeplitz(1/(1:2))
low <- c(-Inf, -3)
hi <- c(1.5, Inf)
mom <- recintab(c(3,3), low, hi, mu, Sigma)
cum <- mom2cum(mom)
print(cum$order3$gamma1.marginal)
print(cum$order3$gamma1.Mardia)
```
The multivariate Student’s t distribution

Description
The probability density function, the distribution function and random number generation for the multivariate Student’s t distribution

Usage

\[\text{dmt}(x, \text{mean} = \text{rep}(0, d), S, \text{df}=\text{Inf}, \log = \text{FALSE}) \]
\[\text{pmt}(x, \text{mean} = \text{rep}(0, d), S, \text{df}=\text{Inf}, \ldots) \]
\[\text{rmt}(n = 1, \text{mean} = \text{rep}(0, d), S, \text{df}=\text{Inf}, \text{sqrt=NULL}) \]
\[\text{sadmvt}(\text{df}, \text{lower}, \text{upper}, \text{mean}, S, \text{maxpts} = 2000\times d, \text{abseps} = 1e-06, \text{releps} = 0) \]
\[\text{biv.nt.prob}(\text{df}, \text{lower}, \text{upper}, \text{mean}, S) \]
\[\text{ptriv.nt}(\text{df}, x, \text{mean}, S) \]

Arguments

- \(x\) either a vector of length \(d\) or (for \text{dmt} and \text{pmt}) a matrix with \(d\) columns, where \(d=\text{ncol}(S)\), giving the coordinates of the point(s) where the density must be evaluated.
- \(\text{mean}\) either a vector of length \(d\), representing the location parameter (equal to the mean vector when \(\text{df}>1\)), or (for \text{dmt} and \text{pmt}) a matrix whose rows represent different mean vectors; in the matrix case, its dimensions must match those of \(x\).
- \(S\) a symmetric positive-definite matrix representing the scale matrix of the distribution, such that \(S\times \text{df}/(\text{df}-2)\) is the variance-covariance matrix when \(\text{df}>2\); a vector of length 1 is also allowed (in this case, \(d=1\) is set).
- \(\text{df}\) the degrees of freedom. For \text{rmt}, it must be a positive real value or \(\text{Inf}\). For all other functions, it must be a positive integer or \(\text{Inf}\). A value \(\text{df}=\text{Inf}\) is translated to a call to a suitable function for the the multivariate normal distribution. See ‘Details’ for its effect for the evaluation of distribution functions and other probabilities.
- \(\log\) a logical value (default value is \text{FALSE}); if \text{TRUE}, the logarithm of the density is computed.
- \(\text{sqrt}\) if not \text{NULL} (default value is \text{NULL}), a square root of the intended scale matrix \(S\); see ‘Details’ for a full description.
- \(\ldots\) arguments passed to \text{sadmvt}, among \text{maxpts}, \text{absreps}, \text{releps}.
- \(n\) the number of random vectors to be generated.
- \(\text{lower}\) a numeric vector of lower integration limits of the density function; must be of maximal length \(20\); \(+\text{Inf}\) and \(-\text{Inf}\) entries are allowed.
- \(\text{upper}\) a numeric vector of upper integration limits of the density function; must be of maximal length \(20\); \(+\text{Inf}\) and \(-\text{Inf}\) entries are allowed.
\texttt{mt}

\begin{itemize}
\item \texttt{maxpts} the maximum number of function evaluations (default value: 2000*d)
\item \texttt{abseps} absolute error tolerance (default value: 1e-6).
\item \texttt{releps} relative error tolerance (default value: 0).
\end{itemize}

Details

The dimension \(d\) cannot exceed 20 for \texttt{pmt}.

The functions \texttt{sadmvt}, \texttt{ptriv.mt} and \texttt{biv.nt.prob} are interfaces to Fortran-77 routines by Alan Genz, available from his web page; they make use of some auxiliary functions whose authors are indicated in the Fortran code itself. The routine \texttt{sadmvt} uses an adaptive integration method. If \(df=3\), a call to \texttt{pmt} activates a call to \texttt{ptriv.nt} which is specific for the trivariate case, and uses Genz’s Fortran code \texttt{tvpack.f}; see Genz (2004) for the background methodology. A similar fact takes place when \(df=2\) with function \texttt{biv.nt.prob}; note however that the underlying Fortran code is taken from \texttt{mvtdstpack.f}, not from \texttt{tvpack.f}. If \texttt{pmt} is called with \(d>3\), this is converted into a suitable call to \texttt{sadmvt}.

If \texttt{sqrt=NULL} (default value), the working of \texttt{rmt} involves computation of a square root of \(S\) via the Cholesky decomposition. If a non-\texttt{NULL} value of \texttt{sqrt} is supplied, it is assumed that it represents a square root of the scale matrix, otherwise represented by \(S\), whose value is ignored in this case. This mechanism is intended primarily for use in a sequence of calls to \texttt{rmt}, all sampling from a distribution with fixed scale matrix; a suitable matrix \texttt{sqrt} can then be computed only once beforehand, avoiding that the same operation is repeated multiple times along the sequence of calls. For examples of use of this argument, see those in the documentation of \texttt{rmnorm}. Another use of \texttt{sqrt} is to supply a different form of square root of the scale matrix, in place of the Cholesky factor.

For efficiency reasons, \texttt{rmt} does not perform checks on the supplied arguments.

Value

\texttt{dmt} returns a vector of density values (possibly log-transformed); \texttt{pmt} and \texttt{sadmvt} return a single probability with attributes giving details on the achieved accuracy, provided \(x\) of \texttt{pmnorm} is a vector; \texttt{rmt} returns a matrix of \(n\) rows of random vectors.

Note

The attributes \texttt{error} and \texttt{status} of the probability returned by \texttt{sadmvt} and by \texttt{pmt} (the latter only if \(x\) is a vector and \(d>2\)) indicate whether the function had a normal termination, achieving the required accuracy. If this is not the case, re-run the function with a higher value of \texttt{maxpts}.

Author(s)

Fortran code of \texttt{SADMVT} and most auxiliary functions by Alan Genz; some additional auxiliary functions by people referred to within his program; interface to \texttt{R} and additional \texttt{R} code (for \texttt{dmt}, \texttt{rmt} etc.) by Adelchi Azzalini.

References

Genz, A.: Fortran-77 code in files \texttt{mvt.f}, \texttt{mvtdstpack.f} and \texttt{codetvpack}, downloaded in 2005 and again in 2007 from his webpage, whose URL as of 2020-06-01 is \url{http://www.math.wsu.edu/faculty/genz/software/software.html}

See Also
dt, rmnorm for use of argument sqrt

Examples

```r
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
m1 <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
df <- 4
f <- dmt(cbind(x,y,z), m1, Sigma, df)
p1 <- pmt(c(2,11,3), m1, Sigma, df, maxpts=10000, abseps=1e-8)
x <- rmtruncnorm(10, m1, Sigma, df)
p <- sadmvt(df, lower=c(2,11,3), upper=rep(Inf,3), m1, Sigma) # upper tail
# p0 <- pmt(c(2,11), m1[1:2], Sigma[1:2,1:2], df=5)
p1 <- biv.nt.prob(5, lower=rep(-Inf,2), upper=c(2, 11), m1[1:2], Sigma[1:2,1:2])
p2 <- sadmvt(5, lower=rep(-Inf,2), upper=c(2, 11), m1[1:2], Sigma[1:2,1:2])
c(p0, p1, p2, p0-p1, p0-p2)
```

mtruncnorm

The multivariate truncated normal distribution

Description

The probability density function, the distribution function and random number generation for the multivariate truncated normal (Gaussian) distribution

Usage

```r
dmtruncnorm(x, mean, varcov, lower, upper, log = FALSE, ...)
pmtruncnorm(x, mean, varcov, lower, upper, ...)
rmtruncnorm(n, mean, varcov, lower, upper)
```

Arguments

- `x` either a vector of length `d` or a matrix with `d` columns, where `d=ncol(varcov)`, representing the coordinates of the point(s) where the density must be evaluated.
- `mean` a vector representing the mean value of the pre-truncation normal distribution.
mtruncnorm

varcov

a symmetric positive-definite matrix representing the variance matrix of the pre-truncation normal distribution.

lower

a vector representing the lower truncation values of the component variables; -Inf values are allowed. If missing, it is set equal to rep(-Inf, d).

upper

a vector representing the upper truncation values of the component variables; Inf values are allowed. If missing, it is set equal to rep(Inf, d).

log

a logical value (default value is FALSE); if TRUE, the logarithm of the density is computed.

... arguments passed to sadmvn, among maxpts, abseps, releps.

n

the number of (pseudo) random vectors to be generated.

Details

For dmtruncnorm and pmtruncnorm, the dimension d cannot exceed 20.

Function rmtruncnorm is just a wrapper of the imported function tmvnsim, set up so that the names and the pattern of the rmtruncnorm arguments are in agreement with the other functions in the package.

Value

a numeric vector in case of dmtruncnorm and pmtruncnorm; a matrix in case of rmtruncnorm, unless n=1 in which case it is a vector.

Author(s)

Adelchi Azzalini

See Also

sadmvn for regulating accuracy, tmvnsim for details on the underlying function generating random numbers

Examples

m2 <- c(0.5, -1)
V2 <- matrix(c(3, 3, 3, 6), 2, 2)
lower <- a <- c(-1, -2.5)
upper <- b <- c(2, 1)
set.seed(1)
generate a set of coordinates, pts, on the plane
pts <- matrix(runif(10, min=-1.5, max=1.5), nrow=5, ncol=2)
ownames(pts) <- LETTERS[1:nrow(pts)]
compute PDF and CDF at the chosen coordinates, pts
pdf <- dmtruncnorm(pts, mean=m2, varcov=V2, lower, upper)
cdf <- pmtruncnorm(pts, mean=m2, varcov=V2, lower, upper)
print(cbind(pts, pdf, cdf))
#--
generate a sample of random numbers
sample <- rmtruncnorm(300, mean=m2, varcov=V2, lower, upper)
The multivariate truncated Student's t distribution

Description

The probability density function and the distribution function of the multivariate truncated Student’s t distribution

Usage

```r
dmtrunct(x, mean, S, df, lower, upper, log = FALSE, ...)  
pmtrunct(x, mean, S, df, lower, upper, ...)  
```

Arguments

- `x`: either a vector of length d or a matrix with d columns, giving the coordinates of the point(s) where the density must be evaluated.
- `mean`: either a vector of length d, representing the location parameter (equal to the mean vector when $df>1$) of the pre-truncation distribution or a matrix whose rows represent different mean vectors; in the matrix case, its dimensions must match those of `x`.
- `S`: a symmetric positive-definite matrix representing the scale matrix, such that $S*df/(df-2)$ is the variance-covariance matrix of the pre-truncation distribution when $df>2$.
- `df`: degrees of freedom; it must be a positive integer
- `lower`: a vector representing the lower truncation values of the component variables; `-Inf` values are allowed. If missing, it is set equal to `rep(-Inf, d)`.
- `upper`: a vector representing the upper truncation values of the component variables; `Inf` values are allowed. If missing, it is set equal to `rep(Inf, d)`.
- `log`: a logical value (default value is `FALSE`); if `TRUE`, the logarithm of the density is computed.
- `...`: arguments passed to `sadmvt`, among `maxpts`, `absrel`, `releps`.

pd.solve

Details

The dimension d cannot exceed 20.

Value

a numeric vector

Author(s)

Adelchi Azzalini

See Also

sadmv for regulating accuracy

Examples

```r
m2 <- c(0.5, -1)
V2 <- matrix(c(1.5, -1.75, -1.75, 3), 2, 2)
lower <- a <- c(-1, -2.5)
upper <- b <- c(2, 1)
set.seed(1)
points <- matrix(runif(10, -3, 3), nrow=5, ncol=2)
pdf <- dmtrunct(points, mean=m2, S=V2, df=4, lower, upper)
cdf <- pmtrunct(points, mean=m2, S=V2, df=4, lower, upper)
```

pd.solve

Inverse of a symmetric positive-definite matrix

Description

The inverse of a symmetric positive-definite matrix and its log-determinant

Usage

```
pd.solve(x, silent = FALSE, log.det=FALSE)
```

Arguments

- **x**: a symmetric positive-definite matrix.
- **silent**: a logical value which indicates the action to take in case of an error. If silent==TRUE and an error occurs, the function silently returns a NULL value; if silent==FALSE (default), an error generates a stop with an error message.
- **log.det**: a logical value to indicate whether the log-determinant of x is required (default is FALSE).
Details

The function checks that \(x \) is a symmetric positive-definite matrix. If an error is detected, an action is taken which depends on the value of the argument \(\text{silent} \).

Value

the inverse matrix of \(x \); if \(\log\.\det=\text{TRUE} \), this inverse has an attribute which contains the logarithm of the determinant of \(x \).

Author(s)

Adelchi Azzalini

Examples

\[
\begin{align*}
x & \leftarrow \text{toeplitz}(\text{rev}(1:4)) \\
x.\text{inv} & \leftarrow \text{pd.solve}(x) \\
\text{print}(x.\text{inv} \%\% x) \\
x.\text{inv} & \leftarrow \text{pd.solve}(x, \log\.\text{det}=\text{TRUE}) \\
\log\text{Det} & \leftarrow \text{attr}(x.\text{inv}, \text{"log\.det"}) \\
\text{print}(\text{abs}(\log\text{Det} - \text{determinant}(x, \logarithm=\text{TRUE})\modulus))
\end{align*}
\]

recintab

Moments of arbitrary order of a (possibly) truncated multivariate normal variable

Description

Produces an array with the moments up to specified orders of a (possibly) truncated multivariate normal distribution. Each component variable can be truncated on one side (to the left or to the right) or on two sides or not truncated.

Usage

\[
\text{recintab}(\text{kappa, a, b, mu, S, ...})
\]

Arguments

\[
\begin{align*}
\text{kappa} & \quad \text{a vector of non-negative integer values representing the required order of moments for each component variable.} \\
a & \quad \text{a vector representing the lower truncation values of the component variables; \(-\text{Inf} \) values are allowed.} \\
b & \quad \text{a vector representing the upper truncation values of the component variables; \(\text{Inf} \) values are allowed.} \\
\text{mu} & \quad \text{a vector representing the mean value of the pre-truncation normal random variable.} \\
\text{S} & \quad \text{a symmetric positive-definite matrix representing the variance matrix of the pre-truncation normal random variable.} \\
\ldots & \quad \text{parameters passed to sadmvn; see the ‘Details’.}
\end{align*}
\]
Details

This function is the R translation of the Matlab function with the same name belonging to the package `ftnorm`, which is associated to the paper of Kan and Robotti (2017). The Matlab package `ftnorm` has been downloaded from http://www-2.rotman.utoronto.ca/~kan/research.htm, on 2020-04-23.

The function returns an array, \(M \) say, whose entries represent integrals of type \(\int_{\alpha}^{\beta} x^n f(x) \, dx \), where \(f(x) \) denotes the \(d \)-dimensional normal density function. Typically, interest is in the transformed array \(M/M[1] \) whose entries represent moments of the truncated distribution.

The algorithm is based on a recursion starting from the integral of the normal distribution over the specified hyper-rectangle. This integral is evaluated by `sadmvn`, whose tuning parameters `maxpts`, `abseps`, `releps` can be regulated via the ... argument.

Value

In the multivariate case, for an input vector \(\kappa = c(k_1, \ldots, k_d) \), the functions returns an array of dimension \(c((k_1+1), \ldots, (k_d+1)) \) whose entries represent integrals described in section 'Details'. In other words, the array element \(M[i+1, j+1, k+1, \ldots] \) contains the unnormalized cross moment of order \((i, j, k, \ldots) \); this must be divided by \(M[1] \) to obtain the regular cross moment.

In the univariate case, a vector is returned with similar meaning.

Warning

Although the underlying algorithm is exact in principle, the actual computation hinges crucially on the initial integration of the multivariate normal density over the truncation hyper-cube. This integration may result in numerical inaccuracies, whose amount depends on the supplied arguments. Moreover, the recursion employed by the algorithm propagates the initial error to other terms.

When problematic cases have been processed by the original Matlab function, the same issues have occurred, up to minor variations.

Instances of such errors may be detected when the array \(M/M[1] \) is passed to `mom2cum`, but there is no guarantee that all such problems are detected.

Note

This function is not intended for direct call by a user, at least in commonly encountered situations. Function `mom.mtruncnorm` represents a more user-friendly tool.

Author(s)

Original Matlab code by Raymond Kan and Cesare Robotti, porting to R by Adelchi Azzalini.

References

See Also

mom.mtruncnorm for a more user-friendly function, mom2cum for transformation to cumulants, sadmvn for regulating accuracy if d>2

Examples

```r
mu <- c(1, -0.5, 0)
Sigma <- toeplitz(1/(1:3))
low <- c(-Inf, -3, -4)
hi <- c(1.5, Inf, 2)
M <- recintab(c(2,3,1), low, hi, mu, Sigma)
M/M[1]
# cross-moments up to order 2 for X1, up to the 3 for X2, up to 1 for X3,
# if the components of the trivariate variable are denoted (X1,X2,X3)
#--
# Example 2 of Leppard & Tallis (1989, Appl.Stat. vol.38, p.547)
truncp <- c(0, 1, 2)
U <- c(0, 0, 0)
V <- 0.5*(diag(3) + matrix(1, 3, 3))
M <- recintab(c(2,2,2), truncp, rep(Inf,3), U, V)
Mom <- M/M[1]
EX <- c(mom[2,1,1], mom[1,2,1], mom[1,1,2])
print(EX, digits=9)
EX2 <- matrix(c(  
  mom[3,1,1], mom[2,2,1], mom[2,1,2],  
  mom[2,2,1], mom[1,3,1], mom[1,2,2],  
  mom[2,1,2], mom[1,2,2], mom[1,1,3])  
  ,3, 3, byrow=TRUE)
varX <- EX2 - outer(EX ,EX)
print(varX, digits=9)
```

The Mardia measures of multivariate skewness and kurtosis for a given sample

Description

Given a multivariate sample, the Mardia measures of skewness and kurtosis are computed, along with their p-values for testing normality

Usage

```r
sample_Mardia_measures(data, correct = FALSE)
```
Arguments

- `data` a data matrix
- `correct` (logical) if `correct=TRUE`, the ‘corrected’ sample variance matrix is used, otherwise the ‘uncorrected’ version is used (default)

Details

For a given a data matrix, the multivariate measures of skewness and kurtosis introduced by Mardia (1970, 1974) are computed, along with some associated quantities. We follow the notation of the 1974 paper.

If n denotes the number of complete cases, the condition $n>3$ is required for numerical computation. Clearly, a much larger n is required for meaningful statistical work.

The sample variance matrix S appearing in (2.2) and (2.4) is computed here (in the default setting) with the n denominator, at variance from the commonly employed $n-1$ denominator. With this definition of S, one can reproduce the numerical outcomes of the example on p.127 of Mardia (1974).

The approximate observed significance levels for testing normality, $p.b1$ and $p.b2$, are computed using expressions (5.5) and (5.6) in Section 5 of Mardia (1974). For $p.b2$, the condition $(n-d-1)>0$ is required, where d denotes the number of variables.

Value

A named vector with the following components:

- `b1` the measure of asymmetry as given in (2.2)
- `b2` the measure of kurtosis as given in (2.4)
- `g1` the measure of asymmetry as given in (2.10)
- `g2` the measure of kurtosis as given in (2.11)
- `p.b1` observed significance level of $b1$
- `p.b2` observed significance level of $b2$
- `n` The number of complete cases in the input data matrix

where the quoted formulae are those of Mardia (1974).

Author(s)

Adelchi Azzalini

References

Examples

```r
x <- rmnorm(100, mean=1:3, varcov=toeplitz(1/(1:3)))
sample_Mardia_measures(x)
```
Index

* Mardia measures of multivariate skewness and kurtosis
 sample_Mardia_measures, 18
* Mardia's measures of multivariate skewness and kurtosis
 mom2cum, 7
* algebra
 pd.solve, 15
* array
 pd.solve, 15
* cumulants
 mnormt-package, 2
 mom2cum, 7
* distribution
 mnorm, 3
 mnormt-package, 2
 mom.mtruncnorm, 5
 mom2cum, 7
 mt, 10
 mtruncnorm, 12
 mtrunct, 14
 recintab, 16
 sample_Mardia_measures, 18
* moments
 mnormt-package, 2
 mom.mtruncnorm, 5
 mom2cum, 7
 recintab, 16
* multivariate normal distribution
 mnorm, 3
 mnormt-package, 2
* multivariate t distribution
 mnormt-package, 2
 mt, 10
* multivariate truncated normal distribution
 mnormt-package, 2
 mom.mtruncnorm, 5
 mom2cum, 7
 mtruncnorm, 12
* multivariate truncated t distribution
 mnormt-package, 2
 mtrunct, 14
* multivariate
 mnorm, 3
 mnormt-package, 2
 mom.mtruncnorm, 5
 mom2cum, 7
 mt, 10
 mtruncnorm, 12
 mtrunct, 14
 recintab, 16
 sample_Mardia_measures, 18
* package
 mnormt-package, 2
* truncated multivariate normal distribution
 recintab, 16
biv.nt.prob, 5
biv.nt.prob (mt), 10
dmnorm (mnorm), 3
dmt, 5
dmt (mt), 10
dmtruncnorm (mtruncnorm), 12
dmtrunct (mtrunct), 14
dnorm, 5
dt, 12
mnorm, 3
mnormt-package, 2
mom.mtruncnorm, 5, 9, 17, 18
mom2cum, 6, 7, 7, 17, 18
mt, 10
mtruncnorm, 12
mtrunct, 14
pd.solve, 15
pmnorm (mnorm), 3
pmt (mt), 10
pmtruncnorm (mtruncnorm), 12
pmtrunct (mtrunct), 14
ptriv.nt, 5
ptriv.nt (mt), 10
recintab, 7–9, 16
rmnorm, 11, 12
rmnorm (mnorm), 3
rmt (mt), 10
rmtruncnorm (mtruncnorm), 12
sadmvn, 7, 13, 18
sadmvn (mnorm), 3
sadmvt, 15
sadmvt (mt), 10
sample_Mardia_measures, 18
set.seed, 4
tmvnsim, 13