Package ‘msBP’

December 13, 2018

Type Package
Title Multiscale Bernstein Polynomials for Densities
Version 1.4
Date 2018-12-13
Author Antonio Canale
Maintainer Antonio Canale <canale@stat.unipd.it>
Description Performs Bayesian nonparametric multiscale density estimation and multiscale testing of group differences with multiscale Bernstein polynomials (msBP) mixtures as in Canale and Dunson (2016).
License GPL-2
Suggests R.rsp
VignetteBuilder R.rsp
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-12-13 20:50:03 UTC

R topics documented:

msBP-package ... 2
galaxy .. 2
msBP.compute.prob .. 3
msBP.Gibbs .. 4
msBP.nrvTrees .. 7
msBP.pdf ... 8
msBP.postCluster .. 9
msBP.rsample .. 10
msBP.tree ... 11
msBP.test ... 12
msBP.tree ... 13
tree2vec .. 14

Index 15

1
msBP-package

Bayesian nonparametric density estimation via Multiscale Bernstein Polynomials (msBP)

Description

Performs Bayesian nonparametric multiscale density estimation and multiscale testing of group differences with multiscale Bernstein polynomials (msBP) mixtures as in Canale and Dunson (2016).

Details

Package: msBP
Type: Package
Version: 1.3
Date: 2017-06-06
License: GNU GPL

Author(s)

Antonio Canale <canale@stat.unipd.it>

References

galaxy

Galaxy velocities

Description

Dataset with the velocities of the 82 galaxies reported by Roeder (1990)

Usage

data(galaxy)

Format

A data frame with 82 observations and a single variable reporting the speed of galaxies (km/second)
Source

References

Examples

```r
data(galaxy)
str(galaxy)
```

Description

Compute the binary tree of probabilities using the multiscale stick-breaking process of Canale and Dunson (2016).

Usage

```r
msBP.compute.prob(msBPTree, root = TRUE)
```

Arguments

- `msBPTree`: An object of the class `msBPTree`
- `root`: logical. if the root needs to be considered (default) or it should be cut (fixing $S_{01} = 0$)

Details

Compute a binary tree of weights. The general weights for node h of scale s, is

$$
\pi_{s,h} = S_{s,h} \prod_{r<s} (1 - S_{r,g_{shr}}) T_{shr}
$$

where $g_{shr} = \lceil h/2^{s-r}\rceil$ and $T_{shr} = R_{r,g_{shr}}$ if $(r+1, g_{shr+1})$ is the right daughter of node (r, g_{shr}), or $T_{shr} = 1 - R_{r,g_{shr}}$ if $(r+1, g_{shr+1})$ is the left daughter of (r, g_{shr}). An object of the `msBPTree` class is basically a list containing two objects of the class `binaryTree`: the S tree (representing the stopping probabilities) and the R tree (representing the proceed-right probabilities).

Value

An object of the class `msbptree`.
msBP.Gibbs

Gibbs sampling for density estimation for msBP model

Description

Gibbs sampling for Markov Chain Motecarlo sampling from the posterior distribution of an msBP model.

Usage

msBP.Gibbs(x, a, b, g0 = "normal", g0par=c(0,1), mcmc,
grid = list(n.points=40, low=0.001, upp=0.999), state=NULL, hyper,
printing=0, maxScale=5, ...)

Arguments

x
the observed sample

a
scalar a parameter

b
scalar b parameter

g0
prior guess for the density of x. Currently only "normal", "unif", "gamma", and "empirical" are supported. From version 1.1 random paramters are also allowed (only with g0="normal").

g0par
additional scalar parameters for g0. If "normal" corresponds to mean and standard deviation, if "uniform" to upper and lower bounds, if "gamma" to shape and rate parameters. If "empirical" this value is not used. From version 1.1 random paramters are also allowed (only with g0="normal").

Examples

S <- structure(list(T = list(1/8, c(1/3, 1/3), c(1/4, 1/4, 1/4, 1/4), rep(1/8), max.s=3), class = "binaryTree")
R <- structure(list(T = list(1/2, c(1/2, 1/2), c(1/4, 1/2, 1/2, 1/2), rep(1/8), max.s=3), class = "binaryTree")
RS <- structure(list(S = S, R = R), class = "msbpTree")
probabilities <- msBP.compute.prob(RS)
msBP.Gibbs

mcmc

A list giving the MCMC parameters. It must include the following integers:
- `nb`: giving the number of burn-in iterations,
- `nrep`: giving the total number of iterations (including `nb`), and
- `ndisplay`: giving the multiple of iterations to be displayed on screen while the C++ routine is running (a message will be printed every `ndisplay` iterations).

grid

A list giving the parameters for plotting the posterior mean density over a finite grid. It must include the following values:
- `low` and `upp`: giving the lower and upper bound respectively of the grid and
- `npoints`: an integer giving the number of points of the grid.

state

A list giving the current value of the parameters. This list is used if the current analysis is the continuation of a previous analysis or if we want to start the MCMC algorithm from some particular value of the parameters.

hyper

A list containing the values of the hyperparameters for `a` and `b` or for the parameters of the prior guess (only if `g0="normal"`). It must contains `hyperprior`, a list of three logical values determining if hyperpriors for `a`, `b` and `g0` are used (TRUE) or if `a`, `b`, or `g0` are fixed (FALSE), and `hyperpar` a list containing the hyperparameters for the hyperprior distributions: `beta`, `gamma`, `delta`, `lambda`, `mu0`, `kappa0`, `alpha0`, and `beta0`. See details. `gridb` is a grid of values for which the prior (and posterior) for `b` is evaluated with a Griddy Gibbs approach (Ritter and Tanner, 1992). See details.

printing

Vector of integers if the internal C++ function need to print what is doing.

maxScale

Maximum scale of the binary trees.

... additional arguments.

Details

Before calling the proper C++ subrouting the function center the sample on an initial guess for the density of the data. If `g0 = 'empirical'` the data are transformed so that the expctation of the msBP prior is centered on the kernel density estimate of `x`.

The algorithm consists of two primary steps: (i) allocate each observation to a multiscale cluster, conditionally on the values of the weights (see also `msBP.postCluster`); (ii) update the weights, conditionally on the cluster allocations. All the procedure is written in C++ and additional R scripts are used to pre- and post-process the data and the output.

If `hyper$hyperpriors$a` or `hyper$hyperpriors$b` is true, additional hyperpriors for `a` and `b` are assumed. Specifically the algorithm implements \(a \sim Ga(\beta, \gamma) \) and \(b \sim Ga(\delta, \lambda) \). For the former parameter the full conditional posterior distribution is available in closed form, i.e.

\[
a \mid \sim Ga \left(\beta + 2s'+1 - 1, \gamma - \sum_{s=0}^{s'} \sum_{h=1}^{2^s} \log(1 - S_{s,h}) \right),
\]

while for the latter its full conditional posterior is proportional to

\[
\frac{b^{\delta-1}}{B(b,b)^{s'+1}} \exp \left\{ b \left(\sum_{s=0}^{s'} \sum_{h=1}^{2^s} \log \{ R_{s,h}(1 - R_{s,h}) \} - \lambda \right) \right\},
\]
where s' is the maximum occupied scale and $B(p, q)$ is the Beta function. To sample from the latter distribution, a griddy Gibbs approach over the grid defined by `msBP.hyperpar$grid` is used. See Ritter and Tanner (1992). From Version 1.1, if `msBP.hyperpriors$base` is TRUE and `g0="normal"` additional hyperpriors for the parameter of the centering normal density are assumed. Specifically the model is

$$y = \Phi(x; \mu, \sigma^2)$$

$$(\mu, \sigma^2) \sim N(\mu_0, \kappa_0 \sigma^2) I-Ga(\sigma^2; \alpha_0, \beta_0)$$

and an additional step simulating the values of μ and σ^2 from their conditional posterior distribution is added to the Gibbs sampler of Canale and Dunson (2016). Specifically, a Metropolis-Hastings step with proposal equal to the prior is implemented.

Value

A list containing

- `density`: A list containing `postMeanDen`, the posterior mean density estimate evaluated over `xDen` and `postLowDen` and `postUpDen`, the lower and upper pointwise 95% credible bands,

- `mcmc`: A list containing the MCMC chains: `dens` is a matrix (`nt` times `n.grid`, `a` and `b` are the vectors with the MCMC chains for the two parameters (if `hyperprior` was TRUE), `scale` is a matrix where each column is a MCMC chain of the total mass for each scale, `R` and `S`, are matrices where each column in the tree2vec form of the corresponding trees, `weights` is a matrix where each column is the tree2vec form of the corresponding tree of weights, `s` and `h` are matrices where each column is the MCMC chain for the node labels for a subject.

- `postmean`: A list containing posterior means over the MCMC samples of `a`, `b`, and of all binary trees

- `fit`: A list containing the LPML, mean and median of the log CPO.

References

See Also

`msBP.postCluster`
Examples

```r
## Not run:
data(galaxy)
galaxy <- data.frame(galaxy)
speeds <- galaxy$speed/1000
set.seed(1)
# with fixed g0 and random a, b
fit.mspb.1 <- msBP.Gibbs(speeds, a = 10, b = 5, g0 = "empirical",
mcmc=list(nrep = 10000, nb = 5000, ndisplay = 1000),
hyper=list(hyperprior=list(a = TRUE, b = TRUE, g0 = FALSE),
hyperpar=list(beta=5,gamma = 1,delta = 1,lambda = 1)),
printing = 0, maxS = 7, grid = list(n.points = 150, low = 5, upp = 38))

# with random a, b and hyperparameters of g0
fit.mspb.2 <- msBP.Gibbs(speeds, a = 10, b=5, g0 = "normal",
mcmc=list(nrep = 10000, nb = 5000, ndisplay = 1000),
hyper=list(hyperprior = list(a = TRUE, b = TRUE, g0 = TRUE),
hyperpar = list(beta = 50, gamma = 5, delta = 10, lambda = 1),
gridB = seq(0, 20, length = 30),
mu0 = 21, kappa0 = 0.1, alpha0 = 1, beta0 = 20)),
printing = 0, maxS = 7, grid = list(n.points = 150, lo w = 5, upp = 38))

hist(speeds, prob=TRUE,br=10, ylim=c(0,0.23), main="", col='grey')
points(fit.mspb.1$density$postMeanDens~fit.mspb.1$density$xDens, ty='l', lwd=2)
points(fit.mspb.1$density$postUppDens~fit.mspb.1$density$xDens, ty='l',lty=2, lwd=2)
points(fit.mspb.1$density$postLowDens~fit.mspb.1$density$xDens, ty='l',lty=2, lwd=2)

hist(speeds, prob=TRUE,br=10, ylim=c(0,0.23), main="", col='grey')
points(fit.mspb.2$density$postMeanDens~fit.mspb.2$density$xDens, ty='l', lwd=2)
points(fit.mspb.2$density$postUppDens~fit.mspb.2$density$xDens, ty='l',lty=2, lwd=2)
points(fit.mspb.2$density$postLowDens~fit.mspb.2$density$xDens, ty='l',lty=2, lwd=2)

## End(Not run)
```

msBP.nrvTrees

Nesting of the sample through the tree

Description

Compute the path of each subject in the binary tree of weights and returns 3 tree: the *n* tree, the *r* tree, and the *v* tree (see values)

Usage

```
msBP.nrvTrees(sh, maxS = max(sh[,1]))
```
Arguments

- **sh**: A matrix with 2 columns and a number of rows equal to the sample size denoting the scale and node labels of each unit.
- **maxS**: Upper bound for the scale.

Value

A list containing tree objects of the class `binaryTree`. `n` is the tree containing at each node the number of subjects allocated to that node, `r` is the tree containing at each node the number of subjects that went right at that node, and `v` is the tree containing at each node the number of subjects that passed through that node.

References

Examples

```r
sh <- cbind(c(2,2,2,3,3,3,3,3,3), c(1,2,2,1,2,3,4,5,6,7))
nrv.trees <- msBP.nrvTrees(sh)
plot(nrv.trees$n)
```

Description

Compute the density and the cumulative distribution functions of a random density drawn from an msBP(a,b) process.

Usage

```r
msBP.pdf(weights, n.points, y)
msBP.cdf(weights, n.points, log, y)
```

Arguments

- **weights**: An object of the class `binaryTree` containing probability weights.
- **n.points**: Length of the grid over (0,1) in which calculate the value of the random density.
- **log**: Logical. TRUE for computing the log-cdf.
- **y**: Vector of values in which the random density is evaluated. If used, `n.points` is not considered.
msBP.postCluster

Value

Vector of size n.points or length(y)

References

See Also

msBP.rtree

Examples

```r
prob <- structure(list(T = list(0.15, c(0.05, 0.05), c(0.05, 0.2, 0.1, 0.1),
c(0.0, 0.3, 0, 0, 0, 0)), max.s = 3), class = "binaryTree")
density <- msBP.pdf(prob, 100)
probability <- msBP.cdf(prob, 100)
par(mfrow = c(1, 2))
plot(density$dens$density$y, ty = 'l', main = "pdf")
plot(probability$prob$density$y, ty = 'l', main = "cdf")
```

msBP.postCluster
Posterior cluster allocation

Description

Perform the posterior multiscale cluster allocation conditionally on a tree of weights. See Algorithm 1 in Canale and Dunson (2016).

Usage

```r
msBP.postCluster(y, weights)
```

Arguments

- `y`
 the sample of individuals to be allocated to binary tree structure

- `weights`
 the binary tree of weights (summing to one). An object of the class msBP1ree

Details

conditionally on the weights contained in weights, each subject in y is allocated to a multiscale cluster using Algorithm 1 of Canale and Dunson (2016). It relies on a multiscale modification of the slice sampler of Kalli et al. (2011).
Random numbers from a random msBP density

Description
Random numbers generation from a random density drawn from a msBP process.

Usage
msBP.rsample(n, msBPtree)

Arguments
- n: Size of the sample to be generated
- msBPtree: An object of the class msBPtree

Value
A vector containing the random sample

References

See Also
msBP.Gibbs

Examples
set.seed(1)
y <- rbeta(30, 5, 1)
weights <- structure(list(
 T = list(0, c(0, 10), c(0, 0, 0.3, 0.6)), max.s=2),
 class = 'binaryTree')
sh <- msBP.postCluster(y, weights)
clus.size <- msBP.nrvTrees(sh)$n
plot(clus.size)

References

See Also

msBP.rtree

Examples

rand.tree <- msBP.rtree(50, 2, 4)
rand.samp <- msBP.rsample(50, rand.tree)
hist(rand.samp, prob=TRUE)
prob <- msBP.compute.prob(rand.tree)
density <- msBP.pdf(prob, 100)
points(density$dens$density$y, ty='l', col=4)

msBP.rtree

Random msBP tree

Description

Draw a random tree from the msBP process

Usage

msBP.rtree(a, b, max.s = 10)

Arguments

a Scalar parameter
b Scalar parameter
max.s Maximum depth of the random trees

Value

An object of the class msBPTree

References

See Also

msBP.rsample, msBP.compute.prob

Examples

msBP.rtree(2, 2, 4)

msBP.test

Multiscale testing of group differences

Description

Performs multiscale hypothesis testing of difference in the distribution of two groups using msBP prior.

Usage

msBP.test(y, a, b, group, priorH0 = 0.5, mcmc, maxScale = 5, plot.it = FALSE, ...)

Arguments

y
The pooled sample of observations

a, b
Parameters of the msBP prior

group
Vector of size length(y) with 0 and 1 denoting the group membership.
priorH0
Prior gues for the probability of H0

mcmc
a list giving the MCMC parameters. It must include the following integers: nb giving the number of burn-in iterations, nrep giving the total number of iterations (including nb), and ndisplay giving the multiple of iterations to be displayed on screen while the MCMC is running (a message will be printed every ndisplay iterations).

maxScale
maximum scale of the binary trees.

plot.it
logical. If TRUE a plot of the posterior mean probability of H0 is produced

... additional arguments to be passed.

Value

a list containing

Ps
a matrix with maxScale rows and mcmc$nrep columns with the MCMC draws of posterior probabilities of H0 for each scale

Ps
the posterior mean probabilities of H0 for each scale.
msBP.tree

References

Examples

```r
set.seed(1)
y <- runif(100)
g <- c(rep(0.50), rep(1.50))
mcmc <- list(nrep = 5000, nb = 1000, ndisplay = 500)
## Not run:
test.res <- msBP.test(y, 5, 1, g, mcmc=mcmc, plot.it = TRUE)
## End(Not run)
```

msBP.tree

Creating an msBPTree

Description

Create an object of the class msBPTree

Usage

```r
msBP.tree(max.s = 10)
```

Arguments

- `max.s` Maximum depth of the binary tree

Details

An object of the class msbpTree is a list of 5 elements that represent a draw from a msBP(a,b) prior as introduced by Canale and Dunson (2016). The first two elements are the trees of the stopping and descending-to-the-right probabilities, respectively. Both are object of the class binaryTree. The third and fourth argument are the hyperparameters of the msBP prior, namely a and b. The last value is an integer with the maximum depth of both the trees.

Value

An object of the class msBPTree with zero at all nodes and a=b=NULL.

Author(s)

Antonio Canale <canale@stat.unipd.it>
References

See Also

msBP.rtree

Examples

```r
tree <- msBP.tree(2)
```

Description

Convert a binary tree object into a vector and _vice versa_.

Usage

```r
tree2vec(tree)
vec2tree(vec)
```

Arguments

- `tree` An object of the class binaryTree
- `vec` A vector of numbers. It must have size $2^s - 1$, with s an integer.

Details

An object of the class binaryTree is a binary tree containing at each node a value.

Value

A vector of size $2^{D+1} - 1$, where D is the depth of the binary tree, or a binary tree with depth $\log_2(length(vec) + 1)$.

Examples

```r
tree <- vec2tree(1:(2^5 - 1))
vector <- tree2vec(tree)
```
Index

*Topic **Binary trees, Density estimation, Multiscale stick-breaking, Multiscale testing**
 msBP-package, 2
*Topic **multiscale clustering**
 msBP.postCluster, 9
*Topic **multiscale testing**
 msBP.test, 12

galaxy, 2
msBP (msBP-package), 2
msBP-package, 2
msBP.cdf (msBP.pdf), 8
msBP.compute.prob, 3, 12
msBP.Gibbs, 4, 10
msBP.nrvTrees, 7
msBP.pdf, 8
msBP.postCluster, 6, 9
msBP.rsample, 10, 12
msBP.rrtree, 4, 9, 11, 11
msBP.test, 12
msBP.rrtree, 13

tree2vec, 14

vec2tree (tree2vec), 14