Package ‘modMax’

October 13, 2022

Type Package

Title Community Structure Detection via Modularity Maximization

Version 1.1

Date 2015-07-24

Author Maria Schelling, Cang Hui

Maintainer Maria Schelling <schelling.rmaintainer@vodafone.de>

Depends gtools, igraph

Description The algorithms implemented here are used to detect the community structure of a network. These algorithms follow different approaches, but are all based on the concept of modularity maximization.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-24 18:21:32

R topics documented:

modMax-package .. 2
extremalOptimization ... 2
geneticAlgorithm .. 4
greedy .. 6
localModularity ... 10
simulatedAnnealing .. 12
spectralOptimization ... 14

Index 17
modMax-package
Calculate network modularity via maximization algorithms

Description
Calculation of modularity and detection of the community structure of a given network depicted by an (nonnegative symmetric) adjacency matrix using different modularity maximization algorithms.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>modMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2015-02-09</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

The modMax package implements 38 algorithms of 6 major categories maximizing modularity, including the greedy approach, simulated annealing, extremal optimization, genetic algorithm, mathematical programming and the usage of local modularity.

All algorithms work on connected (consisting of only one connected component), undirected graphs given by their adjacency matrix.

Most algorithms also provide the possibility to compare the estimated modularity of the identified community structure with the modularity for random networks generated by null models with the number of vertices and edges conserved.

Author(s)

Maria Schelling, Cang Hui
Maintainer: Maria Schelling <schelling.rmaintainer@vodafone.de>

extremalOptimization
Extremal optimization (EO) algorithms

Description

extremalOptimization is a function executing the extremal optimization approach and its modifications for calculating modularity and detecting communities (modules of nodes) of a network via modularity maximization.

pcseoss is a function which uses extremal optimization, but also considers pairwise constraints when calculating the fitness function and the modularity. The violation of constraints is punished, leading to smaller fitness and modularity values for community structures that violate many pairwise constraints. The constraints are predefined as two matrices separately for must-links and cannot-links with punishment for violation.
extremalOptimization

Usage

```r
extremalOptimization(adjacency, numRandom = 0,
    refine = c("none", "agents"),
    tau = FALSE, alpha_max = length(adjacency[1,]), steps = 3)
```

pcseoss(adjacency,constraints_ml,constraints_cl)

Arguments

- **adjacency**: A nonnegative symmetric adjacency matrix of the network whose community structure will be analyzed.
- **numRandom**: The number of random networks with which the modularity of the resulting community structure should be compared (default: no comparison). See details below for further explanation of the used null model.
- **refine**: Specify whether or not a refinement step is needed, the default option is none. See details below.
- **tau**: If TRUE, τ-EO is executed where the vertices are ranked according to their fitness values and chosen by a probability depending on this ranking.
- **alpha_max**: It gives the maximum number of iteration steps. If the community structure could not be improved for this number of steps, the algorithm terminates. It is 1 for the normal EO-algorithm and \(n \) for the τ-EO where \(n \) is the number of vertices in the network.
- **steps**: The number of iteration steps for the random local search agent algorithm. The algorithm terminates, if the clusters have not changed for this number of steps. Ignored if `refine` is none.
- **constraints_ml**: The matrix where each column is a must-link constraint given by two vertices in the first two rows which have to be in the same community and a punishment for the violation of the constraint in the third row.
- **constraints_cl**: The matrix where each column is a cannot-link constraint given by two vertices in the first two rows which cannot be in the same community and a punishment for the violation of the constraint in the third row.

Details

The used random networks have the same number of vertices and the same degree distribution as the original network.

The EO algorithm can be run with a certain refinement step, the local random search agent algorithm, applied at the end of one round of extremal where all communities have been split once.

This refinement algorithm is executed if `refine` equals `agents`, otherwise the generic EO algorithm is executed.

Value

The result of the extremal optimization algorithms is a list with the following components

- **number of communities**: The number of communities detected by the algorithm.
geneticAlgorithm

modularity
The modularity of the detected community structure

mean
The mean of the modularity values for random networks, only computed if numRandom>0

standard deviation
The standard deviation of the modularity values for random networks, only computed if numRandom>0

community structure
The community structure of the examined network given by a vector assigning each vertex its community number

random modularity values
The list of the modularity values for random networks, only computed if numRandom>0

Author(s)
Maria Schelling, Cang Hui

References

Examples

#weighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph,vertices)
graph <- set.edge.attribute(graph, "weight", value=runif(ecount(graph),0,1))
adj <- get.adjacency(graph, attr="weight")
result <- extremalOptimization(adj)

geneticAlgorithm Genetic algorithm

Description

geneticAlgorithm is a function executing the genetic algorithm and its modifications for identifying the community structure of a network via modularity maximization
geneticAlgorithm

Usage

```r
geneticAlgorithm(adjacency, numRandom = 0,
  initial = c("general", "cluster", "own"), p, g,
  mutRat = 0.5, crossOver = 0.2, beta = 0.1, alpha = 0.4,
  n_l = 4, local = FALSE)
```

Arguments

- `adjacency`: A nonnegative symmetric adjacency matrix of the network whose community structure will be analyzed
- `numRandom`: The number of random networks with which the modularity of the resulting community structure should be compared (default: no comparison). See details below for further explanation of the used null model
- `initial`: Specify the community structure to use as initial partition in the algorithm. See details below.
- `p`: Population size
- `g`: Number of generations
- `mutRat`: Mutation rate. Default is 0.5
- `crossOver`: Crossing over rate. Default is 0.2
- `beta`: The fraction of chromosomes to save. The top βp chromosomes are saved in each generation to ensure that the fitness scores of the top βp chromosomes of the child generation are at least as good as the parent population. Default is 0.1
- `alpha`: The fraction of repetitions for the identification of an initial partition according to `cluster`. Default is 0.4. Ignored if `initial` is not `cluster`.
- `n_l`: The number of copies of a chromosome made by the local search operator. Default is 4. Ignored if `local` is `FALSE`.
- `local`: If `TRUE`, local search operator is applied at the end of each iteration in the genetic algorithm.

Details

The used random networks have the same number of vertices and the same degree distribution as the original network.

The initial partition used in the genetic algorithm can either be the generic one where all vertices are put in their own community (initial=general) or the initial partition can be identified by randomly picking a vertex αn times and assigning its cluster to all its neighbours (initial=cluster) or the initial partition can be given by the user (initial=own). In this case, the user needs to add a last column to the adjacency matrix indicating the initial partition. Hence, the adjacency matrix has to have one column more than the network has vertices.

Value

The result of the genetic algorithm is a list with the following components:
The number of communities detected by the algorithm

modularity
The modularity of the detected community structure

mean
The mean of the modularity values for random networks, only computed if numRandom>0

standard deviation
The standard deviation of the modularity values for random networks, only computed if numRandom>0

community structure
The community structure of the examined network given by a vector assigning each vertex its community number

random modularity values
The list of the modularity values for random networks, only computed if numRandom>0

Author(s)
Maria Schelling, Cang Hui

References

Examples

```r
#unweighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph, vertices)
adj <- get.adjacency(graph)
result <- geneticAlgorithm(adj, p=4, g=6)
```

Author(s)
Maria Schelling, Cang Hui

References

Examples

```r
#unweighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph, vertices)
adj <- get.adjacency(graph)
result <- geneticAlgorithm(adj, p=4, g=6)
```
Description

greedy executes the general CNM algorithm and its modifications for modularity maximization.
rgplus uses the randomized greedy approach to identify core groups (vertices which are always placed into the same community) and uses these core groups as initial partition for the randomized greedy approach to identify the community structure and maximize the modularity.
msgvm is a greedy algorithm which performs more than one merge at one step and applies fast greedy refinement at the end of the algorithm to improve the modularity value.
cd iteratively performs complete greedy refinement on a certain partition and then, moves vertices with a probability p to another community to avoid the greedy algorithm getting trapped in a local optimum.
louvain performs fast greedy refinement and uses the resulting community structure to build a new network where vertices in the new network are the communities in the original network. For this new network, all vertices are assigned to their own community, and the fast greedy refinement is applied again.
vertexSim uses a vertex similarity measure to identify the initial partition and further improves this community structure by merging neighbouring communities.
mome consists of the two phases of coarsening and uncoarsening with refinement. In the coarsening phase, two vertices are collapsed into one vertex for which the increase in modularity is maximal. In the uncoarsening phase, each intermediate graph of the coarsening phase is revisited and its community structure is refined by applying fast greedy refinement. After revisiting the different steps, the community structure for the original graph can be reconstructed from different coarsening levels.

Usage

greedy(adjacency, numRandom = 0,
 q = c("general", "danon", "wakita1", "wakita2", "wakita3"),
 initial = c("general", "prior", "walkers", "subgraph", "adclust", "own"),
 randomized = 0, refine = c("none", "complete", "fast", "kernighan"),
 coarse = 0)
rgplus(adjacency,numRandom=0,z,randomized)
msgvm(adjacency,numRandom=0,initial=c("general","own"),parL)
cd(adjacency, numRandom=0,initial=c("general","own"),maxC=length(adjacency[,1]),
 iter,p)
louvain(adjacency, numRandom=0, initial=c("general","own"))
vertexSim(adjacency, numRandom=0, frac=0.5)
mome(adjacency, numRandom=0)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community structure will be analyzed
numRandom The number of random networks with which the modularity of the resulting community structure should be compared (default: no comparison). see details below for further explanation of the used null model.
Specify whether the general ΔQ value or a modification should be used. See details below.

initial
Specify the community structure to be used as initial partition in the algorithm. See details below.

z
The number of executions of the randomized greedy approach to identify the core groups.

randomized
The number of rows to use for the randomized greedy approach. Ignored when set to 0 (default)

refine
specifies which refinement algorithm should be used. See details below.

coarse
Define the percentage by which the number of communities has to be decreased since the last coarsening level to consider the current clustering as a new coarsening level and apply refinement on this clustering

parL
The number of merges at one step in the msgvm algorithm

maxC
The maximum number of communities for the initial partition used in the cd algorithm

iter
The number of iterations in the cd algorithm

p
The probability with which a vertex is moved into another community in the dilation step of the cd algorithm

frac
The fraction of iteration steps for which "pairwise" merging is performed in the vertexSim algorithm. Remaining iteration steps are "single neighbour" merges.

Details

The used random networks have the same number of vertices and the same degree distribution as the original network.

For the identification of the best merging event leading to a maximum increase in modularity, different values of the modularity were proposed. Which modularity value to use is specified by the parameter q. The options are general where the normal value for ΔQ is used, danon where ΔQ is normalized by the number of overall edges of vertices in a community and wakita1, wakita2 and wakita3 where ΔQ is multiplied by the consolidation ratio.

The greedy algorithms can be run on different initial partitions. The used initial partition is specified by parameter initial. The options are general where all vertices are assigned to their own community, prior where the initial community structure is identified by using prior knowledge, walkers where the initial community structure is identified by using random walkers, subgraph where the initial community structure is identified by using subgraph similarity, adclust where the general initial partition is refined using fast greedy refinement and own where the user can specify an initial partition to use with the greedy approach. In this case, the user needs to add a last column to the adjacency matrix indicating the initial partition. Hence, the adjacency matrix has to have one column more than the network has vertices.

The community structure identified by the CNM algorithm can be refined by applying a refinement step at the end of the algorithm. The used refinement algorithm is specified by the parameter refine. The options are none where no refinement algorithm is applied, complete where the complete greedy refinement is applied, fast where the fast greedy refinement is applied, kernighan where the adapted Kernighan-Lin refinement is applied. Besides, if initial is set to adclust, fast greedy refinement is applied to the community structure after each merging event. If coarse != 0,
the refinement algorithm specified by refine is not only applied at the end of the algorithm, but at each coarsening level where coarsening levels are defined according to coarse.

Value

The result of the greedy algorithms is a list with the following components

- **number of communities**: The number of communities detected by the algorithm
- **modularity**: The modularity of the detected community structure
- **mean**: The mean of the modularity values for random networks, only computed if numRandom>0
- **standard deviation**: The standard deviation of the modularity values for random networks, only computed if numRandom>0
- **community structure**: The community structure of the examined network given by a vector assigning each vertex its community number
- **random modularity values**: The list of the modularity values for random networks, only computed if numRandom>0

Author(s)

Maria Schelling, Cang Hui

References

localModularity

Algorithms using local modularity

Description

localModularity uses the local modularity to identify the local community structure around a certain vertex.

localModularity_Wang uses the local modularity to identify the community structure of the entire network.
Usage

localModularity(adjacency, srcV, k)
localModularityWang(adjacency, numRandom=0)

Arguments

- **adjacency**: A nonnegative symmetric adjacency matrix of the network whose community structure will be analyzed.
- **srcV**: A given vertex whose local community structure should be determined by `localModularity`.
- **k**: The maximum number of vertices to add to the local community of srcV.
- **numRandom**: The number of random networks with which the modularity of the resulting community structure should be compared (default: no comparison). See details below for further explanation of the used null model.

Details

The used random networks have the same number of vertices and the same degree distribution as the original network.

Value

localModularity is returned as a list with the following components:

- **local community structure**: Vertices assigned to the same community as the source vertex srcV.
- **local modularity**: The local modularity value for the determined local community.

localModularityWang is returned as a list with the following components:

- **number of communities**: The number of communities detected by the algorithm.
- **modularity**: The modularity of the detected community structure.
- **mean**: The mean of the modularity values for random networks, only computed if numRandom>0.
- **standard deviation**: The standard deviation of the modularity values for random networks, only computed if numRandom>0.
- **community structure**: The community structure of the examined network given by a vector assigning each vertex its community number.
- **random modularity values**: The list of the modularity values for random networks, only computed if numRandom>0.
Author(s)

Maria Schelling, Cang Hui

References

Examples

```r
#unweighted network
randomgraph1 <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices1 <- which(clusters(randomgraph1)$membership==1)
graph1 <- induced.subgraph(randomgraph1, vertices1)

adj1 <- get.adjacency(graph1)
result1 <- localModularity(adj1, srcV=1, k=4)

#weighted network
randomgraph2 <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices2 <- which(clusters(randomgraph2)$membership==1)
graph2 <- induced.subgraph(randomgraph2, vertices2)
graph2 <- set.edge.attribute(graph2, "weight", value=runif(ecount(graph2),0,1))

adj2 <- get.adjacency(graph2, attr="weight")
result2 <- localModularityWang(adj2)
```

simulatedAnnealing

Simulated annealing algorithms

Description

The functions presented here are based on simulated annealing and identify the community structure and maximize the modularity. `simulatedAnnealing` is only based on moving a single vertex from one community to another, while `saIndividualCollectiveMoves` considers movements of vertices, merging of communities and splitting of communities as alternatives to increase the modularity.

Usage

```r
simulatedAnnealing(adjacency, numRandom = 0,
        initial = c("general", "random","greedy", "own"),
        beta = length(adjacency[1,])/2, alpha = 1.005, fixed)
```
simulatedAnnealing

saIndividualCollectiveMoves(adjacency, numRandom=0, initial=c("general","own"),
 beta=length(adjacency[1,])/2, alpha=1.005,
 fixed=25, numIter=1.0)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structure will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

initial Specify the community structure to use as the initial partition in the algorithm.
See details below.

beta Define the initial inverse temperature. Default is (network size)/2

alpha Define the cooling parameter. Default is 1.005

fixed If the community structure has not changed for this specified number of steps,
the algorithm is terminated.

numIter Define the iteration factor. At each temperature, the algorithm performs fn2
individual moves (movement of a single vertex) and fn collective moves (merge
or split of a community) where n is the number of vertices in the network.

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

The initial partition used in the simulated annealing algorithms can either be the generic one where
all vertices are put in their own community (initial=general) or the initial partition can be identi-
ified by randomly identifying the initial number of communities and randomly assigning the vertices
to one of these communities (initial=random) or the initial partition can be the community struc-
ture identified by the greedy algorithm (initial=greedy) or the initial partition can be given by
the user (initial=own). In this case, the user needs to add a last column to the adjacency matrix
indicating the initial partition. Hence, the adjacency matrix has to have one column more than the
network has vertices.

Value

The result of the simulated annealing algorithms is a list with the following components

number of communities The number of communities detected by the algorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0
community structure
The community structure of the examined network given by a vector assigning each vertex its community number

random modularity values
The list of the modularity values for random networks, only computed if numRandom>0

Author(s)
Maria Schelling, Cang Hui

References

Examples

```r
#unweighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph,vertices)
adj <- get.adjacency(graph)
result <- simulatedAnnealing(adj, fixed=10)
```

spectralOptimization
Spectral optimization algorithms

Description
spectralOptimization uses the leading eigenvector to recursively split the communities of a network into two until no further improvement of modularity is possible.

multiWay, spectral1 and spectral2 use \(k - 1 \) leading eigenvectors to split the network into \(k \) communities. The value for \(k \) leading to the best community structure is chosen as the final number of communities and the resulting split of the network into \(k \) communities as the final community structure. The 3 functions implement slightly different approaches leading to possibly different results.
spectralOptimization

Usage

spectralOptimization(adjacency, numRandom = 0, initial = c("general", "own"), refine = FALSE)
multiWay(adjacency, numRandom=0, maxComm=length(adjacency[1,]))
spectral1(adjacency, numRandom=0, maxComm=(length(adjacency[1,])-1))
spectral2(adjacency, numRandom=0, maxComm=(length(adjacency[1,])-1))

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community structur will be analyzed
numRandom The number of random networks with which the modularity of the resulting community structure should be compared (default: no comparison). see details below for further explanation of the used null model.
initial Specify the community structure to use as initial partition in the algorithm. See details below.
refine If TRUE, Kernighan-Lin refinement is applied after splitting a community into two communities only on this part of the network.
maxComm The maximum number of communities that the network allows

Details

The used random networks have the same number of vertices and the same degree distribution as the original network.

The initial partition used in the spectral optimization algorithm can either be the generic one where all vertices are put in their own community (initial=general) or the initial partition can be given by the user (initial=own). In this case, the user needs to add a last column to the adjacency matrix indicating the initial partition. Hence, the adjacency matrix has to have one column more than the network has vertices.

Value

The result of the spectral optimization algorithms is a list with the following components

number of communities The number of communities detected by the algorithm
modularity The modularity of the detected community structure
mean The mean of the modularity values for random networks, only computed if numRandom>0
standard deviation The standard deviation of the modularity values for random networks, only computed if numRandom>0
community structure The community structure of the examined network given by a vector assigning each vertex its community number
random modularity values The list of the modularity values for random networks, only computed if numRandom>0
Author(s)

Maria Schelling, Cang Hui

References

Examples

```r
# unweighted network
randomgraph1 <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

# to ensure that the graph is connected
vertices1 <- which(clusters(randomgraph1)$membership==1)
graph1 <- induced.subgraph(randomgraph1, vertices1)
adj1 <- get.adjacency(graph1)
result1 <- spectralOptimization(adj1, refine = TRUE)

# weighted network
randomgraph2 <- erdos.renyi.game(10, 0.3, type="gnp", directed = FALSE, loops = FALSE)

# to ensure that the graph is connected
vertices2 <- which(clusters(randomgraph2)$membership==1)
graph2 <- induced.subgraph(randomgraph2, vertices2)
graph2 <- set.edge.attribute(graph2, "weight", value=runif(ecount(graph2),0,1))
adj2 <- get.adjacency(graph2, attr="weight")
result2 <- multiWay(adj2, maxComm=3)
```
Index

* Analysis of algorithms
 greedy, 6
* Betweenness
 simulatedAnnealing, 12
* Cache
 localModularity, 10
* Clustering
 greedy, 6
 modMax-package, 2
 spectralOptimization, 14
* Community
 simulatedAnnealing, 12
* Community analysis
 greedy, 6
* Community detection
 greedy, 6
 modMax-package, 2
* Community discovery
 greedy, 6
* Community structure
 extremalOptimization, 2
 greedy, 6
 localModularity, 10
 spectralOptimization, 14
* Community
 extremalOptimization, 2
* Compartmentalization
 modMax-package, 2
* Complex networks
 spectralOptimization, 14
* Complex network
 localModularity, 10
* Conflict pairwise constraints
 extremalOptimization, 2
* Critical phenomena of socio-economic systems
 greedy, 6
* Eigenspectrum
 spectralOptimization, 14
* Extremal Optimization
 extremalOptimization, 2
* Genetic algorithm
 geneticAlgorithm, 4
* Graph clustering
 greedy, 6
* Graph
 modMax-package, 2
* Local information
 localModularity, 10
* Metabolic network
 spectralOptimization, 14
* Modularity matrix
 spectralOptimization, 14
* Modularity maximization
 modMax-package, 2
* Modularity
 extremalOptimization, 2
 geneticAlgorithm, 4
 greedy, 6
* Modules
 spectralOptimization, 14
* Multilevel
 greedy, 6
* Network dynamics
 greedy, 6
* Network structure
 geneticAlgorithm, 4
* Network theory
 greedy, 6
* Networks
 greedy, 6
 simulatedAnnealing, 12
* Network
 modMax-package, 2
* PCSEO-SS algorithm
 extremalOptimization, 2
* Partitioning
 spectralOptimization, 14
* Random Local Search Agent
 extremalOptimization, 2
* Random graphs
 greedy, 6
* Randomized algorithm
 greedy, 6
* Relative table
 localModularity, 10
* Small-world phenomena
 geneticAlgorithm, 4
* Social Networks
 extremalOptimization, 2
* Social networking service
 greedy, 6
* Social network
 greedy, 6
 spectralOptimization, 14
* Socio-economic networks
 greedy, 6
* Vector partition approach
 spectralOptimization, 14
* large-scale network
 extremalOptimization, 2
* rural-urban migration
 greedy, 6

cd (greedy), 6
extremalOptimization, 2

 geneticAlgorithm, 4
 greedy, 6

 localModularity, 10
 localModularityWang (localModularity), 10
 louvain (greedy), 6

 modMax (modMax-package), 2
 modMax-package, 2
 mome (greedy), 6
 msgvm (greedy), 6
 multiWay (spectralOptimization), 14

 pcseoss (extremalOptimization), 2
 rgplus (greedy), 6

 saIndividualCollectiveMoves (simulatedAnnealing), 12

 simulatedAnnealing, 12
 spectral1 (spectralOptimization), 14
 spectral2 (spectralOptimization), 14
 spectralOptimization, 14
 vertexSim (greedy), 6