Package ‘modeltime.ensemble’

July 19, 2024

Type Package
Title Ensemble Algorithms for Time Series Forecasting with Modeltime
Version 1.0.4
Description A ‘modeltime’ extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods to improve forecast accuracy and stability.
URL https://business-science.github.io/modeltime.ensemble/,
https://github.com/business-science/modeltime.ensemble
BugReports https://github.com/business-science/modeltime.ensemble/issues
License MIT + file LICENSE
Encoding UTF-8
Depends modeltime (>= 1.2.3), modeltime.resample (>= 0.2.1), R (>= 3.5)
Imports tune (>= 0.1.2), rsample, yardstick, workflows (>= 0.2.1), recipes (>= 0.1.15), timetk (>= 2.5.0), tibble, dplyr (>= 1.0.0), tidyr, purrr, stringr, rlang (>= 0.1.2), cli, generics, magrittr, tictoc, parallel, doParallel, foreach, glmnet
Suggests gt, dials, utils, earth, testthat, tidymodels, xgboost, lubridate, knitr, rmarkdown
RoxygenNote 7.3.1
VignetteBuilder knitr
NeedsCompilation no
Author Matt Dancho [aut, cre], Business Science [cph]
Maintainer Matt Dancho <mdancho@business-science.io>
Repository CRAN
Date/Publication 2024-07-19 15:30:02 UTC

ensemble_average

Contents

ensemble_average .. 2
ensemble_model_spec .. 3
ensemble_nested_average ... 6
ensemble_nested_weighted .. 8
ensemble_weighted ... 10

Index 12

ensemble_average Creates an Ensemble Model using Mean/Median Averaging

Description

Creates an Ensemble Model using Mean/Median Averaging

Usage

ensemble_average(object, type = c("mean", "median"))

Arguments

object A Modeltime Table

type Specify the type of average ("mean" or "median")

Details

The input to an ensemble_average() model is always a Modeltime Table, which contains the models that you will ensemble.

Averaging Methods

The average method uses an un-weighted average using type of either:

- "mean": Performs averaging using mean(x, na.rm = TRUE) to aggregate each underlying models forecast at each timestamp
- "median": Performs averaging using stats::median(x, na.rm = TRUE) to aggregate each underlying models forecast at each timestamp

Value

A mdl_time_ensemble object.
Examples

library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)

Make an ensemble from a Modeltime Table
ensemble_fit <- m750_models %>%
 ensemble_average(type = "mean")

ensemble_fit

Forecast with the Ensemble
modeltime_table(
 ensemble_fit
) %>%
 modeltime_forecast(
 new_data = testing(m750_splits),
 actual_data = m750
) %>%
 plot_modeltime_forecast(
 .interactive = FALSE,
 .conf_interval_show = FALSE
)

ensemble_model_spec

Creates a Stacked Ensemble Model from a Model Spec

Description

A 2-stage stacking regressor that follows:

1. Stage 1: Sub-Model’s are Trained & Predicted using modeltime.resample::modeltime_fit_resamples().
2. Stage 2: A Meta-learner (model_spec) is trained on Out-of-Sample Sub-Model Predictions using ensemble_model_spec().

Usage

ensemble_model_spec(
 object,
 model_spec,
 kfolds = 5,
 param_info = NULL,
 grid = 6,
 control = control_grid()
)
Arguments

- **object**: A Modeltime Table. Used for ensemble sub-models.
- **model_spec**: A `model_spec` object defining the meta-learner stacking model specification to be used. Can be either:
 1. **A non-tunable model_spec**: Parameters are specified and are not optimized via tuning.
 2. **A tunable model_spec**: Contains parameters identified for tuning with `tune::tune()`
- **kfolds**: K-Fold Cross Validation for tuning the Meta-Learner. Controls the number of folds used in the meta-learner’s cross-validation. Gets passed to `rsample::vfold_cv()`.
- **param_info**: A `dials::parameters()` object or `NULL`. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **grid**: Grid specification or grid size for tuning the Meta Learner. Gets passed to `tune::tune_grid()`.
- **control**: An object used to modify the tuning process. Uses `control_grid(verbose = TRUE)` by default. Use `control_grid(verbose = TRUE)` to follow the training process.

Details

Stacked Ensemble Process

- Start with a Modeltime Table to define your sub-models.
- Step 1: Use `modeltimeresample::modeltimetime_fit_resamples()` to perform the submodel resampling procedure.
- Step 2: Use `ensemble_model_spec()` to define and train the meta-learner.

What goes on inside the Meta Learner?

The Meta-Learner Ensembling Process uses the following basic steps:

1. **Make Cross-Validation Predictions.** Cross validation predictions are made for each sub-model with `modeltimeresample::modeltimetime_fit_resamples()`. The out-of-sample sub-model predictions contained in `.resample_results` are used as the input to the meta-learner.

2. **Train a Stacked Regressor (Meta-Learner).** The sub-model out-of-sample cross validation predictions are then modeled using a `model_spec` with options:
 - **Tuning**: If the `model_spec` does include tuning parameters via `tune::tune()` then the meta-learner will be hyperparameter tuned using K-Fold Cross Validation. The parameters and grid can adjusted using `kfolds`, `grid`, and `param_info`.
 - **No-Tuning**: If the `model_spec` does not include tuning parameters via `tune::tune()` then the meta-learner will not be hyperparameter tuned and will have the model fitted to the sub-model predictions.

3. **Final Model Selection.**
 - **If tuned**, the final model is selected based on RMSE, then retrained on the full set of out of sample predictions.
• If not-tuned, the fitted model from Stage 2 is used.

Progress
The best way to follow the training process and watch progress is to use `control = control_grid(verbos = TRUE)` to see progress.

Parallelize
Portions of the process can be parallelized. To parallelize, set up parallelization using `tune` via one of the backends such as doFuture. Then set `control = control_grid(allow_par = TRUE)

Value
A `mdl_time_ensemble` object.

Examples
```r
library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)
library(glmnet)

# Step 1: Make resample predictions for submodels
resamples_tscv <- training(m750_splits) %>%
  time_series_cv(
    assess = "2 years",
    initial = "5 years",
    skip = "2 years",
    slice_limit = 1
  )

timemodeltime_fit_resamples(
  resamples = resamples_tscv,
  control = control_resamples(verbos = TRUE)
)

# Step 2: Metalearner ----
# * No Metalearner Tuning
ensemble_fit_lm <- submodel_predictions %>%
  ensemble_model_spec(                       
    model_spec = linear_reg() %>% set_engine("lm"),
    control = control_grid(verbos = TRUE)
  )

ensemble_fit_lm

# * With Metalearner Tuning ----
ensemble_fit_glmnet <- submodel_predictions %>%
  ensemble_model_spec(                       
    model_spec = linear_reg() %>% set_engine("glmnet"),
    control = control_grid(verbos = TRUE)
  )

ensemble_fit_glmnet
```
model_spec = linear_reg(
 penalty = tune(),
 mixture = tune()
) %>%
 set_engine("glmnet"),
 grid = 2,
 control = control_grid(verbos = TRUE)
)

ensemble_fit_glmmnet

Description

Creates an Ensemble Model using Mean/Median Averaging in the Modeltime Nested Forecasting Workflow.

Usage

```r
ensemble_nested_average(
  object,
  type = c("mean", "median"),
  keep_submodels = TRUE,
  model_ids = NULL,
  control = control_nested_fit()
)
```

Arguments

- **object**: A nested modeltime object (inherits class nested_mdl_time)
- **type**: One of "mean" for mean averaging or "median" for median averaging
- **keep_submodels**: Whether or not to keep the submodels in the nested modeltime table results
- **model_ids**: A vector of id's (.model_id) identifying which submodels to use in the ensemble.
- **control**: Controls various aspects of the ensembling process. See modeltime::control_nested_fit().

Details

If we start with a nested modeltime table, we can add ensembles.
An ensemble can be added to a Nested modeltime table.

```r
ensem <- nested_modeltime_tbl %>%
  ensemble_nested_average(
    type = "mean",
    keep_submodels = TRUE,
    control = control_nested_fit(allow_par = FALSE, verbose = TRUE)
  )
```

We can then verify the model has been added.

```r
ensem %>% extract_nested_modeltime_table()
```

This produces an ensemble .model_id 3, which is an ensemble of the first two models.

```r
# A tibble: 4 x 6
id .model_id .model .model_desc .type .calibration_data
<fct> <dbl> <list> <chr> <chr> <list>
1 1_1 1 <workflow> PROPHET Test <tibble [52 x 4]>
2 1_1 2 <workflow> XGBOOST Test <tibble [52 x 4]>  
3 1_1 3 <ensemble [2]> ENSEMBLE (MEAN): 2 MODELS Test <tibble [52 x 4]>

Additional ensembles can be added by simply adding onto the nested modeltime table. Notice that we make use of `model_ids` to make sure it only uses model id's 1 and 2.

```r
ensem_2 <- ensem %>%
 ensemble_nested_average(
 type = "median",
 keep_submodels = TRUE,
 model_ids = c(1,2),
 control = control_nested_fit(allow_par = FALSE, verbose = TRUE)
)
```

This returns a 4th model that is a median ensemble of the first two models.

```r
ensem_2 %>% extract_nested_modeltime_table()
```

# A tibble: 4 x 6
id .model_id .model .model_desc .type .calibration_data
<fct> <dbl> <list> <chr> <chr> <list>
1 1_1 1 <workflow> PROPHET Test <tibble [52 x 4]>  
2 1_1 2 <workflow> XGBOOST Test <tibble [52 x 4]>
3 1_1 3 <ensemble [2]> ENSEMBLE (MEAN): 2 MODELS Test <tibble [52 x 4]>
4 1_1 4 <ensemble [4]> ENSEMBLE (MEAN): 4 MODELS Test <tibble [52 x 4]>

This completes the process of adding ensembles to a Nested modeltime table.
Value

The nested modeltime table with an ensemble model added.

### Description

Creates an Ensemble Model using Weighted Averaging in the Modeltime Nested Forecasting Workflow.

### Usage

```r
ensemble_nested_weighted(
 object,
 loadings,
 scale_loadings = TRUE,
 metric = "rmse",
 keep_submodels = TRUE,
 model_ids = NULL,
 control = control_nested_fit()
)
```

### Arguments

- **object**
  A nested modeltime object (inherits class `nested_mdl_time`)

- **loadings**
  A vector of weights corresponding to the loadings

- **scale_loadings**
  If TRUE, divides by the sum of the loadings to proportionally weight the sub-models.

- **metric**
  The accuracy metric to rank models by the test accuracy table. Loadings are then applied in the order from best to worst models. Default: "rmse".

- **keep_submodels**
  Whether or not to keep the submodels in the nested modeltime table results

- **model_ids**
  A vector of id’s (.model_id) identifying which submodels to use in the ensemble.

- **control**
  Controls various aspects of the ensembling process. See `modeltime::control_nested_fit()`.
Details

If we start with a nested modetime table, we can add ensembles.

```r
nested_modetime_tbl

Nested Modetime Table
Trained on: .splits | Model Errors: [0]
A tibble: 2 x 5
 id .actual_data .future_data .splits .modetime_tables
 <fct> <list> <list> <list> <list>
1 1_1 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>
2 1_3 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>
```

An ensemble can be added to a Nested modetime table.

```r
ensem <- nested_modetime_tbl %>%
 ensemble_nested_weighted(
 loadings = c(2,1),
 control = control_nested_fit(allow_par = FALSE, verbose = TRUE)
)
```

We can then verify the model has been added.

```r
ensem %>% extract_nested_modetime_table()
```

This produces an ensemble .model_id 3, which is an ensemble of the first two models.

```r
A tibble: 4 x 6
 id .model_id .model .model_desc .type .calibration_data
 <fct> <dbl> <list> <chr> <chr> <list>
1 1_3 1 <workflow> PROPHET Test <tibble [52 x 4]>
2 1_3 2 <workflow> XGBOOST Test <tibble [52 x 4]>
```

We can verify the loadings have been applied correctly. Note that the loadings will be applied based on the model with the lowest RMSE.

```r
ensem %>%
 extract_nested_modetime_table(1) %>%
 slice(3) %>%
 pluck(".model", 1)
```

Note that the xgboost model gets the 66% loading and prophet gets 33% loading. This is because xgboost has the lower RMSE in this case.
--- Modeltime Ensemble ----------------------------------------------
Ensemble of 2 Models (WEIGHTED)

# Modeltime Table
# A tibble: 2 x 6
.model_id .model .model_desc .type .calibration_data .loadings
<int> <list> <chr> <chr> <list> <dbl>
1 1 <workflow> PROPHET Test <tibble [52 x 4]> 0.333
2 2 <workflow> XGBOOST Test <tibble [52 x 4]> 0.667

Value
The nested modeltime table with an ensemble model added.

ensemble_weighted  Creates a Weighted Ensemble Model

Description
Makes an ensemble by applying loadings to weight sub-model predictions

Usage
ensemble_weighted(object, loadings, scale_loadings = TRUE)

Arguments
object A Modeltime Table
loadings A vector of weights corresponding to the loadings
scale_loadings If TRUE, divides by the sum of the loadings to proportionally weight the sub-models.

Details
The input to an ensemble_weighted() model is always a Modeltime Table, which contains the models that you will ensemble.

Weighting Method
The weighted method uses loadings by applying a loading x model prediction for each sub-model.

Value
A mdl_time_ensemble object.
Examples

library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)

# Make an ensemble from a Modeltime Table
ensemble_fit <- m750_models %>%
  ensemble_weighted(
    loadings = c(3, 3, 1),
    scale_loadings = TRUE
  )

ensemble_fit

# Forecast with the Ensemble
modeltime_table(
  ensemble_fit
) %>%
  modeltime_forecast(
    new_data = testing(m750_splits),
    actual_data = m750
  ) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show = FALSE
  )
Index

ensemble_average, 2
ensemble_model_spec, 3
ensemble_model_spec(), 4
ensemble_nested_average, 6
ensemble_nested_weighted, 8
ensemble_weighted, 10