Package ‘mpbart’
February 7, 2016

Title Multinomial Probit Bayesian Additive Regression Trees
Version 0.2
Description Fits Multinomial Probit Bayesian Additive Regression Trees.
Depends R (>= 3.2.2), mlbench, bayesm, cvTools, mlogit
License GPL (>= 2)
LazyData true
RoxygenNote 5.0.1
NeedsCompilation yes
Author Bereket Kindo [aut, cre]
Maintainer Bereket Kindo <bpkindo@gmail.com>
Repository CRAN
Date/Publication 2016-02-07 12:39:20

R topics documented:

 mpbart .. 1
 rmpbart .. 5

Index

mpbart Multinomial Probit Bayesian Additive Regression Trees

Description

 Multinomial probit modeling using Bayesian Additive Regression Trees,

Usage

 mpbart(formula, train.data, test.data = NULL, base = NULL, varying = NULL,
 sep = ".", Prior = NULL, Mcmc = NULL, seedvalue = NULL)
Arguments

formula
response ~ choice specific covariates | demographic covariates. If there are no, demographic variables use response ~ choice specific covariates | ~ 1. If there are no choice specific covariates, use response ~ 1 | demographic covariates

train.data
Training Data in wide format (for details on wide format, see documentation in R package **mlogit**),

test.data
Test Data in wide format, typically without the response,

base
base choice. Default is the highest class/choice,

varying
The indeces of the variables that are alternative specific,

sep
The separator of the variable name and the alternative name in the choice specific covariates. For example a covariate name variabl1.choice1 indicates a separator of dot ().

Prior
List of Priors for MPBART: e.g., Prior = list(nu=p+2, V= diag(p - 1), ntrees=200, kfac=2.0, pbda=1.0, pb=0.5 , beta = 2.0, alpha = 0.95, nc = 100, priorindep = FALSE, minobsnode = 10). The comonents of Prior are

- **nu**
- **Mcmc**
List of MCMC starting values, burn-in ...: e.g., list(sigma0 = diag(p - 1), keep = 1, burn = 100, ndraws = 1000, keep_sigma_draws=FALSE)

seedvalue
random seed value, default of 99 will be used if null,

Value

class_prob_train training data choice/class probabilities,
predicted_class_train training data predicted choices/classes,
class_prob_test test data choice/class probabilities,
predicted_class_test test data predicted choices/classes,
sigmasample posterior samples of the latent variable covariance matrix.

Examples

```r
## Not run: library(mpbart)
set.seed(9)
data(Fishing)
table(Fishing$mode)
folds = cvFolds(n = nrow(Fishing), K = 10, R = 1,
   type = "random");
Fishing$fold = sample(folds$which)
Fishing$logincome = log(Fishing$income)

FishingTrain <- Fishing[Fishing$fold != 1,]
FishingTest <- Fishing[Fishing$fold == 1,]

burn <- 100
ndraws <- 200 # a higher number such as 1500 is better
```
p = 4
four choices
sigma0 <- diag(p-1)

Mcmc1 <- list(sigma0=sigma0, burn = burn, ndraws = ndraws)
Prior1 <- list(nu=p-1,
 V = .5*diag(p-1),
 ntrees = 5, # ntrees >= 50 is probably more appropriate
 kfac = 3.0,
 pbd = 1.0,
 pb = 0.5,
 alpha = 0.95,
 beta = 3.0,
 nc = 100,
 priorindep = FALSE,
 minobsnode = 10)

out <- mpbart(as.factor(mode) ~ price + catch | logincome,
 train.data = FishingTrain,
 test.data = FishingTest,
 base = 'boat',
 varying = 2:9,
 sep = ' ',
 Prior = Prior1,
 Mcmc = Mcmc1,
 seedvalue = 99)

table(as.character(FishingTrain$mode), as.character(out$predicted_class_train))
table(as.character(FishingTest$mode), as.character(out$predicted_class_test))

test_err <- sum(as.character(FishingTest$mode) !=
 as.character(out$predicted_class_test))/length(FishingTest$mode)
cat("test error :", test_err)

Waveform recognition classification example
set.seed(64)
library(mpbart)
p=3
train_wave = mlbench.waveform(300)
test_wave = mlbench.waveform(500)
traindata = data.frame(train_wave$x, y = train_wave$classes)
#testdata = data.frame(test_wave$x, y = test_wave$classes)
#
#
sigma0 = diag(p-1)
burn = 100
ndraws <- 200 # a higher number such as 1500 is better#
Mcmc1=list(sigma0=sigma0, burn = burn, ndraws = ndraws)
Prior1 = list(nu=p+2,
V=(p+2)*diag(p-1),
ntree = 100,
kfac = 2.0,
pbd = 1.0,
pb = 0.5,
alpha = 0.99,
beta = 2.0,
nc = 200,
priorindep = FALSE)
#
#
out <- mpbart(as.factor(y) ~ 1 | ,
train.data = traindata,
test.data = testdata,
base = NULL,
varying = NULL,
sep = NULL,
Prior = Prior1,
Mcmc = Mcmc1,
seedvalue = 99)
#
The above output can alternatively be obtained via:
out <- mpbart(as.factor(y) ~ 1 | X1 + X2 + X3 + X4 + X5 + X6 +
X7 + X8 + X9 + X11 + X12 + X13 +
X14 + X15 + X16 + X17 + X18 + X19 +
X20 + X21,
train.data = traindata,
test.data = testdata,
base = NULL,
varying = NULL,
sep = NULL,
Prior = Prior1,
Mcmc = Mcmc1,
seedvalue = 99)
##
confusion matrix train
table(traindatay, outpredicted_class_train)
table(traindata$y == out$predicted_class_train)/
sum(table(traindata$y == out$predicted_class_train))
#
confusion matrix test
table(testdatay, outpredicted_class_test)
##
test_err <- sum(testdata$y != out$predicted_class_test)/
sum(table(testdata$y == out$predicted_class_test))
##
cat("test error : ", test_err)
Not run: END
Description

A function to implement multinomial probit regression via Bayesian Addition Regression Trees using partial marginal data augmentation.

Usage

rmpbart(x.train, y.train, x.test = NULL, Prior = NULL, Mcmc = NULL,
seedvalue = NULL)

Arguments

x.train Training data predictors.
y.train Training data observed classes.
x.test Test data predictors.
Prior List of Priors for MPBART: e.g., Prior = list(nu=p+2, V= diag(p - 1), ntrees=200,
kfac=2.0, pb=0.5 , beta = 2.0, alpha = 0.95, nc = 100, priorindep = 0,
minobsnode = 10)
Mcmc List of MCMC starting values, burn-in ...: e.g., list(sigma0 = diag(p - 1), keep =
1, burn = 100, ndraws = 1000, keep_sigma_draws=FALSE)
seedvalue random seed value: e.g., seedvalue = 99

Examples

set.seed(64)
library(mpbart)
p=3
train_wave = mlbench.waveform(50)
test_wave = mlbench.waveform(100)
traindata = data.frame(train_wave$x, y = train_wave$classes)
testdata = data.frame(test_wave$x, y = test_wave$classes)
x.train = data.frame(train_wave$x)
x.test = data.frame(test_wave$x)
y.train = train_wave$classes

sigma0 = diag(p-1)
burn = 100
ndraws = 200 # a higher number >=1000 is more appropriate.

Mmccl=1=list(sigma0=sigma0, burn = burn, ndraws = ndraws)
Priorl = list(nu=p+2,
\[V = (p+2) \times \text{diag}(p-1), \]
\[\text{ntrees} = 5, \quad \text{typically 200 trees is good} \]
\[\text{kfac} = 2.0, \]
\[\text{pb} = 1.0, \]
\[\text{pb} = 0.5, \]
\[\alpha = 0.99, \]
\[\beta = 2.0, \]
\[\text{nc} = 200, \]
\[\text{priorindep} = \text{FALSE} \]

```r
out = rmpbart(x.train = x.train, y.train = y.train, x.test = x.test,
               Prior = Prior1, Mcmc = Mcmc1, seedvalue = 99)

# confusion matrix train
table(y.train == out$predicted_class_train)/sum(table(y.train == out$predicted_class_train))

# confusion matrix test
table(test_wave$classes == out$predicted_class_test)/
    sum(table(test_wave$classes == out$predicted_class_test))
```

cat("test error :", test_err)
Index

mpbart, 1
rmpbart, 5