Package ‘mosqcontrol’

October 13, 2022

Type Package
Title Mosquito Control Resource Optimization
Version 0.1.0
Description This project aims to make an accessible model for mosquito control resource optimization. The model uses data provided by users to estimate the mosquito populations in the sampling area for the sampling time period, and the optimal time to apply a treatment or multiple treatments.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
RoxygenNote 7.0.2
Imports magrittr, assertthat, pracma, NlcOptim, nloptr, sfsmisc
NeedsCompilation no
Author Jeff Demers [aut],
 Anshuman Swain [aut],
 Travis Byrum [aut, cre],
 Sharon Bewick [aut],
 William Fagan [aut]
Maintainer Travis Byrum <tbyrum@terpmail.umd.edu>
Repository CRAN
Date/Publication 2020-08-07 13:50:07 UTC

R topics documented:

control .. 2
mosqcontrol ... 3
uperm .. 3

Index 5
control

Optimal Control

Description

Creates optimal schedule of pulses for mosquito control.

Usage

control(
 counts,
 time,
 mu = 1/14,
 m = 3,
 n_lam = 25,
 kmax = 20,
 global_opt = 0,
 n_pulse = 4,
 rho = 0.3,
 days_between = 3,
 max_eval = 10000
)

Arguments

counts
 Numeric vector of population counts.

time
 Numeric vector with corresponding day of year measurement. Example: Jan 1st = day 1. Must be same length as counts.

mu
 Numeric indicating natural population death rate.

m
 Numeric indicating number of lifetimes for population decay between seasons

n_lam
 Numeric max fourier mode order to calculate.

kmax
 Numeric max number of dynamics fourier modes to use in calculating fourier sum (different than N_lam = max emergence fourier mode set by user for curve fitting portion of the code. Kmax should be an integer between 2 and 200, default at 20.

global_opt
 Numeric set to 0 if user chooses local optimum, 1 if user chooses global GN_DIRECT_L_RAND method, 2 if user chooses global GN_ISRES method.

n_pulse
 Numeric number of pulses, set by user, integer between 1 and 10.

rho
 Numeric percent knockdown (user set between .01 and .30, e.g. 1% to 30% knockdown).

days_between
 Numeric minimum number of days allowed between pulses set by user (integer between 0 and 30 days).

max_eval
 Numeric maximum evaluations for optimization step.
Value

Control list of control parameters.

Examples

```r
y_in <- c(15, 40, 45, 88, 99, 145, 111, 132, 177, 97, 94, 145, 123, 111,
125, 115, 155, 160, 143, 132, 126, 125, 105, 98, 87, 54, 55, 8
)
t_in_user <- c(93, 100, 107, 114, 121, 128, 135, 142, 149, 163, 170, 177,
184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261,
267, 274, 281, 288
)
control(y_in, t_in_user, global_opt = -1)
```

Description

This project aims to make an accessible model for mosquito control resource optimization. The model uses data provided by users to estimate the mosquito populations in the sampling area for the sampling time period, and the optimal time to apply a treatment or multiple treatments.

Author(s)

Maintainer: Travis Byrum <tbyrum@terpmail.umd.edu>

Authors:

- Jeff Demers <jdemeripi@gmail.com>
- Anshuman Swain <answain@terpmail.umd.edu>
- Sharon Bewick <sharon_bewick@hotmail.com>
- William Fagan <bfagan@umd.edu>

Description

uperm returns permutation matrix.

Usage

uperm(d)
Arguments
d Vector

Details
For a given list of numbers, this function outputs a matrix, where each row is a unique permutation of the list.

Examples
uperm(c(1, 2))
Index

control, 2
mosqcontrol, 3
mosqcontrol-package (mosqcontrol), 3
uperm, 3