Package ‘motifcluster’

April 29, 2022

Title Motif-Based Spectral Clustering of Weighted Directed Networks
Version 0.2.0

URL https://github.com/wgunderwood/motifcluster
Language en-US
BugReports https://github.com/wgunderwood/motifcluster/issues
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>= 3.6.0)
Imports ClusterR (>= 1.2.6), igraph (>= 1.2.5), Matrix (>= 1.2), RSpectra (>= 0.16.0)
Suggests covr (>= 3.5.0), knitr (>= 1.28), mclust (>= 5.4.6), rmarkdown (>= 2.1), testthat (>= 2.3.2)
VignetteBuilder knitr
NeedsCompilation no
Author William George Underwood [aut, cre]
Maintainer William George Underwood <wgu2@princeton.edu>
Repository CRAN
Date/Publication 2022-04-29 17:30:02 UTC

R topics documented:

build_laplacian .. 2
build_motif_adjacency_matrix 3
Description

Build a Laplacian matrix (combinatorial Laplacian or random-walk Laplacian) from a symmetric (weighted) graph adjacency matrix.

Usage

build_laplacian(adj_mat, type_lap = c("comb", "rw"))

Arguments

adj_mat Symmetric adjacency matrix from which to build the Laplacian.
type_lap Type of Laplacian to build. One of "comb" (combinatorial) or "rw" (random-walk).

Value

The specified Laplacian matrix.

Examples

adj_mat <- matrix(c(1:9), nrow = 3)
build_laplacian(adj_mat, "rw")
build_motif_adjacency_matrix

Build a motif adjacency matrix

Description

Build a motif adjacency matrix from an adjacency matrix.

Usage

build_motif_adjacency_matrix(
 adj_mat,
 motif_name,
 motif_type = c("struc", "func"),
 mam_weight_type = c("unweighted", "mean", "poisson"),
 mam_method = c("sparse", "dense")
)

Arguments

adj_mat Adjacency matrix from which to build the motif adjacency matrix.
motif_name Motif used for the motif adjacency matrix.
motif_type Type of motif adjacency matrix to build. One of "func" or "struc".
mam_weight_type The weighting scheme to use. One of "unweighted", "mean" or "product".
mam_method Which formulation to use. One of "dense" or "sparse". The sparse formulation avoids generating large dense matrices so tends to be faster for large sparse graphs.

Details

Entry \((i, j)\) of a motif adjacency matrix is the sum of the weights of all motifs containing both nodes \(i\) and \(j\). The motif is specified by name and the type of motif instance can be one of:

- Functional: motifs should appear as subgraphs.
- Structural: motifs should appear as induced subgraphs.

The weighting scheme can be one of:

- Unweighted: the weight of any motif instance is one.
- Mean: the weight of any motif instance is the mean of its edge weights.
- Product: the weight of any motif instance is the product of its edge weights.

Value

A motif adjacency matrix.
Examples

adj_mat <- matrix(c(1:9), nrow = 3)
build_motif_adjacency_matrix(adj_mat, "M1", "func", "mean")

get_largest_component Get largest connected component

Description

Get the indices of the vertices in the largest connected component of a graph from its adjacency matrix.

Usage

get_largest_component(adj_mat)

Arguments

adj_mat An adjacency matrix of a graph.

Value

A vector of indices corresponding to the vertices in the largest connected component.

Examples

adj_mat <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0), nrow = 3)
get_largest_component(adj_mat)

get_motif_names Get common motif names

Description

Get the names of some common motifs as strings.

Usage

get_motif_names()

Value

A vector of names (strings) of common motifs.
random_sparse_matrix

Build a random sparse matrix

Description

Build a sparse matrix of size \(m \times n \) with non-zero probability \(p \). Edge weights can be unweighted, constant-weighted or Poisson-weighted.

Usage

```
random_sparse_matrix(m, n, p, sample_weight_type = "constant", w = 1)
```

Arguments

- \(m, n \) Dimension of matrix to build is \((m, n) \).
- \(p \) Probability that each entry is non-zero (before weighting).
- \(\text{sample_weight_type} \) Type of weighting scheme.
- \(w \) Weight parameter.

Value

A random sparse matrix.

run_laplace_embedding

Run Laplace embedding

Description

Run Laplace embedding on a symmetric (weighted) adjacency matrix with a specified number of eigenvalues and eigenvectors.

Usage

```
run_laplace_embedding(adj_mat, num_eigs, type_lap = c("comb", "rw"))
```

Arguments

- \(\text{adj_mat} \) Symmetric adjacency matrix to be embedded.
- \(\text{num_eigs} \) Number of eigenvalues and eigenvectors for the embedding.
- \(\text{type_lap} \) Type of Laplacian for the embedding. One of "comb" (combinatorial) or "rw" (random-walk).
run_motif_clustering

Value

A list with two entries: vals contains the length-num_eigs vector of the first few eigenvalues of the Laplacian, and vects contains an nrow(adj_mat) by num_eigs matrix of the associated eigenvectors.

Examples

adj_mat <- matrix(c(1:9), nrow = 3)
run_laplace_embedding(adj_mat, 2, "rw")

run_motif_clustering

Run motif-based clustering

Description

Run motif-based clustering on the adjacency matrix of a (weighted directed) network, using a specified motif, motif type, weighting scheme, embedding dimension, number of clusters and Laplacian type.

Usage

run_motif_clustering(
 adj_mat,
 motif_name,
 motif_type = c("struc", "func"),
 mam_weight_type = c("unweighted", "mean", "product"),
 mam_method = c("sparse", "dense"),
 num_eigs = 2,
 type_lap = c("comb", "rw"),
 restrict = TRUE,
 num_clusts = 2
)

Arguments

adj_mat Adjacency matrix to be embedded.
motif_name Motif used for the motif adjacency matrix.
motif_type Type of motif adjacency matrix to use. One of "func" or "struc".
mam_weight_type Weighting scheme for the motif adjacency matrix. One of "unweighted", "mean" or "product".
mam_method The method to use for building the motif adjacency matrix. One of "sparse" or "dense".
num_eigs Number of eigenvalues and eigenvectors for the embedding.
type_lap Type of Laplacian for the embedding. One of "comb" or "rw".
run_motif_embedding

restrict Whether or not to restrict the motif adjacency matrix to its largest connected component before embedding.

num_clusts The number of clusters to find.

Value

A list with 8 entries:

- adj_mat: the original adjacency matrix.
- motif_adj_mat: the motif adjacency matrix.
- comps: the indices of the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- adj_mat_comps: the original adjacency matrix restricted to the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected component (if restrict = TRUE).
- vals: a length-num_eigs vector containing the eigenvalues associated with the Laplace embedding of the (restricted) motif adjacency matrix.
- vects: a matrix containing the eigenvectors associated with the Laplace embedding of the (restricted) motif adjacency matrix.
- clusts: a vector containing integers representing the cluster assignment of each vertex in the (restricted) graph.

Examples

adj_mat <- matrix(c(1:16), nrow = 4)
run_motif_clustering(adj_mat, "M1", "func")
run_motif_embedding

num_eigs = 2,
type_lap = c("comb", "rw"),
restrict = TRUE
)

Arguments

adj_mat Adjacency matrix to be embedded.
motif_name Motif used for the motif adjacency matrix.
motif_type Type of motif adjacency matrix to use. One of "func" or "struc".
mam_weight_type Weighting scheme for the motif adjacency matrix. One of "unweighted", "mean" or "product".
mam_method The method to use for building the motif adjacency matrix. One of "sparse" or "dense".
num_eigs Number of eigenvalues and eigenvectors for the embedding.
type_lap Type of Laplacian for the embedding. One of "comb" or "rw".
restrict Whether or not to restrict the motif adjacency matrix to its largest connected component before embedding.

Value

A list with 7 entries:

• adj_mat: the original adjacency matrix.
• motif_adj_mat: the motif adjacency matrix.
• comps: the indices of the largest connected component of the motif adjacency matrix (if restrict = TRUE).
• adj_mat_comps: the original adjacency matrix restricted to the largest connected component of the motif adjacency matrix (if restrict = TRUE).
• motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected component (if restrict = TRUE).
• vals: a length-num.eigs vector containing the eigenvalues associated with the Laplace embedding of the (restricted) motif adjacency matrix.
• vects: a matrix containing the eigenvectors associated with the Laplace embedding of the (restricted) motif adjacency matrix.

Examples

adj_mat <- matrix(c(1:9), nrow = 3)
run_motif_embedding(adj_mat, "M1", "func")
Sample a bipartite stochastic block model (BSBM)

Description

Sample the (weighted) adjacency matrix of a (weighted) bipartite stochastic block model (BSBM) with specified parameters.

Usage

```r
sample_bsbm(
  source_block_sizes,
  dest_block_sizes,
  bipartite_connection_matrix,
  bipartite_weight_matrix = NULL,
  sample_weight_type = c("unweighted", "constant", "poisson")
)
```

Arguments

- `source_block_sizes`: A vector containing the size of each block of source vertices.
- `dest_block_sizes`: A vector containing the size of each block of destination vertices.
- `bipartite_connection_matrix`: A matrix containing the source block to destination block connection probabilities.
- `bipartite_weight_matrix`: A matrix containing the source block to destination block weight parameters. Unused for `sample_weight_type = "constant"`. Defaults to NULL.
- `sample_weight_type`: The type of weighting scheme. One of "unweighted", "constant" or "poisson".

Value

A randomly sampled (weighted) adjacency matrix of a BSBM.

Examples

```r
source_block_sizes <- c(10, 10)
dest_block_sizes <- c(10, 10, 10)
bipartite_connection_matrix <- matrix(c(0.8, 0.5, 0.1, 0.1, 0.5, 0.8),
  nrow = 2, byrow = TRUE)
bipartite_weight_matrix = matrix(c(20, 10, 2, 2, 10, 20),
  nrow = 2, byrow = TRUE)
sample_bsbm(source_block_sizes, dest_block_sizes,
  bipartite_connection_matrix, bipartite_weight_matrix, "poisson")
```
Sample a directed stochastic block model (DSBM)

Description
Sample the (weighted) adjacency matrix of a (weighted) directed stochastic block model (DSBM) with specified parameters.

Usage
sample_dsbm(
 block_sizes,
 connection_matrix,
 weight_matrix = NULL,
 sample_weight_type = c("unweighted", "constant", "poisson")
)

Arguments
- block_sizes: A vector containing the size of each block of vertices.
- connection_matrix: A matrix containing the block-to-block connection probabilities.
- weight_matrix: A matrix containing the block-to-block weight parameters. Unused for sample_weight_type = "constant". Defaults to NULL.
- sample_weight_type: The type of weighting scheme. One of "unweighted", "constant" or "poisson".

Value
A randomly sampled (weighted) adjacency matrix of a DSBM.

Examples
block_sizes <- c(10, 10)
connection_matrix <- matrix(c(0.8, 0.1, 0.1, 0.8), nrow = 2, byrow = TRUE)
weight_matrix <- matrix(c(10, 3, 3, 10), nrow = 2, byrow = TRUE)
sample_dsbm(block_sizes, connection_matrix, weight_matrix, "poisson")
Index

build_laplacian, 2
build_motif_adjacency_matrix, 3

get_largest_component, 4
get_motif_names, 4

random_sparse_matrix, 5
run_laplace_embedding, 5
run_motif_clustering, 6
run_motif_embedding, 7

sample_bsbm, 9
sample_dsbm, 10