CJS Modeling in MRA

Trent McDonald
January 4, 2016

This vignette repeats and embellishes examples in `help(F.cjs.estim)`.

Time-varying Models

The following demonstrates two methods for fitting a time-varying capture and survival model, the so-called “small t” model. First, we attach the `mra` library and obtain access to the example dipper data.

```r
library(mra)

## mra (version 2.16.11)
data("dipper.histories")
dim(dipper.histories)

## [1] 294  7

head(dipper.histories)

## h1 h2 h3 h4 h5 h6 h7
## 1 1 1 1 1 1 1 0
## 2 1 1 1 1 1 1 0
## 3 1 1 1 1 0 1 0
## 4 1 1 1 1 0 0 0
## 5 1 1 0 1 1 1 0
## 6 1 1 0 0 0 0 0

Method 1: Using factors

The following code constructs a factor variable containing one level for each capture occasion. The attribute of this factor tells `mra` the “other” dimension of the problem. Internally, `mra` will use this attribute to replicate the factor into matrices that are the appropriate size.

```r
ct <- as.factor(paste("T",1:ncol(dipper.histories), sep=""))
attr(ct,"nan")<-nrow(dipper.histories)

cf

[1] T1 T2 T3 T4 T5 T6 T7
attr(,"nan")
[1] 294
Levels: T1 T2 T3 T4 T5 T6 T7
```

Next, call `F.cjs.estim` and specify that `ct` is a time-varying vector covariate using the `tvar` function. When the vector given to `tvar` is a factor, there are additional options which allow the user to drop certain levels of the factor. This is useful when coefficients for some levels are not estimable, as in the case of a completely time-varying CJS model. Here, there are 7 levels in factor `ct`, but only 6 capture and survival parameters are defined (recall, 1st capture parameter is not estimable, and 7th survival parameter between occasions 7 and 8 does not exist). Consequently, we tell `tvar` to drop the first two levels of `ct` from the capture model. We drop the level 1st because only 6 parameters exist. We drop the 2nd to break the colinearity of levels and
define \( p_2 \) as the reference level. In the survival model, we drop the first, sixth, and seventh levels of \( ct \). The first level is dropped to break the collinearity of levels and define \( \phi_1 \) as the reference level. We drop level 6 because the last survival and capture parameters are confounded in CJS models. We drop the 7th level because there are only 6 survival parameters. The call the `F.cjs.estim` is:

```r
dipper1.cjs <- F.cjs.estim(~tvar(ct,drop=c(1,2)), ~tvar(ct,drop=c(1,6,7)), dipper.histories)
```

```
Call:
F.cjs.estim(capture = ~tvar(ct, drop = c(1, 2)), survival = ~tvar(ct,
drop = c(1, 6, 7)), histories = dipper.histories)

Capture var Est SE Survival var Est SE
(Intercept) 0.82928 0.78283 (Intercept) 0.93546 0.76772
tvar(ct, drop = c(1, 2)):T3 1.65563 1.29086 tvar(ct, drop = c(1, 6, 7)):T2 -1.19828 0.8698
tvar(ct, drop = c(1, 2)):T4 1.5221 1.07234 tvar(ct, drop = c(1, 6, 7)):T3 -1.02284 0.80412
tvar(ct, drop = c(1, 2)):T5 1.37675 0.98779 tvar(ct, drop = c(1, 6, 7)):T4 -0.41986 0.80834
tvar(ct, drop = c(1, 2)):T6 1.79509 1.06789 tvar(ct, drop = c(1, 6, 7)):T5 -0.5361 0.80229
tvar(ct, drop = c(1, 2)):T7 0.2106 0.83736

Message = SUCCESS: Convergence criterion met
Link = logit
Model df = 11
Std Errors and QAIC adjusted for C_hat = 1 on 5 df
Log likelihood = -328.475105968236
Deviance = 656.950211936473
AIC = 678.950211936473
AICc = 679.886382149239
QAIC = 678.950211936473
QAICc = 679.886382149239

Population Size Estimates (se):
N2=86 (21.39), N3=84 (7.18), N4=88 (6.29), N5=98 (6.7), N6=105 (5.85), N7=126 (30.49),
```

Method 2: Using explicit 2-D matrices

While using factors (Method 1 above) produces the most economical code, it does not adequately illuminate the covariate matrices which are at the heart of CJS modeling. To illustrate covariates as explicit matrices, this method constructs one 2-D matrix for each parameter, then estimates the same model as Method 1.

First, we construct 6 matrices containing 1’s in a single column only. In Method 1, this construction was performed behind-the-scenes by `tvar`. Note that only 6 matrices are required due to the number of parameters, breaking of collinearity, and confounding of CJS parameters mentioned above.

```r
x2 <- matrix(c(0,1,0,0,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x3 <- matrix(c(0,0,1,0,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x4 <- matrix(c(0,0,0,1,0,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x5 <- matrix(c(0,0,0,0,1,0), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x6 <- matrix(c(0,0,0,0,0,1), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
x7 <- matrix(c(0,0,0,0,0,0,1), nrow(dipper.histories), ncol(dipper.histories), byrow=TRUE)
```

Each of the above matrices have a column of 1’s corresponding to the effect they estimate. The first six rows of \( x3 \) and \( x4 \) are:
We now call `F.cjs.estim` without aid of `tvar` by explicitly specifying the matricies in each model. Note that `x2` is not included in the capture model, and that `x6` and `x7` are not included in the survival model.

dipper2.cjs <- F.cjs.estim(~x3+x4+x5+x6+x7, ~x2+x3+x4+x5, dipper.histories)
dipper2.cjs

```
Call:
F.cjs.estim(capture = ~x3 + x4 + x5 + x6 + x7, survival = ~x2 +
x3 + x4 + x5, histories = dipper.histories)
##
(Intercept) 0.82928 0.78283 (Intercept) 0.93546 0.76772
x3 1.65563 1.29086 x2 -1.19828 0.8698
x4 1.5221 1.07234 x3 -1.02284 0.80412
x5 1.37675 0.98779 x4 -0.41986 0.80834
x6 1.79509 1.06789 x5 -0.5361 0.80229
x7 0.2106 0.83736

Note that parameter estimates produced by `Method 1` and `Method 2` are identical.
Plot: \hat{N}_j estimates

Following is a plot of the Horvitz-Thomson population size estimates.

plot(dipper1.cjs)

Plot: $\hat{\phi}_j$ estimates

Following is a plot of survival estimates containing one line per individual.

plot(dipper1.cjs,type="s",ci=FALSE)