Package ‘mob’

October 13, 2022

Title Monotonic Optimal Binning

Version 0.4.2

Description Generate the monotonic binning and
perform the woe (weight of evidence) transformation for the logistic regression
used in the consumer credit scorecard development. The woe transformation is a piecewise
transformation that is linear to the log odds. For a numeric variable, all of its monotonic
functional transformations will converge to the same woe transformation.

License GPL (>= 2)

URL https://github.com/statcompute/mob

Author WenSui Liu

Maintainer WenSui Liu <liuwensui@gmail.com>

Depends R (>= 3.3.3)

Imports stats, gbm, Rborist

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-31 04:30:07 UTC

R topics documented:

arb_bin ... 2
bad_bin ... 2
batch_bin ... 3
batch_woe .. 4
cal_woe ... 4
gbm_bin ... 5
hmeq ... 6
iso_bin ... 7
knn_bin ... 7
Description

The function `arb_bin` implements the monotonic binning based on the decision tree.

Usage

```
arb_bin(x, y)
```

Arguments

- `x` A numeric vector
- `y` A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```
data(hmeq)
arb_bin(hmeq$DEROG, hmeq$BAD)
```

Description

The function `bad_bin` implements the quantile-based monotonic binning by the iterative discretization based on cases with Y = 1.

Usage

```
bad_bin(x, y)
```
Arguments

x A numeric vector
y A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

data(hmeq)
bad_bin(hmeq$DEROG, hmeq$BAD)

Description

The function `batch_bin` applies multiple binning algorithms in batch to each vector in the dataframe.

Usage

`batch_bin(y, xs, method = 1)`

Arguments

y A numeric vector with 0/1 binary values.
xs A dataframe with numeric vectors to discretize.

Value

A list of binning outcomes with 2 dataframes: bin_sum: A dataframe of binning summary. bin_out: A list of binning output from binning functions, e.g. qtl_bin().

Examples

data(hmeq)
batch_bin(hmeq$BAD, hmeq[, c('DEROG', 'DELINQ')])
batch_woe

Apply WoE transformations to vectors in dataframe

Description

The function `batch_woe` applies WoE transformations to vectors in the dataframe.

Usage

```
batch_woe(xs, bin_out)
```

Arguments

- **xs** A dataframe with numeric vectors to discretize.
- **bin_out** A binning output from the function `batch_bin()`.

Value

A dataframe with identical headers as the input `xs`. However, values of each variable have been transformed to WoE values.

Examples

```r
data(hmeq)
bin_out <- batch_bin(hmeq$BAD, hmeq[, c('DEROG', 'DELINQ')])$bin_out
head(batch_woe(hmeq[, c('DEROG', 'DELINQ')], bin_out))
```

cal_woe

Perform WoE transformation of a numeric variable

Description

The function `cal_woe` applies the WoE transformation to a numeric vector based on the binning outcome from a binning function, e.g. `qtl_bin()` or `iso_bin()`.

Usage

```
cal_woe(x, bin)
```

Arguments

- **x** A numeric vector that will be transformed to WoE values.
- **bin** A list with the binning outcome from the binning function, e.g. `qtl_bin()` or `iso_bin()`.
Value

A numeric vector with WoE transformed values.

Examples

data(hmeq)
bin_out <- qtl_bin(hmeq$DEROG, hmeq$BAD)
cal_woe(hmeq$DEROG[1:10], bin_out)

Description

The function gbm_bin implements the monotonic binning based on the generalized boosted model (GBM).

Usage

gbm_bin(x, y)

Arguments

x A numeric vector

y A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

data(hmeq)
gbm_bin(hmeq$DEROG, hmeq$BAD)
Credit attributes of 5,960 home equity loans

Description

A dataset containing characteristics and delinquency information for 5,960 home equity loans.

Usage

hmeq

Format

A data frame with 5960 rows and 13 variables:

- BAD indicator of applicant defaulted on loan or seriously delinquent
- LOAN Amount of the loan request, in dollar
- MORTDUE Amount due on existing mortgage, in dollar
- VALUE Value of current property, in dollar
- REASON DebtCon = debt consolidation; HomeImp = home improvement
- JOB Occupational categories
- YOJ Years at present job
- DEROG Number of major derogatory reports
- DELINQ Number of delinquent credit lines
- CLAGE Age of oldest credit line in months
- NINQ Number of recent credit inquiries
- CLNO Number of credit lines
- DEBTINC Debt-to-income ratio

Source

http://www.creditriskanalytics.net/datasets-private2.html
iso_bin

Monotonic binning based on isotonic regression

Description

The function `iso_bin` implements the monotonic binning based on the isotonic regression.

Usage

```r
iso_bin(x, y)
```

Arguments

- `x`
 A numeric vector

- `y`
 A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
isoin(hmeq$DEROG, hmeq$BAD)
```

knn_bin

Monotonic binning based on k-means clustering

Description

The function `knn_bin` implements the monotonic binning based on the k-means clustering.

Usage

```r
knn_bin(x, y)
```

Arguments

- `x`
 A numeric vector

- `y`
 A numeric vector with 0/1 binary values

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary
Examples

```r
data(hmeq)
mkn_bin(hmeq$DEROG, hmeq$BAD)
```

pool_bin
Monotonic binning for the pool data

Description

The function `pool_bin` implements the monotonic binning for the pool data based on the generalized boosted model (GBM).

Usage

```r
pool_bin(x, num, den, log = FALSE)
```

Arguments

- `x` A numeric vector
- `num` A numeric vector with integer values for numerators to calculate bad rates
- `den` A numeric vector with integer values for denominators to calculate bad rates
- `log` A logical constant either TRUE or FALSE. The default is FALSE

Value

A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples

```r
data(hmeq)
df <- rbind(Reduce(rbind,
    lapply(split(hmeq, floor(hmeq$CLAGE)),
    function(d) data.frame(AGE = unique(floor(d$CLAGE)),
      NUM = sum(d$BAD),
      DEN = nrow(d))),
    data.frame(AGE = NA,
      NUM = sum(hmeq[is.na(hmeq$CLAGE),]$BAD),
      DEN = nrow(hmeq[is.na(hmeq$CLAGE),]))),
  pool_bin(df$AGE, df$NUM, df$DEN, log = TRUE))
```
qcut
Discretizing a numeric vector

Description

The function `qcut` discretizes a numeric vector into \(N \) pieces based on quantiles.

Usage

\[
\text{qcut}(x, n)
\]

Arguments

- \(x \): A numeric vector.
- \(n \): An integer indicating the number of categories to discretize.

Value

A numeric vector to divide the vector \(x \) into \(n \) categories.

Examples

```r
x <- 1:10
# [1] 1 2 3 4 5 6 7 8 9 10
v <- qcut(1:10, 4)
# [1] 3 5 8
findInterval(x, sort(c(v, -Inf, Inf)), left.open = TRUE)
# [1] 1 1 1 2 2 3 3 3 4 4
```

qtl_bin
Monotonic binning by quantile

Description

The function `qtl_bin` implements the quantile-based monotonic binning by the iterative discretization.

Usage

\[
\text{qtl_bin}(x, y)
\]

Arguments

- \(x \): A numeric vector
- \(y \): A numeric vector with 0/1 binary values
rng_bin

Value
A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples
```r
data(hmeq)
rtl_bin(hmeq$DEROG, hmeq$BAD)
```

Description
The function `rng_bin` implements the quantile-based monotonic binning by the iterative discretization based on the equal-width range of values.

Usage
```
rng_bin(x, y)
```

Arguments
- `x` A numeric vector
- `y` A numeric vector with 0/1 binary values

Value
A list of binning outcomes, including a numeric vector with cut points and a dataframe with binning summary

Examples
```r
data(hmeq)
rng_bin(hmeq$DEROG, hmeq$BAD)
```
Index

* datasets
 hmeq, 6
arb_bin, 2
bad_bin, 2
batch_bin, 3
batch_woe, 4
cal_woe, 4
gbm_bin, 5
hmeq, 6
iso_bin, 7
kmn_bin, 7
pool_bin, 8
qcut, 9
qtl_bin, 9
rng_bin, 10