Package ‘moderndive’

October 13, 2022

Type Package
Title Tidyverse-Friendly Introductory Linear Regression
Version 0.5.4
Maintainer Albert Y. Kim <albert.ys.kim@gmail.com>
Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
LazyData true
BugReports https://github.com/moderndive/moderndive/issues
Imports magrittr, dplyr, ggplot2, tibble, janitor, broom (>= 0.4.3), formula.tools, stringr, knitr, infer, rlang (>= 0.2.0), glue
RoxygenNote 7.1.2
Suggests testthat, covr, rmarkdown, vdiffr, openintro, patchwork, viridis, readr, nycflights13
VignetteBuilder knitr
NeedsCompilation no
Author Albert Y. Kim [aut, cre] (<https://orcid.org/0000-0001-7824-306X>), Chester Ismay [aut] (<https://orcid.org/0000-0003-2820-2547>), Andrew Bray [ctb] (<https://orcid.org/0000-0002-4037-7414>), Delaney Moran [ctb], Evgeni Chasnovski [ctb] (<https://orcid.org/0000-0002-1617-4019>), Will Hopper [ctb] (<https://orcid.org/0000-0002-7848-1946>), Benjamin S. Baumer [ctb] (<https://orcid.org/0000-0002-3279-0516>), Marium Tapal [ctb] (<https://orcid.org/0000-0001-5093-6462>), Wayne Ndlovu [ctb],
Catherine Peppers [ctb],
Annah Mutaya [ctb],
Anushree Goswami [ctb],
Ziyue Yang [ctb] (<https://orcid.org/0000-0002-9299-8327>),
Clara Li [ctb] (<https://orcid.org/0000-0003-2456-0849>),
Caroline McKenna [ctb],
Catherine Park [ctb] (<https://orcid.org/0000-0002-8273-9620>),
Abbie Benfield [ctb],
Georgia Gans [ctb],
Kacey Jean-Jacques [ctb],
Swaha Bhattacharya [ctb],
Vivian Almaraz [ctb],
Elle Jo Whalen [ctb],
Jacqueline Chen [ctb],
Michelle Flesaker [ctb],
Irene Foster [ctb],
Aushanae Hailer [ctb],
Benjamin Bruncati [ctb] (<https://orcid.org/0000-0001-8545-5984>),
Quinn White [ctb] (<https://orcid.org/0000-0001-5399-0237>),
Tianshu Zhang [ctb] (<https://orcid.org/0000-0002-3004-4472>),
Katelyn Draz [ctb] (<https://orcid.org/0000-0001-6108-1682>),
Rose Porta [ctb],
Renee Wu [ctb],
Arris Moise [ctb],
Kate Phan [ctb],
Grace Hartley [ctb],
Silas Weden [ctb],
Emma Vejcik [ctb] (<https://orcid.org/0000-0001-5093-6462>),
Nikki Schultd [ctb],
Tess Goldmann [ctb],
Hongtong Lin [ctb],
Alejandra Munoz [ctb],
Elina Gordon-Halpern [ctb],
Haley Schmidt [ctb] (<https://orcid.org/0000-0002-6184-2266>)

Repository CRAN

Date/Publication 2022-05-13 06:00:02 UTC

R topics documented:

alaska_flights .. 3
amazon_books ... 4
avocados ... 5
babies ... 6
bowl .. 7
bowl_samples ... 8
bowl_sample_1 .. 8
coffee_ratings ... 9
alaska_flights

Description

On-time data for all Alaska Airlines flights that departed NYC (i.e. JFK, LGA or EWR) in 2013. This is a subset of the `flights` data frame from `nycflights13`.

Usage

```r
alaska_flights
```
Format

A data frame of 714 rows representing Alaska Airlines flights and 19 variables

- **year, month, day** Date of departure.
- **dep_time, arr_time** Actual departure and arrival times (format HHMM or HMM), local tz.
- **sched_dep_time, sched_arr_time** Scheduled departure and arrival times (format HHMM or HMM), local tz.
- **dep_delay, arr_delay** Departure and arrival delays, in minutes. Negative times represent early departures/arrivals.
- **carrier** Two letter carrier abbreviation. See `nycflights13::airlines` to get name.
- **flight** Flight number.
- **tailnum** Plane tail number. See `nycflights13::planes` for additional metadata.
- **origin, dest** Origin and destination. See `nycflights13::airports` for additional metadata.
- **air_time** Amount of time spent in the air, in minutes.
- **distance** Distance between airports, in miles.
- **hour, minute** Time of scheduled departure broken into hour and minutes.
- **time_hour** Scheduled date and hour of the flight as a POSIXct date. Along with `origin`, can be used to join flights data to `nycflights13::weather` data.

Source

RITA, Bureau of transportation statistics

See Also

- `nycflights13::flights`.

amazon_books Sample of Amazon books

Description

A random sample of 325 books from Amazon.com.

Usage

amazon_books
avocados

Format
A data frame of 325 rows representing books listed on Amazon and 13 variables.

- **title**: Book title
- **author**: Author who wrote book
- **list_price**: recommended retail price of book
- **amazon_price**: lowest price of book shown on Amazon
- **hard_paper**: book is either hardcover or paperback
- **num_pages**: number of pages in book
- **publisher**: Company that issues the book for sale
- **pub_year**: Year the book was published
- **isbn_10**: 10-character ISBN number
- **height, width, thick, weight_oz**: height, width, weight and thickness of the book

Source
The Data and Story Library (DASL) https://dasl.datadescription.com/datafile/amazon-books

avocados

Avocado Prices by US Region

Description
Gathered from https://docs.google.com/spreadsheets/d/1cNu9j9V-9Xe8fqV3DQRhvsXJhER3zTkO1dSsQ1Q0j96g/edit#gid=1419070688

Usage
avocados

Format
A data frame of 54 regions over 3 years of weekly results

- **date**: Week of Data Recording
- **average_price**: Average Price of Avocado
- **total_volume**: Total Amount of Avocados
- **small_hass_sold**: Amount of Small Haas Avocados Sold
- **large_hass_sold**: Amount of Large Haas Avocados Sold
- **xlarge_hass_sold**: Amount of Extra Large Haas Avocados Sold
- **total_bags**: Total Amount of Bags of Avocados
- **small_bags**: Total Amount of Bags of Small Haas Avocados
large_bags Total Amount of Bags of Large Haas Avocados
x_large_bags Total Amount of Bags of Extra Large Haas Avocados
type Type of Sale
year Year of Sale
region Region Where Sale Took Place

babies

Data on maternal smoking and infant health

Description
Data on maternal smoking and infant health

Usage
babies

Format
A data frame of 1236 rows of individual mothers.

id Identification number
pluralty Marked 5 for single fetus, otherwise number of fetuses
outcome Marked 1 for live birth that survived at least 28 days
date Birth date where 1096 is January 1st, 1961
birthday Birth date in mm-dd-yyyy format
gestation Length of gestation in days, marked 999 if unknown
sex Infant’s sex, where 1 is male, 2 is female, and 9 is unknown
wt Birth weight in ounces, marked 999 if unknown
parity Total number of previous pregnancies including fetal deaths and stillbirths, marked 99 if unknown
race Mother’s race where 0-5 is white, 6 is Mexican, 7 is Black, 8 is Asian, 9 is mixed, and 99 is unknown
age Mother’s age in years at termination of pregnancy, 99=unknown
ed Mother’s education 0= less than 8th grade, 1 = 8th -12th grade - did not graduate, 2= HS graduate-no other schooling , 3= HS+trade, 4=HS+some college 5= College graduate, 6&7 Trade school HS unclear, 9=unknown
ht Mother’s height in inches to the last completed inch, 99=unknown
wt_1 Mother prepregnancy wt in pounds, 999=unknown
drace Father’s race, coding same as mother’s race
dage Father’s age, coding same as mother’s age
bowl

ded Father’s education, coding same as mother’s education

dht Father’s height, coding same as for mother’s height

dwt Father’s weight coding same as for mother’s weight

marital 0= legally separated, 1=married, 2=divorced, 3=widowed, 5=never married

inc Family yearly income in $2500 increments 0 = under 2500, 1=2500-4999, ..., 8= 12,500-14,999, 9=unknown, 98=not asked

smoke Does mother smoke? 0=never, 1=smokes now, 2=until current pregnancy, 3=once did, not now, 9=unknown

time If mother quit, how long ago? 0=never smoked, 1=still smokes, 2=during current preg, 3=within 1 yr, 4= 1 to 2 years ago, 5= 2 to 3 yr ago, 6= 3 to 4 yrs ago, 7=5 to 9yrs ago, 8=10+yrs ago, 9=quit and don’t know, 98=unknown, 99=not asked

number Number of cigs smoked per day for past and current smokers 0=never, 1=1-4, 2=5-9, 3=10-14, 4=15-19, 5=20-29, 6=30-39, 7=40-60, 8=60+, 9=smoke but don’t know, 98=unknown, 99=not asked

Source

Data on maternal smoking and infant health from https://www.stat.berkeley.edu/~statlabs/labs.html

bowl

A sampling bowl of red and white balls

Description

A sampling bowl used as the population in a simulated sampling exercise. Also known as the urn sampling framework https://en.wikipedia.org/wiki/Urn_problem.

Usage

bowl

Format

A data frame 2400 rows representing different balls in the bowl, of which 900 are red and 1500 are white.

ball_ID ID variable used to denote all balls. Note this value is not marked on the balls themselves

color color of ball: red or white
bowl_samples Sampling from a bowl of balls

Description
Counting the number of red balls in 10 samples of size n = 50 balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage
bowl_samples

Format
A data frame 10 rows representing different groups of students' samples of size n = 50 and 5 variables

 group Group name
 red Number of red balls sampled
 white Number of white balls sampled
 green Number of green balls sampled
 n Total number of balls samples

See Also
bowl()

bowl_sample_1 Tactile sample of size 50 from a bowl of balls

Description
A single tactile sample of size n = 50 balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage
bowl_sample_1

Format
A data frame of 50 rows representing different balls and 1 variable.

color Color of ball sampled

See Also
bowl()
coffee_ratings

Data from the Coffee Quality Institute’s review pages in January 2018

Description
1,340 digitized reviews on coffee samples from https://database.coffeeinstitute.org/.

Usage
coffee_ratings

Format
A data frame of 1,340 rows representing each sample of coffee.

- **total_cup_points** Number of points in final rating (scale of 0-100)
- **species** Species of coffee bean plant (Arabica or Robusta)
- **owner** Owner of coffee plant farm
- **country_of_origin** Coffee bean’s country of origin
- **farm_name** Name of coffee plant farm
- **lot_number** Lot number for tested coffee beans
- **mill** Name of coffee bean’s processing facility
- **ico_number** International Coffee Organization number
- **company** Name of coffee bean’s company
- **altitude** Altitude at which coffee plants were grown
- **region** Region where coffee plants were grown
- **producer** Name of coffee bean roaster
- **number_of_bags** Number of tested bags
- **bag_weight** Tested bag weight
- **in_country_partner** Partner for the country
- **harvest_year** Year the coffee beans were harvested
- **grading_date** Day the coffee beans were graded
- **owner_1** Owner of the coffee beans
- **variety** Variety of the coffee beans
- **processing_method** Method used for processing the coffee beans
- **aroma** Coffee aroma rating
- **flavor** Coffee flavor rating
- **aftertaste** Coffee aftertaste rating
- **acidity** Coffee acidity rating
- **body** Coffee body rating
balance Coffee balance rating
uniformity Coffee uniformity rating
clean_cup Cup cleanliness rating
sweetness Coffee sweetness rating
cupper_points Cupper Points, an overall rating for the coffee
moisture Coffee moisture content
category_one_defects Number of category one defects for the coffee beans
quakers Number of coffee beans that don’t dark brown when roasted
color Color of the coffee beans
category_two_defects Number of category two defects for the coffee beans
expiration Expiration date of the coffee beans
certification_body Entity/Institute that certified the coffee beans
certification_address Body address of certification for coffee beans
certification_contact Certification contact for coffee beans
unit_of_measurement Unit of measurement for altitude
altitude_low_meters Lower altitude level coffee beans grow at
altitude_high_meters Higher altitude level coffee beans grow at
altitude_mean_meters Average altitude level coffee beans grow at

Source

DD_vs_SB

Dunkin Donuts vs Starbucks

Description

Number of Dunkin Donuts & Starbucks, median income, and population in 1024 census tracts in eastern Massachusetts in 2016.

Usage

DD_vs_SB

Format

A data frame of 1024 rows representing census tracts and 6 variables

county County where census tract is located. Either Bristol, Essex, Middlesex, Norfolk, Plymouth, or Suffolk county

FIPS Federal Information Processing Standards code identifying census tract

median_income Median income of census tract

population Population of census tract

shop_type Coffee shop type: Dunkin Donuts or Starbucks

shops Number of shops
early_january_weather

Source

US Census Bureau. Code used to scrape data available at https://github.com/DelaneyMoran/FinalProject

early_january_weather Early January hourly weather data

Description

Hourly meteorological data for LGA, JFK and EWR for the month of January 2013. This is a subset of the weather data frame from nycflights13.

Usage

early_january_weather

Format

A data frame of 358 rows representing hourly measurements and 15 variables

origin Weather station. Named origin to facilitate merging with nycflights13::flights data.
year, month, day, hour Time of recording.
temp, dewp Temperature and dewpoint in F.
humid Relative humidity.
wind_dir, wind_speed, wind_gust Wind direction (in degrees), speed and gust speed (in mph).
precip Precipitation, in inches.
pressure Sea level pressure in millibars.
visib Visibility in miles.
time_hour Date and hour of the recording as a POSIXct date.

Source

ASOS download from Iowa Environmental Mesonet, https://mesonet.agron.iastate.edu/request/download.phtml.

See Also

nycflights13::weather.
Description

The data are gathered from end of semester student evaluations for a sample of 463 courses taught by 94 professors from the University of Texas at Austin. In addition, six students rate the professors’ physical appearance. The result is a data frame where each row contains a different course and each column has information on either the course or the professor https://www.openintro.org/data/index.php?data=evals.

Usage

evals

Format

A data frame with 463 observations corresponding to courses on the following 13 variables.

- **ID**: Identification variable for course.
- **prof_ID**: Identification variable for professor. Many professors are included more than once in this dataset.
- **score**: Average professor evaluation score: (1) very unsatisfactory - (5) excellent.
- **age**: Age of professor.
- **bty_avg**: Average beauty rating of professor.
- **gender**: Gender of professor (collected as a binary variable at the time of the study): female, male.
- **ethnicity**: Ethnicity of professor: not minority, minority.
- **language**: Language of school where professor received education: English or non-English.
- **rank**: Rank of professor: teaching, tenure track, tenured.
- **pic_outfit**: Outfit of professor in picture: not formal, formal.
- **pic_color**: Color of professor’s picture: color, black & white.
- **cls_did_eval**: Number of students in class who completed evaluation.
- **cls_students**: Total number of students in class.
- **cls_level**: Class level: lower, upper.

Source

See Also

The data in `evals` is a slight modification of `openintro::evals()`.
Electric vehicle charging sessions for a workplace charging program

Description

This dataset consists of information on 3,395 electric vehicle charging sessions across locations for a workplace charging program. The data contains information on multiple charging sessions from 85 electric vehicle drivers across 25 workplace locations, which are located at facilities of various types.

Usage

ev_charging

Format

A data frame of 3,395 rows on 24 variables, where each row is an electric vehicle charging session.

- `session_id` Unique identifier specifying the electric vehicle charging session
- `kwh_total` Total energy used at the charging session, in kilowatt hours (kWh)
- `dollars` Quantity of money paid for the charging session in U.S. dollars
- `created` Date and time recorded at the beginning of the charging session
- `ended` Date and time recorded at the end of the charging session
- `start_time` Hour of the day when the charging session began (1 through 24)
- `end_time` Hour of the day when the charging session ended (1 through 24)
- `charge_time_hrs` Length of the charging session in hours
- `weekday` First three characters of the name of the weekday when the charging session occurred
- `platform` Digital platform the driver used to record the session (android, ios, web)
- `distance` Distance from the charging location to the driver’s home, expressed in miles NA if the driver did not report their address
- `user_id` Unique identifier for each driver
- `station_id` Unique identifier for each charging station
- `location_id` Unique identifier for each location owned by the company where charging stations were located
- `manager_vehicle` Binary variable that is 1 when the vehicle is a type commonly used by managers of the firm and 0 otherwise
- `facility_type` Categorical variable that represents the facility type:
 - 1 = manufacturing
 - 2 = office
 - 3 = research and development
 - 4 = other
- `mon, tues, wed, thurs, fri, sat, sun` Binary variables; 1 if the charging session took place on that day, 0 otherwise
- `reported_zip` Binary variable; 1 if the driver did report their zip code, 0 if they did not
Source
Harvard Dataverse doi: 10.7910/DVN/NFPQLW. Note data is released under a CC0: Public Domain license.

geom_categorical_model

Regression model with one categorical explanatory/predictor variable

Description
geom_categorical_model() fits a regression model using the categorical x axis as the explanatory variable, and visualizes the model’s fitted values as piecewise horizontal line segments. Confidence interval bands can be included in the visualization of the model. Like geom_parallel_slopes(), this function has the same nature as geom_smooth() from the ggplot2 package, but provides functionality that geom_smooth() currently doesn’t have. When using a categorical predictor variable, the intercept corresponds to the mean for the baseline group, while coefficients for the non-baseline groups are offsets from this baseline. Thus in the visualization the baseline for comparison group’s median is marked with a solid line, whereas all offset groups’ medians are marked with dashed lines.

Usage
geom_categorical_model(
mapping = NULL,
data = NULL,
position = "identity",
...,
se = TRUE,
level = 0.95,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)

Arguments
mapping Set of aesthetic mappings created by aes() or aes_.() If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot(). A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. `~ head(.x, 10)`).

position
Position adjustment, either as a string, or the result of a call to a position adjustment function.

...
Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

se
Display confidence interval around model lines? TRUE by default.

level
Level of confidence interval to use (0.95 by default).

na.rm
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

See Also

`geom_parallel_slopes()`

Examples

```r
library(dplyr)
library(ggplot2)

p <- ggplot(mpg, aes(x = drv, y = hwy)) +
  geom_point() +
  geom_categorical_model()
p

# In the above visualization, the solid line corresponds to the mean of 19.2
# for the baseline group "4", whereas the dashed lines correspond to the
# means of 28.19 and 21.02 for the non-baseline groups "f" and "r" respectively.
# In the corresponding regression table however the coefficients for "f" and "r"
# are presented as offsets from the mean for "4":
model <- lm(hwy ~ drv, data = mpg)
gegrepression_table(model)

# You can use different colors for each categorical level
p %+% aes(color = drv)

# But mapping the color aesthetic doesn’t change the model that is fit
p %+% aes(color = class)
```
Description

`geom_parallel_slopes()` fits parallel slopes model and adds its line output(s) to a ggplot object. Basically, it fits a unified model with intercepts varying between groups (which should be supplied as standard ggplot2 grouping aesthetics: group, color, fill, etc.). This function has the same nature as `geom_smooth()` from ggplot2 package, but provides functionality that `geom_smooth()` currently doesn’t have.

Usage

```r
geom_parallel_slopes(
  mapping = NULL,
  data = NULL,
  position = "identity",
  ..., 
  se = TRUE,
  formula = y ~ x,
  n = 100,
  fullrange = FALSE,
  level = 0.95,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data` The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data. A function can be created from a formula (e.g. `~ head(.x, 10)`).
- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function.
geom_parallel_slopes

... Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

se Display confidence interval around model lines? TRUE by default.
formula Formula to use per group in parallel slopes model. Basic linear y ~ x by default.
n Number of points per group at which to evaluate model.
fullrange Should the fit span the full range of the plot, or just the data?
level Level of confidence interval to use (0.95 by default).
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

See Also

geom_categorical_model()

Examples

library(dplyr)
library(ggplot2)

ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
 geom_point() +
 geom_parallel_slopes(se = FALSE)

Basic usage
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
 geom_point() +
 geom_parallel_slopes()

Supply custom aesthetics
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
 geom_point() +
 geom_parallel_slopes(se = FALSE, size = 4)

Fit non-linear model
example_df <- house_prices %>%
 slice(1:1000) %>%
 mutate(
 log10_price = log10(price),
 log10_size = log10(sqft_living))
get_correlation

Description

Determine the Pearson correlation coefficient between two variables in a data frame using pipeable and formula-friendly syntax.

Usage

```r
get_correlation(data, formula, na.rm = FALSE, ...)
```

Arguments

- `data`: a data frame object
- `formula`: a formula with the response variable name on the left and the explanatory variable name on the right
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
- `...`: further arguments passed to `stats::cor()`

Value

A 1x1 data frame storing the correlation value

Examples

```r
library(moderndive)

# Compute correlation between mpg and cyl:
mtcars %>%
  get_correlation(formula = mpg ~ cyl)

# Group by one variable:
library(dplyr)
mtcars %>%
group_by(am) %>%
  get_correlation(formula = mpg ~ cyl)
```
```r
# Group by two variables:
mtcars %>%
group_by(am, gear) %>%
get_correlation(formula = mpg ~ cyl)
```

get_regression_points
Get regression points

Description

Output information on each point/observation used in an lm() regression in "tidy" format. This function is a wrapper function for broom::augment() and renames the variables to have more intuitive names.

Usage

```r
get_regression_points(
  model, 
  digits = 3, 
  print = FALSE, 
  newdata = NULL, 
  ID = NULL
)
```

Arguments

- `model` an lm() model object
- `digits` number of digits precision in output table
- `print` If TRUE, return in print format suitable for R Markdown
- `newdata` A new data frame of points/observations to apply `model` to obtain new fitted values and/or predicted values y-hat. Note the format of `newdata` must match the format of the original data used to fit `model`.
- `ID` A string indicating which variable in either the original data used to fit `model` or `newdata` should be used as an identification variable to distinguish the observational units in each row. This variable will be the left-most variable in the output data frame. If ID is unspecified, a column ID with values 1 through the number of rows is returned as the identification variable.

Value

A tibble-formatted regression table of outcome/response variable, all explanatory/predictor variables, the fitted/predicted value, and residual.

See Also

`augment()`, `get_regression_table()`, `get_regression_summaries()`
get_regression_summaries

Get regression summary values

Description

Output scalar summary statistics for an `lm()` regression in "tidy" format. This function is a wrapper function for `broom::glance()`.

Usage

```r
get_regression_summaries(model, digits = 3, print = FALSE)
```

Arguments

- **model**: an `lm()` model object
- **digits**: number of digits precision in output table
- **print**: If TRUE, return in print format suitable for R Markdown

Value

A single-row tibble with regression summaries. Ex: `r_squared` and `mse`.

Examples

```r
library(dplyr)
library(tibble)

# Convert rownames to column
mtcars <- mtcars %>%
  rownames_to_column(var = "automobile")

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)

# Get information on all points in regression:
get_regression_points(mpg_model, ID = "automobile")

# Create training and test set based on mtcars:
training_set <- mtcars %>%
  sample_frac(0.5)
test_set <- mtcars %>%
  anti_join(training_set, by = "automobile")

# Fit model to training set:
mpg_model_train <- lm(mpg ~ cyl, data = training_set)

# Make predictions on test set:
get_regression_points(mpg_model_train, newdata = test_set, ID = "automobile")
```
See Also

`glance()`, `get_regression_table()`, `get_regression_points()`

Examples

```r
library(moderndive)

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)

# Get regression summaries:
get_regression_summaries(mpg_model)
```

Description

Output regression table for an `lm()` regression in "tidy" format. This function is a wrapper function for broom::tidy() and includes confidence intervals in the output table by default.

Usage

```r
get_regression_table(
  model,  
  conf.level = 0.95,  
  digits = 3,  
  print = FALSE,  
  default_categorical_levels = FALSE
)
```

Arguments

- `model`: an `lm()` model object
- `conf.level`: The confidence level to use for the confidence interval if `conf.int = TRUE`. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
- `digits`: number of digits precision in output table
- `print`: If `TRUE`, return in print format suitable for R Markdown
- `default_categorical_levels`: If `TRUE`, do not change the non-baseline categorical variables in the term column. Otherwise non-baseline categorical variables will be displayed in the format "categorical_variable_name: level_name"

Value

A tibble-formatted regression table along with lower and upper end points of all confidence intervals for all parameters `lower_ci` and `upper_ci`; the confidence levels default to 95%
gg_parallel_slopes

See Also

`tidy()`, `get_regression_points()`, `get_regression_summaries()`

Examples

```r
library(moderndive)

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)

# Get regression table:
get_regression_table(mpg_model)

# Vary confidence level of confidence intervals
get_regression_table(mpg_model, conf.level = 0.99)
```

Description

NOTE: This function is deprecated; please use `geom_parallel_slopes()` instead. Output a visualization of linear regression when you have one numerical and one categorical explanatory/predictor variable: a separate colored regression line for each level of the categorical variable.

Usage

```r
gg_parallel_slopes(y, num_x, cat_x, data, alpha = 1)
```

Arguments

- `y` : Character string of outcome variable in data
- `num_x` : Character string of numerical explanatory/predictor variable in data
- `cat_x` : Character string of categorical explanatory/predictor variable in data
- `data` : an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `lm` is called.
- `alpha` : Transparency of points

Value

A `ggplot2::ggplot()` object.

See Also

`geom_parallel_slopes()`
Examples

```r
## Not run:
library(ggplot2)
library(dplyr)
library(moderndive)

# log10() transformations
house_prices <- house_prices %>%
  mutate(
    log10_price = log10(price),
    log10_size = log10(sqft_living)
  )

# Output parallel slopes model plot:
gg_parallel_slopes(
  y = "log10_price", num_x = "log10_size", cat_x = "condition",
  data = house_prices, alpha = 0.1
) +
  labs(
    x = "log10 square feet living space", y = "log10 price in USD",
    title = "House prices in Seattle: Parallel slopes model"
)

# Compare with interaction model plot:
ggplot(house_prices, aes(x = log10_size, y = log10_price, col = condition)) +
  geom_point(alpha = 0.1) +
  geom_smooth(method = "lm", se = FALSE, size = 1) +
  labs(
    x = "log10 square feet living space", y = "log10 price in USD",
    title = "House prices in Seattle: Interaction model"
)

## End(Not run)
```

house_prices

House Sales in King County, USA

Description

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. This dataset was obtained from Kaggle.com https://www.kaggle.com/harlfoxem/housesalesprediction/data

Usage

`house_prices`
Format

A data frame with 21613 observations on the following 21 variables.

- **id** a notation for a house
- **date** Date house was sold
- **price** Price is prediction target
- **bedrooms** Number of Bedrooms/House
- **bathrooms** Number of bathrooms/bedrooms
- **sqft_living** square footage of the home
- **sqft_lot** square footage of the lot
- **floors** Total floors (levels) in house
- **waterfront** House which has a view to a waterfront
- **view** Has been viewed
- **condition** How good the condition is (Overall)
- **grade** overall grade given to the housing unit, based on King County grading system
- **sqft_above** square footage of house apart from basement
- **sqft_basement** square footage of the basement
- **yr_built** Built Year
- **yr_renovated** Year when house was renovated
- **zipcode** zip code
- **lat** Latitude coordinate
- **long** Longitude coordinate
- **sqft_living15** Living room area in 2015 (implies-- some renovations) This might or might not have affected the lotsize area
- **sqft_lot15** lotSize area in 2015 (implies-- some renovations)

Source

Kaggle https://www.kaggle.com/harlfoxem/housesalesprediction. Note data is released under a CC0: Public Domain license.

ipf_lifts

International Power Lifting Results A subset of international power-lifting results.

Description

International Power Lifting Results A subset of international powerlifting results.

Usage

ipf_lifts
Format

A data frame with 41,152 entries, one entry for individual lifter

- **name**: Individual lifter name
- **sex**: Binary sex (M/F)
- **event**: The type of competition that the lifter entered
- **equipment**: The equipment category under which the lifts were performed
- **age**: The age of the lifter on the start date of the meet
- **age_class**: The age class in which the filter falls
- **division**: Division of competition
- **bodyweight_kg**: The recorded bodyweight of the lifter at the time of competition, to two decimal places
- **weight_class_kg**: The weight class in which the lifter competed, to two decimal places
- **best3squat_kg**: Maximum of the first three successful attempts for the lift
- **best3bench_kg**: Maximum of the first three successful attempts for the lift
- **best3deadlift_kg**: Maximum of the first three successful attempts for the lift
- **place**: The recorded place of the lifter in the given division at the end of the meet
- **date**: Date of the event
- **federation**: The federation that hosted the meet
- **meet_name**: The name of the meet

Source

This data is a subset of the open dataset **Open Powerlifting**

mario_kart_auction
Data from Mario Kart Ebay auctions

Description

Ebay auction data for the Nintendo Wii game Mario Kart.

Usage

mario_kart_auction
Format

A data frame of 143 auctions.

- **id**: Auction ID assigned by Ebay
- **duration**: Auction length in days
- **n_bids**: Number of bids
- **cond**: Game condition, either new or used
- **start_pr**: Price at the start of the auction
- **ship_pr**: Shipping price
- **total_pr**: Total price, equal to auction price plus shipping price
- **ship_sp**: Shipping speed or method
- **seller_rate**: Seller’s rating on Ebay, equal to the number of positive ratings minus the number of negative ratings
- **stock_photo**: Whether the auction photo was a stock photo or not, pictures used in many options were considered stock photos
- **wheels**: Number of Wii wheels included in the auction
- **title**: The title of the auctions

Source

This data is from https://www.openintro.org/data/index.php?data=mariokart

mass_traffic_2020 2020 road traffic volume and crash level date for 13 Massachusetts counties

Description

2020 road traffic volume and crash level date for 13 Massachusetts counties

Usage

mass_traffic_2020

Format

A data frame of 874 rows representing traffic data at the 874 sites

- **site_id**: Site id
- **county**: County in which the site is located
- **community**: Community in which the site is located
- **rural_urban**: Rural (R) or Urban (U)
MA_schools

- **dir** Direction for traffic movement. Either 1-WAY, 2-WAY, EB (eastbound), RAMP or WB (westbound)
- **functional_class** Classification of road. Either Arterial, Collector, Freeway & Expressway, Interstate or Local Road
- **avg_speed** Average traffic speed
- **total_volume** Number of vehicles recorded at each site in 2020
- **crashes** Number of vehicle crashes at each site
- **nonfatal_injuries** Number of non-fatal injuries for all recorded vehicle crashes
- **fatal_injuries** Number of fatal injuries for all recorded vehicle crashes

Description

Data on Massachusetts public high schools in 2017

Usage

MA_schools

Format

A data frame of 332 rows representing Massachusetts high schools and 4 variables

- **school_name** High school name.
- **average_sat_math** Average SAT math score. Note 58 of the original 390 values of this variable were missing; these rows were dropped from consideration.
- **perc_disadvan** Percent of the student body that are considered economically disadvantaged.
- **size** Size of school enrollment; small 13-341 students, medium 342-541 students, large 542-4264 students.

Source

The original source of the data are Massachusetts Department of Education reports https://profiles.doe.mass.edu/state_report/, however the data was downloaded from Kaggle at https://www.kaggle.com/ndalziel/massachusetts-public-schools-data
ma_traffic_2020_vs_2019

Massachusetts 2020 vs. 2019 Traffic Data Comparison

Description

This dataset contains information about changes in speed, volume, and accidents of traffic between 2020 and 2019 by community and class of road in Massachusetts.

Usage

ma_traffic_2020_vs_2019

Format

A data frame of 264 rows each representing a different community in Massachusetts.

 community City or Town
 functional_class Class or group the road belongs to
 change_in_speed Average estimated Speed (mph)
 change_in_volume Average traffic
 change_in_accidents Average number of accidents

Source

moderndive

moderndive - Tidyverse-Friendly Introductory Linear Regression

Description

movies_sample

Examples

```r
library(moderndive)

# Fit regression model:
mpg_model <- lm(mpg ~ hp, data = mtcars)

# Regression tables:
get_regression_table(mpg_model)

# Information on each point in a regression:
get_regression_points(mpg_model)

# Regression summaries
get_regression_summaries(mpg_model)

# Plotting parallel slopes models
library(ggplot2)
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE)
```

movies_sample
Random sample of 68 action and romance movies

Description

A random sample of 32 action movies and 36 romance movies from https://www.imdb.com/ and their ratings.

Usage

movies_sample

Format

A data frame of 68 rows movies.

- **title**: Movie title
- **year**: Year released
- **rating**: IMDb rating out of 10 stars
- **genre**: Action or Romance

See Also

This data was sampled from the movies data frame in the ggplot2movies package.
mythbusters_yawn

Data from Mythbusters’ study on contagiousness of yawning

Description

From a study on whether yawning is contagious https://www.imdb.com/title/tt0768479/. The data here was derived from the final proportions of yawns given in the show.

Usage

mythbusters_yawn

Format

A data frame of 50 rows representing each of the 50 participants in the study.

- **subj**: integer value corresponding to identifier variable of subject ID
- **group**: string of either "seed", participant was shown a yawner, or "control", participant was not shown a yawner
- **yawn**: string of either "yes", the participant yawned, or "no", the participant did not yawn

orig_pennies_sample

A random sample of 40 pennies sampled from the pennies data frame

Description

A dataset of 40 pennies to be treated as a random sample with pennies() acting as the population. Data on these pennies were recorded in 2011.

Usage

orig_pennies_sample

Format

A data frame of 40 rows representing 40 randomly sampled pennies from pennies() and 2 variables

- **year**: Year of minting
- **age_in_2011**: Age in 2011

Source

See Also

pennies()
pennies

A population of 800 pennies sampled in 2011

Description
A dataset of 800 pennies to be treated as a sampling population. Data on these pennies were recorded in 2011.

Usage
pennies

Format
A data frame of 800 rows representing different pennies and 2 variables

- **year** Year of minting
- **age_in_2011** Age in 2011

Source

pennies_resamples Bootstrap resamples of a sample of 50 pennies

Description
35 bootstrap resamples with replacement of sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA https://goo.gl/maps/AF88fpvVfm12. The original sample of 50 pennies is available in pennies_sample().

Usage
pennies_resamples

Format
A data frame of 1750 rows representing 35 students' bootstrap resamples of size 50 and 3 variables

- **replicate** ID variable of replicate/resample number.
- **name** Name of student
- **year** Year on resampled penny

See Also
pennies_sample()
pennies_sample

A sample of 50 pennies

Description

A sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA https://goo.gl/maps/AF88fpvVfm12.

Usage

pennies_sample

Format

A data frame of 50 rows representing 50 sampled pennies and 2 variables

- **ID** Variable used to uniquely identify each penny.
- **year** Year of minting.

Note

The original pennies_sample has been renamed `orig_pennies_sample()` as of moderndive v0.3.0.

promotions

Bank manager recommendations based on (binary) gender

Description

Data from a 1970’s study on whether gender influences hiring recommendations. Originally used in OpenIntro.org.

Usage

promotions

Format

A data frame with 48 observations on the following 3 variables.

- **id** Identification variable used to distinguish rows.
- **gender** gender (collected as a binary variable at the time of the study): a factor with two levels male and female
- **decision** a factor with two levels: promoted and not
Source

See Also
The data in promotions is a slight modification of openintro::gender_discrimination().

promotions_shuffled
One permutation/shuffle of promotions

Description
Shuffled/permuted data from a 1970’s study on whether gender influences hiring recommendations.

Usage
promotions_shuffled

Format
A data frame with 48 observations on the following 3 variables.

id Identification variable used to distinguish rows.
gender shuffled/permuted (binary) gender: a factor with two levels male and female
decision a factor with two levels: promoted and not

See Also
promotions().

saratoga_houses
House Prices and Properties in Saratoga, New York

Description
Random sample of 1057 houses taken from full Saratoga Housing Data (De Veaux)

Usage
saratoga_houses
Format
A data frame with 1057 observations on the following 8 variables

price price (US dollars)
living_area Living Area (square feet)
bathrooms Number of Bathroom (half bathrooms have no shower or tub)
bedrooms Number of Bedrooms
fireplaces Number of Fireplaces
lot_size Size of Lot (acres)
age Age of House (years)
fireplace Whether the house has a Fireplace

Source
Gathered from https://docs.google.com/spreadsheets/d/1AY5eEcqNIggKpYF3kYyJQB1uuOdkiclFhbjAmY3Yc8E/edit#gid=622599674

tactile_prop_red Tactile sampling from a tub of balls

Description
Counting the number of red balls in 33 tactile samples of size n = 50 balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage
tactile_prop_red

Format
A data frame of 33 rows representing different groups of students’ samples of size n = 50 and 4 variables

group Group members
replicate Replicate number
red_balls Number of red balls sampled out of 50
prop_red Proportion red balls out of 50

See Also
bowl()
Index

* datasets
 - alaska_flights, 3
 - amazon_books, 4
 - avocados, 5
 - babies, 6
 - bowl, 7
 - bowl_sample_1, 8
 - bowl_samples, 8
 - coffee_ratings, 9
 - DD_vs_SB, 10
 - early_january_weather, 11
 - ev_charging, 13
 - evals, 12
 - house_prices, 23
 - ipf_lifts, 24
 - MA_schools, 27
 - ma_traffic_2020_vs_2019, 28
 - mario_kart_auction, 25
 - mass_traffic_2020, 26
 - movies_sample, 29
 - mythbusters_yawn, 30
 - orig_pennies_sample, 30
 - pennies, 31
 - pennies_resamples, 31
 - pennies_sample, 32
 - promotions, 32
 - promotions_shuffled, 33
 - saratoga_houses, 33
 - tactile_prop_red, 34

- bowl, 7
- bowl(), 8, 34
- bowl_sample_1, 8
- bowl_samples, 8
- coffee_ratings, 9
- DD_vs_SB, 10
- early_january_weather, 11
- ev_charging, 13
- evals, 12
- fortify(), 14, 16
- geom_categorical_model, 14
- geom_categorical_model(), 17
- geom_parallel_slopes, 16
- geom_parallel_slopes(), 14, 15, 22
- get_correlation, 18
- get_regression_points, 19
- get_regression_points(), 21, 22
- get_regression_summaries, 20
- get_regression_summaries(), 19, 22
- get_regression_table, 21
- get_regression_table(), 19, 21
- gg_parallel_slopes, 22
- ggplot(), 14, 16
- ggplot2::ggplot(), 22
- glance(), 21

- house_prices, 23
- ipf_lifts, 24
- layer(), 15, 17

- MA_schools, 27
- ma_traffic_2020_vs_2019, 28
- mario_kart_auction, 25
- mass_traffic_2020, 26
moderndive, 28
movies_sample, 29
mythbusters_yawn, 30

nycflights13::airlines, 4
nycflights13::airports, 4
nycflights13::flights, 4, 11
nycflights13::planes, 4
nycflights13::weather, 4, 11

openintro::evals(), 12
openintro::gender_discrimination(), 33
orig_pennies_sample, 30
orig_pennies_sample(), 32

pennies, 31
pennies(), 30
pennies_resamples, 31
pennies_sample, 32
pennies_sample(), 31
promotions, 32
promotions(), 33
promotions_shuffled, 33

saratoga_houses, 33
stats::cor(), 18

tactile_prop_red, 34
tidy(), 22