Package ‘moonBook’

October 13, 2022

Title Functions and Datasets for the Book by Keon-Woong Moon
Version 0.3.1
URL https://github.com/cardiomoon/moonBook
BugReports https://github.com/cardiomoon/moonBook/issues
Description Several analysis-related functions for the book entitled “R statistics and graph for medical articles” (written in Korean), version 1, by Keon-Woong Moon with Korean demographic data with several plot functions.
Depends R (>= 3.1.2)
License GPL-2
LazyData true
Encoding UTF-8
Imports nortest, survival, sjmisc, stringr, magrittr, crayon
Suggests testthat, knitr, ggplot2, sjlabelled, ztable, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.2
NeedsCompilation no
Author Keon-Woong Moon [aut, cre]
Maintainer Keon-Woong Moon <cardiomoon@gmail.com>
Repository CRAN
Date/Publication 2022-01-05 07:40:02 UTC

R topics documented:

acs ... 3
addComma ... 3
addLabelDf .. 5
cat.test .. 5
cbind.mtable .. 6
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>centerprint</td>
<td>6</td>
</tr>
<tr>
<td>changeColnameLabel</td>
<td>7</td>
</tr>
<tr>
<td>comma</td>
<td>7</td>
</tr>
<tr>
<td>compress</td>
<td>8</td>
</tr>
<tr>
<td>deleteRows</td>
<td>9</td>
</tr>
<tr>
<td>densityplot</td>
<td>9</td>
</tr>
<tr>
<td>extractHR</td>
<td>10</td>
</tr>
<tr>
<td>extractKind</td>
<td>10</td>
</tr>
<tr>
<td>extractOR</td>
<td>11</td>
</tr>
<tr>
<td>getLabel</td>
<td>11</td>
</tr>
<tr>
<td>getMapping</td>
<td>12</td>
</tr>
<tr>
<td>HRplot</td>
<td>12</td>
</tr>
<tr>
<td>my.chisq.test</td>
<td>14</td>
</tr>
<tr>
<td>my.t.test</td>
<td>14</td>
</tr>
<tr>
<td>mycph</td>
<td>15</td>
</tr>
<tr>
<td>mycsv</td>
<td>15</td>
</tr>
<tr>
<td>mycsv.cbind.mytable</td>
<td>16</td>
</tr>
<tr>
<td>mycsv.mytable</td>
<td>17</td>
</tr>
<tr>
<td>myhtml</td>
<td>17</td>
</tr>
<tr>
<td>myhtmlHead</td>
<td>18</td>
</tr>
<tr>
<td>mylatex</td>
<td>19</td>
</tr>
<tr>
<td>mytable</td>
<td>20</td>
</tr>
<tr>
<td>mytable2</td>
<td>21</td>
</tr>
<tr>
<td>mytable2df</td>
<td>23</td>
</tr>
<tr>
<td>mytable2html</td>
<td>23</td>
</tr>
<tr>
<td>mytable_df</td>
<td>24</td>
</tr>
<tr>
<td>mytable_sub</td>
<td>25</td>
</tr>
<tr>
<td>mytable_sub2</td>
<td>26</td>
</tr>
<tr>
<td>num_summary</td>
<td>27</td>
</tr>
<tr>
<td>obj2linecount</td>
<td>27</td>
</tr>
<tr>
<td>ORplot</td>
<td>28</td>
</tr>
<tr>
<td>ORplot.sub</td>
<td>29</td>
</tr>
<tr>
<td>p2sig</td>
<td>30</td>
</tr>
<tr>
<td>print.cbind.mytable</td>
<td>30</td>
</tr>
<tr>
<td>print.mytable</td>
<td>31</td>
</tr>
<tr>
<td>print.mytable.df</td>
<td>31</td>
</tr>
<tr>
<td>printmytable2</td>
<td>32</td>
</tr>
<tr>
<td>r</td>
<td>32</td>
</tr>
<tr>
<td>radial</td>
<td>32</td>
</tr>
<tr>
<td>rank2group</td>
<td>33</td>
</tr>
<tr>
<td>reprint</td>
<td>34</td>
</tr>
<tr>
<td>space</td>
<td>34</td>
</tr>
<tr>
<td>summary.cbind.mytable</td>
<td>35</td>
</tr>
<tr>
<td>summary.mytable</td>
<td>35</td>
</tr>
<tr>
<td>validColname</td>
<td>36</td>
</tr>
</tbody>
</table>
Demographic data of 857 patients with ACS

Description

A dataset containing demographic data and laboratory data of 857 patients with acute coronary syndrome (ACS).

Format

A data frame with 857 rows and 17 variables:

- **age** patient age in years
- **sex** "Male" or "Female"
- **cardiogenicShock** "No" or "Yes"
- **entry** vascular access route, either "Femoral" or "Radial"
- **Dx** Final diagnosis, One of the followings : STEMI, NSTEMI or Unstable Angina
- **EF** ejection fraction, percentage by echocardiography
- **height** height in centimeter
- **weight** weight in kilogram
- **BMI** body mass index in kg/m2
- **obesity** obesity, "No" or "Yes"
- **TC** total cholesterol level in mg/dL
- **LDLC** low density lipoprotein cholesterol level in mg/dL
- **HDLC** high density lipoprotein cholesterol level in mg/dL
- **TG** triglyceride level in mg/dL
- **DM** history of diabetes mellitus,"No" or "Yes"
- **HBP** history of hypertension,"No" or "Yes"
- **smoking** history of smoking, One of the followings : "Never","Ex-smoker","Smoker"

Description

Change numbers into formatted numbers
Usage

addComma(x)

S3 method for class 'mytable'
addComma(x)

S3 method for class 'mytable.df'
addComma(x)

S3 method for class 'cbind.mytable'
addComma(x)

S3 method for class 'data.frame'
addComma(x)

S3 method for class 'character'
addComma(x)

Arguments

x An object

Methods (by class)

• mytable: S3 method for class mytable
• mytable.df: S3 method for class mytable.df
• cbind.mytable: S3 method for class cbind.mytable
• data.frame: S3 method for class data.frame
• character: S3 method for class character

Examples

Not run:
require(stringr)
require(magrittr)
require(ggplot2)
mytable(cut~.,data=diamonds) %>% addComma
x=mytable(Dx~sex,data=acs)
addComma(x)

End(Not run)
addLabelDf

Add value labels to the data.frame

Description

Add value labels to the data.frame

Usage

addLabelDf(data, mapping = NULL)

Arguments

data A data.frame
mapping Set of aesthetic mappings created by aes or aes_.

cat.test

Perform chisq.test or fisher test

Description

Perform chisq.test or fisher test

Usage

cat.test(x, mode = 1, ...)

Arguments

x a numeric vector or matrix. x and y can also both be factors.
mode An integer. If 1(default), perform chisq.test first, If 2, perform fisher.test first
... Further arguments to be passed to chisq.test or fisher.test
cbind.mytable

Description

cbind function for class "mytable"

Usage

```r
## S3 method for class 'mytable'
cbind(..., caption, y = NULL)
```

Arguments

- `...`: Objects of class "mytable", a result of a call to `mytable`
- `caption`: Unique values of grouping variables used for column name of table
- `y`: Names of grouping variables used for caption of table

centerprint

Description

Internal mytable functions These are not to be called by the user

Usage

```r
centerprint(x, ..., width = 10)
```

Arguments

- `x`: a character vector
- `...`: further arguments passed to or from other methods.
- `width`: an integer
changeColnameLabel
Change column names with labels

Description

Change column names with labels

Usage

```
changeColnameLabel(data)
```

Arguments

- `data`
 A data.frame

comma
Convert number to formatted number

Description

Convert number to formatted number

Usage

```
comma(x, ...)  
```

Arguments

- `x`
 A numeric vector
- `...`
 Further arguments to be passed to function format
compress

Compress an object of class mytable or cbind.mytable

Description

Compress an object of class mytable or cbind.mytable

Usage

compress(x, no = 2, add.label = TRUE)

S3 method for class 'mytable'
compress(x, no = 2, add.label = TRUE)

S3 method for class 'cbind.mytable'
compress(x, no = 2, add.label = TRUE)

S3 method for class 'data.frame'
compress(x, no = 2, add.label = TRUE)

Arguments

x An object of class mytable or cbind.mytable
no Representative group of two groups
add.label Logical. Whether or not add representative group name

Methods (by class)

• mytable: S3 method for class mytable
• cbind.mytable: S3 method for class cbind.mytable
• data.frame: S3 method for class data.frame

Examples

require(stringr)
require(magrittr)
mytable(acs) %>% compress
mytable(Dx~.,data=acs) %>% compress
Not run:
require(ztable)
mytable(Dx~.,data=acs) %>% compress %>% ztable
mytable(Dx+sex~.,data=acs) %>% compress

End(Not run)
deleteRows

Delete rows of class mytable object

Description

Delete rows of class mytable object

Usage

deleteRows(x, rows)

Arguments

x An object of class mytable or cbind.mytable
rows rows to delete

densityplot

Make Kernel density plot

Description

Make Kernel density plot

Usage

densityplot(formula, data, main = "", xlab = "", ylab = "", ...)

Arguments

formula an R model formula, of the form ~ variable to estimate the unconditional density of variable, or variable ~ factor to estimate the density of variable within each level of factor.
data an optional data frame containing the data.
main main title of plot
xlab label for the horizontal-axis; defaults to the name of the variable x.
ylab label for the vertical axis; defaults to "Density".
... arguments to be passed to plot

Value

This function return NULL invisibly and draw graphs.

Examples

require(moonBook)
data(acs)
densityplot(age~Dx,data=acs)
extractHR
Extract hazard ratio from a data.frame

Description

Extract hazard ratio from a data.frame

Usage

```
extractHR(x, digits = 2)
```

Arguments

- `x`: an object of class `coxph`
- `digits`: An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 2.

Value

A data.frame consist of hazard ratio and 95 the p values.

Examples

```r
require(survival)
data(cancer)
fit = coxph(Surv(time, status) ~ age + sex + obstruct + perfor, data = colon)
extractHR(fit)
```

extractKind
Extract kind of an object of class mytable

Description

Extract kind of an object of class `mytable`

Usage

```
extractKind(df)
```

Arguments

- `df`: An object of class `mytable` or `cbind.mytable`
extractOR

Extract the odds ratios from a S3 object of glm

Description

Extract the odds ratios from a S3 object of glm

Usage

`extractOR(x, digits = 2, method = "default")`

Arguments

- **x**: A S3 object of glm
- **digits**: An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 2.
- **method**: Method to compute confidence interval. Choices are one of c("default","LRT.

Value

A data.frame consist of odds ratios and 95 p values

Examples

data(cancer,package="survival")
x=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
extractOR(x)

getLabel

Add column labels to the data.frame

Description

Add column labels to the data.frame

Usage

`getLabel(data, colname, use.column.label = TRUE)`

Arguments

- **data**: A data.frame
- **colname**: character. column name
- **use.column.label**: Logical. Whether or not use column labels.
getMapping

extract variable name from mapping, aes

Description

extract variable name from mapping, aes

Usage

getMapping(mapping, varname)

Arguments

mapping aesthetic mapping
varname variable name to extract

Value

variable name in character

Examples

require(ggplot2)
mapping=aes(colour=sex)
getMapping(mapping,"colour")
getMapping(mapping,"x")

HRplot

Draw a hazard ratio plot

Description

Draw a hazard ratio plot

Usage

HRplot(
 out,
 type = 1,
 xlab = "",
 ylab = "",
 show.OR = TRUE,
 show.CI = FALSE,
 sig.level = 1,
 cex = 1.2,
 lwd = 2,
HRplot

```r
pch = 18,
col = NULL,
...
```

Arguments

- `out`: an object of class coxph or a resultant data.frame of mycph function
- `type`: an integer indicating the type of plot. Default value is 1
- `xlab`: a title for the x axis
- `ylab`: a title for the y axis
- `show.OR`: a logical vector indicating whether or not show the text indicating the p value
- `show.CI`: a logical vector indicating whether or not show the text indicating the confidence interval
- `sig.level`: a numeric value of upper limit of p value of showing variables
- `cex`: A numerical value giving the amount by which plotting OR/HR symbols should be magnified relative to the default, defaulting 1.2.
- `lwd`: The line width, a positive number, defaulting to 2.
- `pch`: Either an integer specifying a symbol or a single character to be used as the default in plotting OR/HR points.
- `col`: A specification for the default plotting color.
- `...`: arguments to be passed to plot

Value

This function return NULL invisibly and draw graphs

Examples

```r
require(survival)
attach(colon)
colon$TS=Surv(time,status==1)
out=mycph(TS~,data=colon)
out
HRplot(out)
## Not run:
HRplot(out,type=1,pch=2,col=c("blue","red"))
HRplot(out,type=2,show.CI=TRUE,pch=2,cex=2,main="Hazard ratios of all individual variables")
## End(Not run)
```
my.chisq.test

Internal mytable functions

Description

Internal mytable functions. These are not to be called by the user.

Usage

```
my.chisq.test(x, y, mydata, catMethod = 2)
```

Arguments

- **x** a vector
- **y** a vector
- **mydata** A data.frame
- **catMethod** An integer indicating methods for categorical variables. Possible values in methods are
 - 0 Perform chisq.test first. If warning present, perform fisher test
 - 1 Perform chisq.test without continuity correction
 - 2 Perform chisq.test with continuity correction
 - 3 perform fisher.test
 - 4 perform prop.trend test
 Default value is 2.

my.t.test

Internal mytable functions

Description

Internal mytable functions. These are not to be called by the user.

Usage

```
my.t.test(y, x)
```

Arguments

- **y** a vector
- **x** a numeric vector
Perform coxph of individual expecting variables

Usage

mycph(formula, data, digits = 2)

Arguments

formula An object of class "formula". Left side of ~ must be a variable of class Surv and the right side of ~ must have variables in an additive way.
data A data.frame contains data for analysis.
digits An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 2.

Value

a data.frame consist of hazard ratio and 95% confidence intervals and the p values.

Examples

require(survival)
data(cancer)
attach(colon)
colon$TS=Surv(time,status==1)
out=mycph(TS~.,data=colon)
out
HRplot(out,type=2,show.CI=TRUE,main="Hazard ratios of all individual variables")

Export to csv file for class "mytable" or "cbind.mytable"

Usage

mycsv(x, row.names = FALSE, ...)

Description

Export to csv file for class "mytable" or "cbind.mytable"
Arguments

x An object of class "mytable" or "cbind.mytable"

row.names either a logical value indicating whether the row names of x are to be written along with x, or a character vector of row names to be written.

... further arguments passed to or from other methods.

Examples

Not run:
require(moonBook)
res=mytable(sex~age+DM,data=acs)
mycsv(res,file="test.csv")
mycsv(summary(res),file="testsummary.csv")
End(Not run)
mycsv.mytable

Export to csv file for class "mytable"

Description

Export to csv file for class "mytable"

Usage

S3 method for class 'mytable'
mycsv(x, row.names = FALSE, ...)

Arguments

x
An object of class "mytable" a result of a call to \texttt{mytable}

row.names
either a logical value indicating whether the row names of \texttt{x} are to be written
along with \texttt{x}, or a character vector of row names to be written.

...
further arguments passed to or from other methods.

Examples

Not run:
require(moonBook)
res=mytable(sex~age+DM,data=acs)
mycsv(res,file="test.csv")
mycsv(summary(res),file="testsummary.csv")
mycsv=function(x,row.names=FALSE) UseMethod("mycsv")

End(Not run)

myhtml

Export to html file for class "mytable" or "cbind.mytable" of "data.frame"

Description

Export to html file for class "mytable" or "cbind.mytable" of "data.frame"

Usage

myhtml(x, caption = NULL, rownames = TRUE)

Default S3 method:
myhtml(x, caption = NULL, rownames = TRUE)

S3 method for class 'mytable'
myhtml(x, caption = NULL, rownames = TRUE)

S3 method for class 'cbind.mytable'
myhtml(x, caption = NULL, rownames = TRUE)

Arguments

- **x**: An object of class "mytable" or "cbind.mytable"
- **caption**: A character
- **rownames**: A logical value whether or not include rownames in table

Methods (by class)

- default:
- mytable:
- cbind.mytable:

Examples

```r
require(moonBook)
res = mytable(sex~age+Dx, data=acs)
myhtml(res)
res1 = mytable(sex+Dx~., data=acs)
myhtml(res1)
x = head(iris)
myhtml(x)
myhtml(x, caption="Table 1. myhtml Test")
myhtml(x, caption="Table 1. myhtml Test", rownames=FALSE)
```

myhtmlHead

Print my html style

Description

Print my html style

Usage

myhtmlHead()
Exporting "cbind.mytable","mytable" to LaTeX format

Description

Exporting "cbind.mytable","mytable" to LaTeX format

Usage

mylatex(
 myobj,
 size = 5,
 caption = NULL,
 caption.placement = "top",
 caption.position = "c"
)

Default S3 method:
mylatex(
 myobj,
 size = 5,
 caption = NULL,
 caption.placement = "top",
 caption.position = "c"
)

S3 method for class 'mytable'
mylatex(
 myobj,
 size = 5,
 caption = NULL,
 caption.placement = "top",
 caption.position = "c"
)

S3 method for class 'cbind.mytable'
mylatex(
 myobj,
 size = 5,
 caption = NULL,
 caption.placement = "top",
 caption.position = "c"
)

Arguments

myobj An object of class 'mytable'
mytable

<table>
<thead>
<tr>
<th>size</th>
<th>An integer indicating font size, defaulting is 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>caption</td>
<td>A character</td>
</tr>
<tr>
<td>caption.placement</td>
<td>The caption will be have placed at the top of the table if caption.placement is "top" and at the bottom of the table if it equals "bottom". Default value is "top".</td>
</tr>
<tr>
<td>caption.position</td>
<td>The caption will be have placed at the center of the table if caption.position is "center" or "c", and at the left side of the table if it equals "left" or "l", and at the right side of the table if it equals "right" or "r". Default value is "center".</td>
</tr>
</tbody>
</table>

Methods (by class)
- default: Exporting "cbind.mytable","mytable" to LaTeX format
- mytable: Exporting "cbind.mytable","mytable" to LaTeX format
- cbind.mytable: Exporting "cbind.mytable","mytable" to LaTeX format

Examples
```r
require(moonBook)
out=mytable(sex~.,data=acs)
mylatex(out)
out1=mytable(sex+Dx~.,data=acs)
mylatex(out1,size=6)
```

mytable

Produce table for descriptive statistics

Description
Produce table for descriptive statistics by groups for several variables easily. Depending on the nature of these variables, different descriptive statistical methods were used(t-test, ANOVA,Kruskal-Wallis, chisq, Fisher,...)

Usage
```r
mytable(x, ...)
```

S3 method for class 'formula'
mytable(x, ...)

S3 method for class 'data.frame'
mytable(x, ...)

Arguments
- x An R object, formula or data.frame
- ... arguments to be passed to mytable_sub
Methods (by class)

- formula: S3 method for formula
- data.frame: S3 method for data.frame

Examples

```r
mytable(acs)
mytable(~age+sex,data=acs)
mytable(Dx~age+sex+height+weight+TC+TG+HDLC,data=acs,method=3,digits=2)
mytable(am+cyl~.,data=mtcars)
out=mytable(sex~.,data=acs)
out
summary(out)
## Not run:
require(ztable)
ztable(out)
## End(Not run)
mytable(acs)
```

mytable2

Produce combined table for descriptive statistics

Description

Produce table for descriptive statistics by two grouping variables for several variables easily. Depending on the nature of these variables, different descriptive statistical methods were used (t-test, ANOVA, Kruskal-Wallis, chisq, Fisher,...)

Usage

```r
mytable2(
  formula,
  data,
  use.labels = TRUE,
  use.column.label = TRUE,
  max.ylev = 5,
  maxCatLevel = 20,
  digits = 2,
  method = 1,
  catMethod = 2,
  show.all = FALSE,
  exact = FALSE,
  show.total = FALSE,
  origData = NULL
)
```
Arguments

- **formula**: An object of class "formula". Left side of ~ must contain two grouping variables in an additive way (e.g. sex+group~), and the right side of ~ must have variables in an additive way.
- **data**: A data.frame contains data for analysis
- **use.labels**: Logical. Whether or not use labels.
- **use.column.label**: Logical. Whether or not use column labels.
- **max.ylev**: An integer indicating the maximum number of levels of grouping variable (‘y’). If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5.
- **maxCatLevel**: An integer indicating the maximum number of unique levels of categorical variable. If a column have unique values more than maxCatLevel, categorical summarization will not be performed.
- **digits**: An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 1.
- **method**: An integer indicating methods for continuous variables. Possible values in methods are
 1. forces analysis as normal-distributed
 2. forces analysis as continuous non-normal
 3. performs a Shapiro-Wilk test to decide between normal or non-normal
 Default value is 1.
- **catMethod**: An integer indicating methods for categorical variables. Possible values in methods are
 0. Perform chisq.test first. If warning present, perform fisher test
 1. Perform chisq.test without continuity correction
 2. Perform chisq.test with continuity correction
 3. perform fisher.test
 4. perform prop.trend test
 Default value is 2.
- **show.all**: A logical value indicating whether or not all statistical values have to be shown in table. Default value is FALSE.
- **exact**: A logical value indicating whether or not permit call with approximate parameter. If true, only exact column name permitted. Default value is FALSE.
- **show.total**: A logical value indicating whether or not show total group value. Default value is FALSE.
- **origData**: A data.frame contains data for analysis

Value

An object of class "cbind.mytable"
mytable2df

Convert mytable object to data.frame

Description
Add N number into data.frame

Usage
mytable2df(x)

Arguments

- **x**
 An object of class "mytable" a result of a call to mytable

Value
a data.frame with N number

mytable2html

Prepare mytable object to data.frame ready to html

Description
Add N number into data.frame

Usage
mytable2html(x)

Arguments

- **x**
 An object of class "mytable" a result of a call to mytable

Value
a data.frame with N number
Description
make mytable from data.frame

Usage

mytable_df(
 x,
 use.labels = TRUE,
 use.column.label = TRUE,
 max.ylev = 5,
 maxCatLevel = 20,
 digits = 1,
 method = 1,
 show.all = FALSE
)

Arguments

x A data.frame
use.labels Logical. Whether or not use labels.
use.column.label Logical. Whether or not use column labels.
max.ylev An integer indicating the maximum number of levels of grouping variable. If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5.
maxCatLevel An integer indicating the maximum number of unique levels of categorical variable. If a column have unique values more than maxCatLevel, categorical summarization will not be performed.
digits An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 1.
method An integer indicating methods for continuous variables. Possible values in methods are
1 forces analysis as normal-distributed
2 forces analysis as continuous non-normal
3 performs a Shapiro-Wilk test to decide between normal or non-normal
Default value is 1.
show.all A logical value indicating whether or not all statistical values have to be shown in table. Default value is FALSE.

Value
An object of class "mytable.df". 'print' returns a table for descriptive statistics.
mytable_sub

mytable_sub Produce table for descriptive statistics

Description

Produce table for descriptive statistics by groups for several variables easily. Depending on the nature of these variables, different descriptive statistical methods were used (t-test, ANOVA, Kruskal-Wallis, chisq, Fisher,...)

Usage

mytable_sub(
 x,
 data,
 use.labels = TRUE,
 use.column.label = TRUE,
 max.ylev = 5,
 maxCatLevel = 20,
 digits = 1,
 method = 1,
 catMethod = 2,
 show.all = FALSE,
 exact = FALSE,
 show.total = FALSE,
 missing = FALSE
)

Arguments

x An object of class "formula". Left side of ~ must contain the name of one grouping variable or two grouping variables in an additive way (e.g. sex+group~), and the right side of ~ must have variables in an additive way.
data A data.frame contains data for analysis
use.labels Logical. Whether or not use labels.
use.column.label Logical. Whether or not use column labels.
max.ylev An integer indicating the maximum number of levels of grouping variable ('y'). If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5.
maxCatLevel An integer indicating the maximum number of unique levels of categorical variable. If a column have unique values more than maxCatLevel, categorical summarization will not be performed.
digits An integer indicating the number of decimal places (round) or significant digits to be used. Default value is 1.
method

An integer indicating methods for continuous variables. Possible values in methods are

1. forces analysis as normal-distributed
2. forces analysis as continuous non-normal
3. performs a Shapiro-Wilk test to decide between normal or non-normal

Default value is 1.

catMethod

An integer indicating methods for categorical variables. Possible values in methods are

0. Perform chisq.test first. If warning present, perform fisher test
1. Perform chisq.test without continuity correction
2. Perform chisq.test with continuity correction
3. perform fisher.test
4. perform prop.trend test

Default value is 2.

show.all

A logical value indicating whether or not all statistical values have to be shown in table. Default value is FALSE.

exact

A logical value indicating whether or not permit call with approximate parameter. If true, only exact column name permitted. Default value is FALSE.

show.total

A logical value indicating whether or not show total group value. Default value is FALSE.

missing

A logical value indicating whether or not perform missing data analysis. Default value is FALSE.

Value

An object of class "mytable". 'print' returns a table for descriptive statistics. 'summary' returns a table with all statistical values.

mytable_sub2

Internal mytable functions

Description

Internal mytable functions These are not to be called by the user

Usage

mytable_sub2(
 y,
 x,
 data,
 max.ylev = 5,
 maxCatLevel = 20,
)
num_summary

```r
method = 1,
catMethod = 2,
show.total = FALSE,
origData
```

Arguments

- `y`: a vector
- `x`: a vector
- `data`: a data.frame
- `max.ylev`: an integer
- `maxCatLevel`: an integer
- `method`: an integer
- `catMethod`: an integer
- `show.total`: a logical value
- `origData`: a data.frame

Description

Internal mytable functions These are not to be called by the user

Usage

```r
num_summary(x)
```

Arguments

- `x`: a numeric vector

Description

Internal mytable functions These are not to be called by the user

Usage

```r
obj2linecount(myobj)
```

Arguments

- `myobj`: an R object
ORplot

Plot for odds ratios for a S3 object of glm

Description
Plot for odds ratios for a S3 object of glm

Usage
ORplot(
 x,
 type = 1,
 xlab = "",
 ylab = "",
 show.OR = TRUE,
 show.CI = FALSE,
 sig.level = 1,
 cex = 1.2,
 lwd = 2,
 pch = 18,
 col = NULL,
 ...
)

Arguments
x A S3 object of glm

 type an integer defining the shape of plots; default value is 1

 xlab label for the horizontal-axis; defaults to "Odds Ratios"

 ylab label for the vertical axis; defaults to "".

 show.OR A logical value; Whether or not show p values on plot

 show.CI A logical value; Whether or not show 95% CI values on plot

 sig.level A numeric value of upper limit of p value of showing variables

 cex A numerical value giving the amount by which plotting OR/HR symbols should
 be magnified relative to the default, defaulting 1.2.

 lwd The line width, a positive number, defaulting to 2.

 pch Either an integer specifying a symbol or a single character to be used as the
 default in plotting OR/HR points.

 col A specification for the default plotting color.

 ... arguments to be passed to plot

Value
This function return NULL invisibly and draw graphs
Examples

```r
require(survival)
data(colon)
out1=glm(status~sex+age+rx+obstruct+node4,data=colon)
out2=glm(status~rx+node4,data=colon)
ORplot(out1,type=2,show.CI=TRUE,xlab="This is xlab",main="Main Title")
ORplot(out2,type=1,main="Main Title")
ORplot(out1,type=2,show.CI=TRUE,main="Main Title")
ORplot(out1,type=3,show.CI=TRUE,main="Main Title",sig.level=0.05)
ORplot(out1,type=3,show.CI=TRUE,main="Main Title",sig.level=0.05,
       pch=1,cex=2,lwd=4,col=c("red","blue"))
```

ORplot.sub
A sub function for ORplot and HRplot

Description

Plot for odds ratios for a S3 object of glm

Usage

```r
ORplot.sub(  
  result,  
  type = 1,  
  xlab = "",  
  ylab = "",  
  show.OR = TRUE,  
  show.CI = FALSE,  
  sig.level = 1,  
  cex = 1.2,  
  lwd = 2,  
  pch = 18,  
  col = NULL,  
  ...
)
```

Arguments

- **result**: A resultant data.frame of function `extractOR`
- **type**: an integer defining the shape of plots; default value is 1
- **xlab**: label for the horizontal-axis; defaults to "Odds Ratios"
- **ylab**: label for the vertical axis; defaults to "".
- **show.OR**: A logical value; Whether or not show p values on plot
- **show.CI**: A logical value; Whether or not show 95% CI values on plot
- **sig.level**: A numeric value of upper limit of p value of showing variables
Value

This function returns NULL invisibly and draws graphs.

print.cbind.mytable

Description

Print function for class "cbind.mytable".

Usage

```r
## S3 method for class 'cbind.mytable'
print(x, ...)
```

Arguments

- `x`
 - an object of class "cbind.mytable", a result of a call to `cbind.mytable`
- `...`
 - further arguments passed to or from other methods.
print.mytable

Print function for class "mytable"

Description

Print function for class "mytable"

Usage

```r
## S3 method for class 'mytable'
print(x, ...)
```

Arguments

- `x`: An object of class "mytable", a result of a call to `mytable`
- `...`: Further arguments passed to or from other methods.

print.mytable.df

Print an object of mytable.df

Description

Print an object of mytable.df

Usage

```r
## S3 method for class 'mytable.df'
print(x, ...)
```

Arguments

- `x`: An object of class mytable.df
- `...`: Further arguments
printmytable2

Internal mytable functions

Description

Internal mytable functions These are not to be called by the user

Usage

printmytable2(obj, digits = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>an object</td>
</tr>
<tr>
<td>digits</td>
<td>an integer</td>
</tr>
</tbody>
</table>

r

Subfunction used in mylatex

Description

Subfunction used in mylatex

Usage

r(string)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>a character vector</td>
</tr>
</tbody>
</table>

radial

Demographic data of 115 patients performing IVUS(intravascular ultrasound) examination of a radial artery.

Description

A dataset containing demographic data and laboratory data of 115 patients performing IVUS(intravascular ultrasound) examination of a radial artery after tansradial coronary angiography.
Format

A data frame with 115 rows and 15 variables:

- **male**: if Male, 1; if Female 0
- **age**: patient age in years
- **height**: height in centimeter
- **weight**: weight in kilogram
- **HBP**: history of hypertension, 1 for yes or 0 for no
- **DM**: history of diabetes mellitus, 1 for yes or 0 for no
- **smoking**: history of smoking. One of the followings: "non-smoker", "ex-smoker", "smoker"
- **TC**: total cholesterol level in mg/dL
- **TG**: triglyceride level in mg/dL
- **HDL**: high density lipoprotein cholesterol level in mg/dL
- **LDL**: low density lipoprotein cholesterol level in mg/dL
- **hsCRP**: high-sensitive C reactive protein
- **NTAV**: normalized total atheroma volume measured by IVUS in cubic mm
- **PAV**: percent atheroma volume in percentage
- **sex**: Factor with two levels; "Male" or "Female"

rank2group

rank a numeric vector and returns a new ordinal vector

Description

rank a numeric vector and returns a new ordinal vector

Usage

`rank2group(y, k = 4)`

Arguments

- **y**: a numeric vector
- **k**: a integer specifies how many groups you want to classify. default value is 4

Value

a ordinal vector(numeric) with the same length of y
Examples

require(ggplot2)
data(diamonds)
diamonds$PriceGroup=rank2group(diamonds$price,4)
table(diamonds$PriceGroup)
aggregate(price~PriceGroup,data=diamonds,range)

diamonds$PriceGroup3=rank2group(diamonds$price,3)
table(diamonds$PriceGroup3)
aggregate(price~PriceGroup3,data=diamonds,range)
diamonds$PriceGroup5=rank2group(diamonds$price,5)
table(diamonds$PriceGroup5)
aggregate(price~PriceGroup5,data=diamonds,range)

reprint

Internal mytable functions

Description

Internal mytable functions These are not to be called by the user

Usage

reprint(x, times)

Arguments

x a character vector
times an integer

space

Internal mytable functions

Description

Internal mytable functions These are not to be called by the user

Usage

space(num)

Arguments

num an integer
summary.cbind.mytable Summarizing function for class "cbind.mytable"

Description
Summarizing function for class "cbind.mytable"

Usage
S3 method for class 'cbind.mytable'
summary(object, ...)

Arguments
object An object of class "cbind.mytable", a result of a call mytable
... further arguments passed to or from other methods.

Examples
out=mytable(am+cyl~.,data=mtcars)
summary(out)

summary.mytable Summarizing function for class "mytable"

Description
Summarizing function for class "mytable"

Usage
S3 method for class 'mytable'
summary(object, ...)

Arguments
object An object of class "mytable", a result of a call mytable
... further arguments passed to or from other methods.

Examples
out=mytable(am~.,data=mtcars)
summary(out)
validColname

Find valid string among character vector from approximate string

Description
Find valid string among character vector from approximate string

Usage
validColname(pattern, x)

Arguments
pattern character string to be matched in the given character
x a character vector where matches are sought

Value
returns NA in case of no matched string found or a character string in string vector x

Examples
a="dx"
b=c("Age","Sex","Dx")
validColname(a,b)
Index

acs, 3
addComma, 3
addLabelDf, 5
cat.test, 5
cbind.mytable, 6, 30
centerprint, 6
changeColNameLabel, 7
comma, 7
compress, 8
deleteRows, 9
densityplot, 9
extractHR, 10
extractKind, 10
extractOR, 11
getLabel, 11
getMapping, 12
HRplot, 12
my.chisq.test, 14
my.t.test, 14
mycph, 15
mycsv, 15
mycsv.cbind.mytable, 16
mycsv.mytable, 17
myhtml, 17
myhtmlHead, 18
mylatex, 19
mytable, 6, 16, 17, 20, 23, 31, 35
mytable2, 21
mytable2df, 23
mytable2html, 23
mytable_df, 24
mytable_sub, 20, 25
mytable_sub2, 26
num_summary, 27
obj2linecount, 27
ORplot, 28
ORplot.sub, 29
p2sig, 30
print.cbind.mytable, 30
print.mytable, 31
print.mytable.df, 31
printmytable2, 32
r, 32
radial, 32
rank2group, 33
reprint, 34
space, 34
summary.cbind.mytable, 35
summary.mytable, 35
validColname, 36