Package ‘modelDown’

April 15, 2020

Title Make Static HTML Website for Predictive Models

Version 1.1

Description Website generator with HTML summaries for predictive models.

This package uses ‘DALEX’ explainers to describe global model behavior.

We can see how well models behave (tabs: Model Performance, Auditor),
how much each variable contributes to predictions (tabs: Variable Response)
and which variables are the most important for a given model (tabs: Variable Importance).

We can also compare Concept Drift for pairs of models (tabs: Drifter).

Additionally, data available on the website can be easily recreated in current R session.

Work on this package was financially supported by the NCN Opus grant 2017/27/B/ST6/01307
at Warsaw University of Technology, Faculty of Mathematics and Information Science.

Depends R (>= 3.4.0)

License Apache License 2.0

Encoding UTF-8

LazyData true

Imports DALEX (>= 1.0), auditor (>= 0.3.0), ggplot2 (>= 3.1.0),

 whisker (>= 0.3-2), DT (>= 0.4), kableExtra (>= 0.9.0), psych

 (>= 1.8.4), archivist (>= 2.1.0), svglite (>= 1.2.1), devtools

 (>= 2.0.1), breakDown (>= 0.1.6), drifter (>= 0.2.1)

Suggests ranger, testthat, useful

RoxygenNote 7.1.0

URL https://github.com/ModelOriented/modelDown

BugReports https://github.com/ModelOriented/modelDown/issues

NeedsCompilation no

Author Przemysław Biecek [aut],

 Magda Tatarynowicz [aut],

 Kamil Romaszko [aut, cre],

 Mateusz Urbański [aut]

Maintainer Kamil Romaszko <kamil.romaszko@gmail.com>

Repository CRAN

Date/Publication 2020-04-15 00:30:03 UTC
modelDown

Generates a website with HTML summaries for predictive models

Description

Generates a website with HTML summaries for predictive models

Usage

```r
modelDown(..., modules = c("auditor", "drifter", "model_performance", "variable_importance", "variable_response"), output_folder = "output", repository_name = "repository", should_open_website = interactive())
```

Arguments

- `...`: one or more explainers created with `DALEX::explain()` function. Pair of explainers could be provided to check drift of models
- `modules`: modules that should be included in the website
- `output_folder`: folder where the website will be saved
- `repository_name`: name of local archivist repository that will be created
- `should_open_website`: should generated website be automatically opened in default browser

Details

Additional arguments that could by passed by name:

- `remote_repository_path`: Path to remote repository that stores folder with archivist repository. If not provided, links to local repository will be shown.
- `device`: Device to use. Tested for "png" and "svg", but values from `ggplot2::ggsave` function should be working fine. Defaults to "png".
- `vr.vars`: variables which will be examined in Variable Response module. Defaults to all variables. Example `vr.vars = c("var1", "var2")`
- `vr.type`: types of examinations which will be conducteed in Variable Response module. Defaults to "pdp". Example `vr.type = c("ale", "pdp")`

Author(s)

Przemysław Biecek, Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański
Examples

```r
require("ranger")
require("breakDown")
require("DALEX")

# Generate simple modelDown page
HR_data_selected <- HR_data[1000:3000,]
HR_glm_model <- glm(left~., HR_data_selected, family = "binomial")
explainer_glm <- explain(HR_glm_model, data=HR_data_selected, y = HR_data_selected$left)

modelDown::modelDown(explainer_glm,
  modules = c("model_performance", "variable_importance",
              "variable_response"),
  output_folder = tempdir(),
  repository_name = "HR",
  device = "png",
  vr.vars = c("average_monthly_hours"),
  vr.type = "ale")

# More complex example with all modules
HR_ranger_model <- ranger(as.factor(left) ~ .,
  data = HR_data, num.trees = 500, classification = TRUE, probability = TRUE)
explainer_ranger <- explain(HR_ranger_model,
  data = HR_data, y = HR_data$left, function(model, data) {
    return(predict(model, data)$prediction[,2])
  }, na.rm=TRUE)

# Two glm models used for drift detection
HR_data1 <- HR_data[1:4000,]
HR_data2 <- HR_data[4000:nrow(HR_data),]
HR_glm_model1 <- glm(left~., HR_data1, family = "binomial")
HR_glm_model2 <- glm(left~., HR_data2, family = "binomial")
explainer_glm1 <- explain(HR_glm_model1, data=HR_data1, y = HR_data1$left)
explainer_glm2 <- explain(HR_glm_model2, data=HR_data2, y = HR_data2$left)

modelDown::modelDown(list(explainer_glm1, explainer_glm2),
  modules = c("auditor", "drifter", "model_performance", "variable_importance",
             "variable_response"),
  output_folder = tempdir(),
  repository_name = "HR",
  remote_repository_path = "some_user/remote_repo_name",
  device = "png",
  vr.vars = c("average_monthly_hours", "time_spend_company"),
  vr.type = "ale")
```
Index

modelDown, 2