Package ‘moreparty’

April 2, 2023

Type Package
Title A Toolbox for Conditional Inference Trees and Random Forests
Version 0.3.1
Depends R (>= 3.5.0), party
Imports partykit, varImp, plyr, foreach, measures, methods, MASS, rattle,
pdp, vip, ggplot2, rlang, shiny, shinyWidgets, rclipboard, DT,
datamods, phosphoricons
Suggests doParallel, knitr, rmarkdown, rmdformats, descriptio,
RColorBrewer, caret, pROC, dplyr, e1071
VignetteBuilder knitr
Author Nicolas Robette
Maintainer Nicolas Robette <nicolas.robette@uvsq.fr>
Description Additions to 'party' and 'partykit' packages : tools for the interpretation of forests (surro-
gate trees, prototypes, etc.), feature selection (see Gre-
mann et al (2010) <doi:10.1093/bioinformatics/btq134>) and parallelized versions of condi-
tional forest and variable importance functions. Also modules and a shiny app for conditional in-
terference trees.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2023-04-02 13:20:02 UTC

R topics documented:

BivariateAssoc ... 2
ctree-module .. 4
Bivariate-assoc

Bivariate association measures for supervised learning tasks.

Description

Computes bivariate association measures between a response and predictor variables (and, optionally, between every pairs of predictor variables.)

Usage

```r
BivariateAssoc(Y, X, xx = TRUE)
```

Arguments

- `Y` - the response variable
- `X` - the predictor variables
- `xx` - whether the association measures should be computed for couples of predictor variables (default) or not. With a lot of predictors, consider setting `xx` to `FALSE` (for reasons of computation time).

Details

For each pair of variable, a permutation test is computed, following the framework used in conditional inference trees to choose a splitting variable. This test produces a p-value, transformed as `-log(1-p)` for reasons of comparison stability. The function also computes a "standard" association measure: kendall's tau correlation for pairs of numeric variables, Cramer's V for pairs of factors and eta-squared for pairs numeric-factor.
Value

A list of the following items:

YX : a table with the association measures between the response and predictor variables
XX : a table with the association measures between every couples of predictor variables

In each table:

measure : name of the "standard" association measure
assoc : value of the "standard" association measure
p.value : p-value from the permutation test
criterion : p-value from the permutation test transformed as -log(1-p), which serves to sort rows

Note

see also https://stats.stackexchange.com/questions/171301/interpreting-ctree-partykit-output-in-r

Author(s)

Nicolas Robette

References

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
BivariateAssoc(iris2$Species,iris2[,1:4])
ctree-module

Shiny module to build and analyse conditional inference trees

Description
The module builds a conditional inference trees according to several parameter inputs. Then it plots the tree and computes performance measures, variable importance, checks the stability and return the code to reproduce the analyses.

Usage
ctreeUI(id)

ctreeServer(id, data, name)

Arguments
id
Module id. See shiny::callModule().

data
shiny::reactive() function returning a data.frame to use for the analyses.

name
shiny::reactive() function returning a character string representing data name.

Author(s)
Nicolas Robette

References

See Also
ictree

Examples
library(shiny)
library(moreparty)
data(titanic)

ui <- fluidPage(
 titlePanel("Conditional inference trees"),
 ctreeUI(id = "ctree_app")
)
server <- function(input, output, session) {
 rv <- reactiveValues(
 data = titanic,
 name = deparse(substitute(titanic))
)
 ctreeServer(id = "ctree_app", reactive(rv$data), reactive(rv$name))
}

if (interactive())
 shinyApp(ui, server)

EasyTreeVarImp

Variable importance for conditional inference trees.

Description

Variable importance for partykit conditional inference trees, using various performance measures.

Usage

EasyTreeVarImp(ct, nsim = 1)

Arguments

- **ct** A tree of class `constparty` (as returned by `ctree` from partykit package).
- **nsim** Integer specifying the number of Monte Carlo replications to perform. Default is 1. If `nsim > 1`, the results from each replication are simply averaged together.

Details

If the response variable is a factor, AUC (if response is binary), accuracy, balanced accuracy and true predictions by class are used. If the response is numeric, r-squared and Kendall’s tau are used.

Value

A data frame of variable importances, with variables as rows and performance measures as columns.

Author(s)

Nicolas Robette

References

See Also
ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
EasyTreeVarImp(iris.ct, nsim = 1)

Description

Parallelized version of cforest function from party package, which is an implementation of the
random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

Usage

fastcforest(formula, data = list(), subset = NULL, weights = NULL,
controls = party::cforest_unbiased(),
xtrafo = ptrafo, ytrafo = ptrafo, scores = NULL,
parallel = TRUE)

Arguments

formula a symbolic description of the model to be fit. Note that symbols like : and ~ will
not work and the tree will make use of all variables listed on the rhs of formula
data a data frame containing the variables in the model
subset an optional vector specifying a subset of observations to be used in the fitting
process
weights an optional vector of weights to be used in the fitting process. Non-negative
integer valued weights are allowed as well as non-negative real weights. Observations are sampled (with or without replacement) according to probabilities
weights / sum(weights). The fraction of observations to be sampled (without replacement) is computed based on the sum of the weights if all weights are
integer-valued and based on the number of weights greater zero else. Alternatively, weights can be a double matrix defining case weights for all ncol(weights)
trees in the forest directly. This requires more storage but gives the user more
control.
controls an object of class ForestControl-class, which can be obtained using cforest_control
(and its convenience interfaces cforest_unbiased and cforest_classical).
fastcforest

xtrafo a function to be applied to all input variables. By default, the ptrafo function is applied.

ytrafo a function to be applied to all response variables. By default, the ptrafo function is applied.

scores an optional named list of scores to be attached to ordered factors

parallel Logical indicating whether or not to run fastcforest in parallel using a back-end provided by the foreach package. Default is TRUE.

Details

See cforest documentation for details. The code for parallelization is inspired by https://stackoverflow.com/questions/36272816/train-a-cforest-in-parallel

Value

An object of class RandomForest-class.

Author(s)

Nicolas Robette

References

See Also

cforest, fastvarImp
fastvarImp

Variable importance for conditional inference random forests

Description

Parallelized version of varImp function from varImp package, which computes the variable importance for arbitrary measures from the measures package.

Usage

fastvarImp(object, mincriterion = 0, conditional = FALSE, threshold = 0.2, nperm = 1, OOB = TRUE, pre1.0_0 = conditional, measure = "multiclass.Brier", parallel = TRUE, ...)

Arguments

object An object as returned by cforest (or fastcforest).
mincriterion The value of the test statistic or 1 - p-value that must be exceeded in order to include a split in the computation of the importance. The default mincriterion = 0 guarantees that all splits are included.
conditional a logical determining whether unconditional or conditional computation of the importance is performed.
threshold The threshold value for (1 - p-value) of the association between the variable of interest and a covariate, which must be exceeded inorder to include the covariate in the conditioning scheme for the variable of interest (only relevant if conditional = TRUE). A threshold value of zero includes all covariates.
nperm The number of permutations performed.
OOB A logical determining whether the importance is computed from the out-of-bag sample or the learning sample (not suggested).
pre1.0_0 Prior to party version 1.0-0, the actual data values were permuted according to the original permutation importance suggested by Breiman (2001). Now the assignments to child nodes of splits in the variable of interest are permuted as described by Hapfelmeier et al. (2012), which allows for missing values in the explanatory variables and is more efficient wrt memory consumption and computing time. This method does not apply to conditional variable importances.
measure The name of the measure of the measures package that should be used for the variable importance calculation.

Examples

classification
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species=="versicolor")
iris.cf = fastcforest(Species~., data=iris2, parallel=FALSE)
parallel Logical indicating whether or not to run fastvarImp in parallel using a backend provided by the foreach package. Default is FALSE.

Further arguments (like positive or negative class) that are needed by the measure.

Details
The code is adapted from varImp function in varImp package.

Value
Vector with computed permutation importance for each variable.

Author(s)
Nicolas Robette

See Also
varImp, fastvarImpAUC, cforest, fastcforest

Examples
```r
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2, 
control = party::cforest_unbiased(mtry = 2, ntree = 50))
fastvarImp(object = iris.cf, measure='ACC', parallel=FALSE)
```

Description
Computes the variable importance regarding the AUC. Bindings are not taken into account in the AUC definition as they did not provide as good results as the version without bindings in the paper of Janitza et al. (2013).

Usage
```r
fastvarImpAUC(object, mincriterion = 0, conditional = FALSE, 
threshold = 0.2, nperm = 1, OOB = TRUE, 
pre1.0_0 = conditional, 
parallel = TRUE)
```
Arguments

- **object**: An object as returned by `cforest` (or `fastcforest`).
- **mincriterion**: The value of the test statistic or 1 - p-value that must be exceeded in order to include a split in the computation of the importance. The default `mincriterion` = 0 guarantees that all splits are included.
- **conditional**: The value of the test statistic or 1 - p-value that must be exceeded in order to include a split in the computation of the importance. The default `mincriterion` = 0 guarantees that all splits are included.
- **threshold**: The threshold value for (1 - p-value) of the association between the variable of interest and a covariate, which must be exceeded inorder to include the covariate in the conditioning scheme for the variable of interest (only relevant if `conditional` = TRUE). A threshold value of zero includes all covariates.
- **nperm**: The number of permutations performed.
- **OOB**: A logical determining whether the importance is computed from the out-of-bag sample or the learning sample (not suggested).
- **pre1.0.0**: Prior to party version 1.0-0, the actual data values were permuted according to the original permutation importance suggested by Breiman (2001). Now the assignments to child nodes of splits in the variable of interest are permuted as described by Hapfelmeier et al. (2012), which allows for missing values in the explanatory variables and is more efficient wrt memory consumption and computing time. This method does not apply to conditional variable importances.
- **parallel**: Logical indicating whether or not to run `fastvarImpAUC` in parallel using a backend provided by the `foreach` package. Default is FALSE.

Details

For using the original AUC definition and multiclass AUC you can use the `fastvarImp` function and specify the particular measure. The code is adapted from `varImpAUC` function in `varImp` package.

Value

Vector with computed permutation importance for each variable.

Author(s)

Nicolas Robette

References

See Also

`varImpAUC`, `fastvarImp`, `cforest`, `fastcforest`
Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
 control = party::cforest_unbiased(mtry = 2, ntree = 50))
fastvarImpAUC(object = iris.cf, parallel = FALSE)

FeatureSelection

Feature selection for conditional random forests.

Description

Performs feature selection for a conditional random forest model. Four approaches are available: non-recursive feature elimination (NRFE), recursive feature elimination (RFE), permutation test approach with permuted response (Altmann et al, 2010), permutation test approach with permuted predictors (Hapfelmeier et Ulm, 2013).

Usage

FeatureSelection(Y, X, method = "NRFE", ntree = 1000, measure = NULL,
 nperm = 30, alpha = 0.05, distrib = "approx",
 parallel = FALSE, ...)

Arguments

Y response vector. Must be of class factor or numeric
X matrix or data frame containing the predictors
method method for feature selection. Should be 'NRFE' (non-recursive feature elimination, default), 'RFE' (recursive feature elimination), 'ALT' (permutation of response) or 'HAPF' (permutation of predictors)
ntree number of trees contained in a forest
measure the name of the measure of the measures package that should be used for error and variable importance calculations.
nperm number of permutations. Only for 'ALT' and 'HAPF' methods.
alpha alpha level for permutation tests. Only for 'ALT' and 'HAPF' methods.
distrib the null distribution of the variable importance can be approximated by its asymptotic distribution ("asympt") or via Monte Carlo resampling ("approx", default). Only for 'ALT' and 'HAPF' methods.
parallel Logical indicating whether or not to run fastvarImp in parallel using a backend provided by the foreach package. Default is FALSE.
... Further arguments (like positive or negative class) that are needed by the measure.
Details

To be developed soon!

Value

A list with the following elements:

- `selection.0se`: selected variables with the 0 standard error rule
- `forest.0se`: forest corresponding the variables selected with the 0 standard error rule
- `oob.error.0se`: OOB error of the forest with 0 standard error rule
- `selection.1se`: selected variables with the 1 standard error rule
- `forest.1se`: forest corresponding the variables selected with the 1 standard error rule
- `oob.error.1se`: OOB error of the forest with 1 standard error rule

Note

The code is adapted from Hapfelmeier & Ulm (2013).

Only works for regression and binary classification.

Author(s)

Nicolas Robette

References

Examples

```r
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
featsel <- FeatureSelection(iris2$Species, iris2[,1:4], measure='ACC', ntree=200)
featsel$selection.0se
featsel$selection.1se
```
GetAleData

 Accumulated Local Effects for a conditional random forest.

Description
Computes the Accumulated Local Effects for several covariates in a conditional random forest and gathers them into a single data frame.

Usage
```r
GetAleData(object, xnames=NULL, order=1, grid.size=20, parallel=FALSE)
```

Arguments
- **object**: An object as returned by `cforest` (or `fastcforest`).
- **xnames**: A character vector of the covariates for which to compute the Accumulated Local Effects. If NULL (default), ALE are computed for all the covariates in the model. Should be of length 2 for 2nd order ALE.
- **order**: An integer indicating whether to compute 1st order ALE (1, default) or 2nd order ALE (2).
- **grid.size**: The size of the grid for evaluating the predictions. Default is 20.
- **parallel**: Logical indicating whether or not to run the function in parallel using a backend provided by the `foreach` package. Default is FALSE.

Details
The computation of Accumulated Local Effects uses `FeatureEffect` function from `iml` package for each covariate. The results are then gathered and reshaped into a friendly data frame format.

Value
A data frame with covariates, their categories and their accumulated local effects.

Author(s)
Nicolas Robette

References

See Also
- `FeatureEffect`
- `GetPartialData`
- `GetInteractionStrength`
Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
control = party::cforest_unbiased(mtry=2, ntree=50))
GetAleData(iris.cf)

GetCtree

Gets a tree from a conditional random forest

Description

This function gets the ith tree from a conditional random forest as produced by `cforest`.

Usage

GetCtree(object, k = 1)

Arguments

object An object as returned by `cforest` (or `fastcforest`).

k The index of the tree to get from the forest. Default is 1.

Value

A tree of class `BinaryTree`, as returned by `ctree` from `party` package.

Note

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
control = party::cforest_unbiased(mtry = 2, ntree = 50))
plot(GetCtree(iris.cf))
GetInteractionStrength

Description
Computes the strength of second order interactions for covariates in a conditional random forest.

Usage
GetInteractionStrength(object, xnames=NULL)

Arguments
- object: An object as returned by cforest (or fastcforest).
- xnames: character vector. The names of the variables for which to measure the strength of second order interactions. If NULL (default), all covariates are included.

Value
A data frame with pairs of variable names and the strength of the interaction between them.

Note
This function calls vint function in vip package for each interaction. The results are then gathered and reshaped into a friendly data frame format.

Author(s)
Nicolas Robette

References

See Also
GetPartialData, GetAleData

Examples
```r
## Not run:
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2, controls = party::cforest_unbiased(mtry=2, ntree=50))
```
Description
Computes the partial dependence for several covariates in a conditional random forest and gathers them into a single data frame.

Usage
```
GetPartialData(object, xnames=NULL, ice = FALSE, center = FALSE,
grid.resolution = NULL, quantiles = TRUE, probs = 1:9/10,
trim.outliers = FALSE, which.class = 1L, prob = TRUE,
pred.fun = NULL, parallel = FALSE, paropts = NULL)
```

Arguments
- **object** An object as returned by `cforest` (or `fastcforest`).
- **xnames** A character vector of the covariates for which to compute the partial dependence. If `NULL` (default), partial dependence is computed for all the covariates in the model.
- **ice** Logical indicating whether or not to compute individual conditional expectation (ICE) curves. Default is `FALSE`. See Goldstein et al. (2014) for details.
- **center** Logical indicating whether or not to produce centered ICE curves (c-ICE curves). Only used when `ice = TRUE`. Default is `FALSE`. See Goldstein et al. (2014) for details.
- **grid.resolution** Integer giving the number of equally spaced points to use for the continuous variables listed in `xnames`. If left `NULL`, it will default to the minimum between 51 and the number of unique data points for each of the continuous independent variables listed in `xnames`.
- **quantiles** Logical indicating whether or not to use the sample quantiles of the continuous predictors listed in `xnames`. If `quantiles = TRUE` and `grid.resolution = NULL` (default), the sample quantiles will be used to generate the grid of joint values for which the partial dependence is computed.
- **probs** Numeric vector of probabilities with values in [0,1]. (Values up to 2e-14 outside that range are accepted and moved to the nearby endpoint.) Default is `1:9/10` which corresponds to the deciles of the predictor variables. These specify which quantiles to use for the continuous predictors listed in `xnames` when `quantiles = TRUE`.

GetInteractionStrength(iris.cf)

```
## End(Not run)
```
trim.outliers Logical indicating whether or not to trim off outliers from the continuous predictors listed in \texttt{xnames} (using the simple boxplot method) before generating the grid of joint values for which the partial dependence is computed. Default is FALSE.

which.class Integer specifying which column of the matrix of predicted probabilities to use as the "focus" class. Default is to use the first class. Only used for classification problems.

prob Logical indicating whether or not partial dependence for classification problems should be returned on the probability scale, rather than the centered logit. If FALSE, the partial dependence function is on a scale similar to the logit. Default is TRUE.

pred.fun Optional prediction function that requires two arguments: \texttt{object} and \texttt{newdata}. If specified, then the function must return a single prediction or a vector of predictions (i.e., not a matrix or data frame). Default is NULL.

parallel Logical indicating whether or not to run \texttt{partial} in parallel using a backend provided by the \texttt{foreach} package. Default is FALSE.

paropts List containing additional options to be passed onto \texttt{foreach} when parallel = TRUE.

Details

The computation of partial dependence uses \texttt{partial} function from \texttt{pdp} package for each covariate. The results are then gathered and reshaped into a friendly data frame format.

Value

A data frame with covariates, their categories and their partial dependence effects.

Author(s)

Nicolas Robette

References

See Also

\texttt{partial,GetAleData,GetInteractionStrength}
GetSplitStats

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
controls = party::cforest_unbiased(mtry=2, ntree=50))
GetPartialData(iris.cf)

GetSplitStats

Permutation tests results for each split in a conditional tree.

Description

This function displays the results the selection variable process for each split of a conditional tree, i.e. the p-values from permutation tests of independence between every predictor and the dependent variable. This may help to assess the stability of the tree.

Usage

GetSplitStats(ct)

Arguments

c t

A tree of class BinaryTree (as returned by ctree from party package) or constparty (as returned by ctree from partykit package).

Value

A list of elements, one for each split in the tree. For each split, the vector corresponds to are log(1-p) for every predictors, with p the p-value of the permutation test of independence. Variables are sorted by decreasing degree of association with the dependent variable.

Note

see also https://stats.stackexchange.com/questions/171301/interpreting-ctree-partykit-output-in-r

Author(s)

Nicolas Robette

References

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
GetSplitStats(iris.ct)

ggForestEffects

Dot plot of covariates effects

Description

Plots the effects (partial dependence or accumulated local effects) of the covariates of a supervised
learning model in a single a dot plot.

Usage

ggForestEffects(dt, vline=0, xlabel="", ylabel="", main="")

Arguments

dt data frame. Must have three columns : one with the names of the covariates
(named "var"), one with the names of the categories of the covariates (named
"cat"), one with the values of the effects (named "value"). Typically the result
of GetAleData or GetPartialData functions.

vline numeric. Coordinate on the x axis where a vertical line is added.
xlabel character. Title of the x axis.
ylabel character. Title of the y axis.
main character. Title of the plot.

Note

There should be no duplicated categories. If it is the case, duplicated categories have to be renamed
in dt prior to running ggForestEffects.

Author(s)

Nicolas Robette
References

See Also

GetAleData, GetPartialData

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2, controls = cforest_unbiased(mtry=2))
ale <- GetAleData(iris.cf)
ale$cat <- paste(ale$var, ale$cat, sep="_") # to avoid duplicated categories
ggForestEffects(ale)

ggVarImp

Dot plot of variable importance

Description

Plots the importance of the covariates of a supervised learning model in a dot plot.

Usage

```r
ggVarImp(importance, sort=TRUE, xlabel="Importance", ylabel="Variable", main="")
```

Arguments

- `importance` numeric vector. The vector of the importances of the covariates. Should be a named vector.
- `sort` logical. Whether the vector of importances should be sorted or not. Default is TRUE.
- `xlabel` character. Title of the x axis.
- `ylabel` character. Title of the y axis.
- `main` character. Title of the plot.

Author(s)

Nicolas Robette
ictree

An interactive app for conditional inference trees

Description

This function launches a shiny app in a web browser in order to build and analyse conditional inference trees.

Usage

ictree(treedata = NULL)

Arguments

treedata

The data frame to be used in the app. If NULL (default), a module is launched to import data from a file or from the global environment.

Author(s)

Nicolas Robette

References

See Also

ctree-module
NiceTreePlot

Plots conditional inference trees.

Description

Plots a partykit conditional inference tree in a pretty and simple way.

Usage

NiceTreePlot(ct, inner_plots = FALSE)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).
inner_plots Logical. If TRUE, plots are displayed at each inner node. Default is FALSE.

Author(s)

Nicolas Robette

References

See Also
ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
NiceTreePlot(iris.ct, inner_plots = TRUE)
Outliers

Description
Computes outlierness scores and detects outliers.

Usage
Outliers(prox, cls=NULL, data=NULL, threshold=10)

Arguments
prox: a proximity matrix (a square matrix with 1 on the diagonal and values between 0 and 1 in the off-diagonal positions).
cls: Factor. The classes the rows in the proximity matrix belong to. If NULL (default), all data are assumed to come from the same class.
data: A data frame of variables to describe the outliers (optional).
threshold: Numeric. The value of outlierness above which an observation is considered an outlier. Default is 10.

Details
The outlierness score of a case is computed as \(\frac{n}{\text{sum(squared proximity)}} \), normalized by subtracting the median and divided by the MAD, within each class.

Value
A list with the following elements:
scores: numeric vector containing the outlierness scores
outliers: numeric vector of indexes of the outliers, or a data frame with the outliers and their characteristics

Note
The code is adapted from outlier function in randomForest package.

Examples
```r
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
control = party::cforest_unbiased(mtry = 2, ntree = 50))
prox=proximity(iris.cf)
Outliers(prox, iris2$Species, iris2[,1:4])
```
Prototypes

Description

Prototypes are ‘representative’ cases of a group of data points, given the similarity matrix among the points. They are very similar to medoids.

Usage

Prototypes(label, x, prox, nProto = 5, nNbr = floor((min(table(label)) - 1)/nProto))

Arguments

- `label`: the response variable. Should be a factor.
- `x`: matrix or data frame of predictor variables.
- `prox`: the proximity (or similarity) matrix, assumed to be symmetric with 1 on the diagonal and in [0, 1] off the diagonal (the order of row/column must match that of x).
- `nProto`: number of prototypes to compute for each value of the response variables.
- `nNbr`: number of nearest neighbors used to find the prototypes.

Details

For each case in x, the nNbr nearest neighbors are found. Then, for each class, the case that has most neighbors of that class is identified. The prototype for that class is then the medoid of these neighbors (coordinate-wise medians for numerical variables and modes for categorical variables). One then remove the neighbors used and iterate the first steps to find a second prototype, etc.

Value

A list of data frames with prototypes. The number of data frames is equal to the number of classes of the response variable.

Note

The code is an extension of classCenter function in randomForest package.

Author(s)

Nicolas Robette

References

Random Forests, by Leo Breiman and Adele Cutler https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#prototype
Examples

```r
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
control = party::cforest_unbiased(mtry = 2, ntree = 50))
prox = proximity(iris.cf)
Prototypes(iris2$Species, iris2[,1:4], prox)
```

SurrogateTree

Surrogate tree for conditional inference random forests

Description

Builds a surrogate tree to approximate a conditional random forest model.

Usage

```r
SurrogateTree(object, mincriterion = 0.95, maxdepth = 3)
```

Arguments

- `object`: An object as returned by `cforest` (or `fastcforest`).
- `mincriterion`: the value of the test statistic (for `testtype == "Teststatistic"`), or `1 - p-value` (for other values of `testtype`) that must be exceeded in order to implement a split.
- `maxdepth`: maximum depth of the tree. Default is 3.

Details

A global surrogate model is an interpretable model that is trained to approximate the predictions of a black box model (see Molnar 2019). Here a conditional inference tree is build to approximate the prediction of a conditional inference random forest. Practically, the surrogate tree takes the forest predictions as response and the same predictors as the forest.

Value

A list with the following items:

- `tree`: The surrogate tree, of class `party`
- `r.squared`: The R squared of a linear regression with random forests prediction as dependent variable and surrogate tree prediction as predictor

Note

The surrogate tree is built using ctree from partykit package.
Author(s)
Nicolas Robette

References

See Also
cforest, ctree

Examples
```
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,
    control = party::cforest_unbiased(mtry = 2, ntree = 50))
surro <- SurrogateTree(iris.cf)
surro$r.squared
plot(surro$tree)
```

```
titanic
Titanic dataset

Description
A dataset describing the passengers of the Titanic and their survival

Usage
data("titanic")

Format
A data frame with 1309 observations and the following 5 variables.

Survived Factor. Whether one survived or not
Pclass Factor. Passenger class
Sex Factor. Sex
Age Numeric vector. Age
Embarked Factor. Port of embarkation

Examples
data(titanic)
str(titanic)```
Index

* **aplot**
  - ggForestEffects, 19
  - ggVarImp, 20
* **classif**
  - Outliers, 23
  - Prototypes, 24
* **datasets**
  - titanic, 26
* **tree**
  - ctree-module, 4
  - EasyTreeVarImp, 5
  - fastcforest, 6
  - GetAleData, 13
  - GetCtree, 14
  - GetInteractionStrength, 15
  - GetPartialData, 16
  - GetSplitStats, 18
  - ggForestEffects, 19
  - ggVarImp, 20
  - ictree, 21
  - NiceTreePlot, 22

BivariateAssoc, 2

cforest, 7, 9, 13, 15, 16

cforest_control, 6

ctree-module, 4

ctreeUI (ctree-module), 4

ctreeUI (ctree-module), 4

EasyTreeVarImp, 5

fastcforest, 6, 9, 13, 15, 16

fastvarImp, 7, 8, 21

fastvarImpAUC, 9, 9, 21

FeatureEffect, 13

FeatureSelection, 11

foreach, 13, 17

GetAleData, 13, 15, 17, 20

GetCtree, 14

GetInteractionStrength, 13, 15, 17

GetPartialData, 13, 15, 16, 20

GetSplitStats, 18

ggForestEffects, 19

ggVarImp, 20

ictree, 4, 21

iml, 13

NiceTreePlot, 22

Outliers, 23

partial, 17

pdp, 17

Prototypes, 24

ptrafo, 7

shiny::callModule(), 4

shiny::reactive(), 4

SurrogateTree, 25

titanic, 26

varImp, 9, 21

varImpAUC, 21

vint, 15

vip, 15