Package ‘msaenet’

May 17, 2019

Type Package
Title Multi-Step Adaptive Estimation Methods for Sparse Regressions
Version 3.1
Maintainer Nan Xiao <me@nanx.me>
License GPL-3 | file LICENSE
URL https://nanx.me/msaenet/, https://github.com/nanxstats/msaenet
Encoding UTF-8
LazyData true
VignetteBuilder knitr
BugReports https://github.com/nanxstats/msaenet/issues
Depends R (>= 3.0.2)
Imports glmnet, ncvreg (>= 3.8-0), foreach, mvtnorm, survival, Matrix
Suggests knitr, rmarkdown, doParallel
RoxygenNote 6.1.1
NeedsCompilation no
Author Nan Xiao [aut, cre] (<https://orcid.org/0000-0002-0250-5673>), Qing-Song Xu [aut]
Repository CRAN
Date/Publication 2019-05-17 19:10:03 UTC

R topics documented:

msaenet-package ... 2
aenet ... 3
Description

Details

Browse the vignette with `vignette("msaenet").`

Author(s)

Nan Xiao <<me@nanx.me>>

References

Adaptive Elastic-Net

Usage

\[
aenet(x, y, family = c("gaussian", "binomial", "poisson", "cox"),
init = c("enet", "ridge"), alphas = seq(0.05, 0.95, 0.05),
tune = c("cv", "ebic", "bic", "aic"), nfolds = 5L,
rule = c("lambda.min", "lambda.1se"), ebic.gamma = 1, scale = 1,
lower.limits = -Inf, upper.limits = Inf,
penalty.factor.init = rep(1, ncol(x)), seed = 1001,
parallel = FALSE, verbose = FALSE)
\]

Arguments

- **x**: Data matrix.
- **y**: Response vector if family is "gaussian", "binomial", or "poisson". If family is "cox", a response matrix created by `Surv`.
- **family**: Model family, can be "gaussian", "binomial", "poisson", or "cox".
- **init**: Type of the penalty used in the initial estimation step. Can be "enet" or "ridge".
- **alphas**: Vector of candidate alpha's to use in `cv.glmnet`.
- **tune**: Parameter tuning method for each estimation step. Possible options are "cv", "ebic", "bic", and "aic". Default is "cv".
- **nfolds**: Fold numbers of cross-validation when `tune = "cv"`.
- **rule**: Lambda selection criterion when `tune = "cv"`, can be "lambda.min" or "lambda.1se". See `cv.glmnet` for details.
- **ebic.gamma**: Parameter for Extended BIC penalizing size of the model space when `tune = "ebic"`, default is 1. For details, see Chen and Chen (2008).
- **scale**: Scaling factor for adaptive weights: weights = coefficients^(-scale).
- **lower.limits**: Lower limits for coefficients. Default is -Inf. For details, see `glmnet`.
- **upper.limits**: Upper limits for coefficients. Default is Inf. For details, see `glmnet`.
- **penalty.factor.init**: The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is rep(1, ncol(x)).
- **seed**: Random seed for cross-validation fold division.
parallel Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the doParallel package and run registerDoParallel() with the number of CPU cores before calling this function.

verbose Should we print out the estimation progress?

Value

List of model coefficients, glmnet model object, and the optimal parameter set.

Author(s)

Nan Xiao <https://nanx.me>

References

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

aenet.fit <- aenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2), seed = 1002
)

print(aenet.fit)
msaenet.nzv(aenet.fit)
msaenet.fp(aenet.fit, 1:5)
msaenet.tp(aenet.fit, 1:5)
aenet.pred <- predict(aenet.fit, dat$x.te)
msaenet.rmse(dat$y.te, aenet.pred)
plot(aenet.fit)

amnet

Adaptive MCP-Net

Description

Adaptive MCP-Net
Usage

```r
amnet(x, y, family = c("gaussian", "binomial", "poisson", "cox"),
init = c("mnet", "ridge"), gammas = 3, alphas = seq(0.05, 0.95, 0.05),
tune = c("cv", "ebic", "bic", "aic"), nfolds = 5L,
  ebic.gamma = 1, scale = 1, eps = 1e-04, max.iter = 10000L,
  penalty.factor.init = rep(1, ncol(x)), seed = 1001,
  parallel = FALSE, verbose = FALSE)
```

Arguments

- **x**: Data matrix.
- **y**: Response vector if family is "gaussian", "binomial", or "poisson". If family is "cox", a response matrix created by `Surv`.
- **family**: Model family, can be "gaussian", "binomial", "poisson", or "cox".
- **init**: Type of the penalty used in the initial estimation step. Can be "mnet" or "ridge".
- **gammas**: Vector of candidate gammas (the concavity parameter) to use in MCP-Net. Default is 3.
- **alphas**: Vector of candidate alphas to use in MCP-Net.
- **tune**: Parameter tuning method for each estimation step. Possible options are "cv", "ebic", "bic", and "aic". Default is "cv".
- **nfolds**: Fold numbers of cross-validation when `tune = "cv"`.
- **ebic.gamma**: Parameter for Extended BIC penalizing size of the model space when `tune = "ebic"`, default is 1. For details, see Chen and Chen (2008).
- **scale**: Scaling factor for adaptive weights: weights = coefficients^(-scale).
- **eps**: Convergence threshold to use in MCP-net.
- **max.iter**: Maximum number of iterations to use in MCP-net.
- **penalty.factor.init**: The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is `rep(1, ncol(x))`.
- **seed**: Random seed for cross-validation fold division.
- **parallel**: Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the doParallel package and run registerDoParallel() with the number of CPU cores before calling this function.
- **verbose**: Should we print out the estimation progress?

Value

List of model coefficients, `ncvreg` model object, and the optimal parameter set.

Author(s)

Nan Xiao <https://nanx.me>
Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

amnet.fit <- amnet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2), seed = 1002
)

print(amnet.fit)
msaenet.nzv(amnet.fit)
msaenet.fp(amnet.fit, 1:5)
msaenet.tp(amnet.fit, 1:5)
amnet.pred <- predict(amnet.fit, dat$x.te)
msaenet.rmse(dat$y.te, amnet.pred)
plot(amnet.fit)

asnet

Adaptive SCAD-Net

Description

Adaptive SCAD-Net

Usage

asnet(x, y, family = c("gaussian", "binomial", "poisson", "cox"),
 init = c("snet", "ridge"), gammas = 3.7, alphas = seq(0.05, 0.95, 0.05),
 tune = c("cv", "ebic", "bic", "aic"), nfolds = 5L,
 ebic.gamma = 1, scale = 1, eps = 1e-04, max.iter = 10000L,
 penalty.factor.init = rep(1, ncol(x)), seed = 1001,
 parallel = FALSE, verbose = FALSE)

Arguments

x Data matrix.
y Response vector if family is "gaussian", "binomial", or "poisson". If family is "cox", a response matrix created by Surv.
family Model family, can be "gaussian", "binomial", "poisson", or "cox".
init Type of the penalty used in the initial estimation step. Can be "snet" or "ridge".
gammas Vector of candidate gammas (the concavity parameter) to use in SCAD-Net. Default is 3.7.
alphas Vector of candidate alphas to use in SCAD-Net.
Parameter tuning method for each estimation step. Possible options are "cv", "ebic", "bic", and "aic". Default is "cv".

Fold numbers of cross-validation when tune = "cv".

Parameter for Extended BIC penalizing size of the model space when tune = "ebic", default is 1. For details, see Chen and Chen (2008).

Scaling factor for adaptive weights: weights = coefficients^(-scale).

Convergence threshold to use in SCAD-net.

Maximum number of iterations to use in SCAD-net.

The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is rep(1, ncol(x)).

Random seed for cross-validation fold division.

Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the doParallel package and run registerDoParallel() with the number of CPU cores before calling this function.

Should we print out the estimation progress?

List of model coefficients, ncvreg model object, and the optimal parameter set.

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

asnet.fit <- asnet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2), seed = 1002
)

print(asnet.fit)
msaenet.nzv(asnet.fit)
msaenet.fp(asnet.fit, 1:5)
msaenet.tp(asnet.fit, 1:5)
asnet.pred <- predict(asnet.fit, dat$x.te)
msaenet.rmse(dat$y.te, asnet.pred)
plot(asnet.fit)
** coef.msaenet

Extract Model Coefficients

Description

Extract model coefficients from the final model in msaenet model objects.

Usage

```r  
## S3 method for class 'msaenet'  
coef(object, ...)  
```  

Arguments

- `object`: An object of class msaenet produced by `aenet`, `amnet`, `asnet`, `msaenet`, `msamnet`, or `msasnet`.
- `...`: Additional parameters for `coef` (not used).

Value

A numerical vector of model coefficients.

Author(s)

Nan Xiao <https://nanx.me>

Examples

```r  
dat <- msaenet.sim.gaussian(  
n = 150, p = 500, rho = 0.6,  
  coef = rep(1, 5), snr = 2, p.train = 0.7,  
  seed = 1001  
)  
msaenet.fit <- msaenet(  
dat$x.tr, dat$y.tr,  
  alphas = seq(0.2, 0.8, 0.2),  
  nsteps = 3L, seed = 1003  
)  
coef(msaenet.fit)  
```
msaenet

Multi-Step Adaptive Elastic-Net

Description

Multi-Step Adaptive Elastic-Net

Usage

msaenet(x, y, family = c("gaussian", "binomial", "poisson", "cox"),
 init = c("enet", "ridge"), alphas = seq(0.05, 0.95, 0.05),
 tune = c("cv", "ebic", "bic", "aic"), nfolds = 5L,
 rule = c("lambda.min", "lambda.1se"), ebic.gamma = 1, nsteps = 2L,
 tune.nsteps = c("max", "ebic", "bic", "aic"), ebic.gamma.nsteps = 1,
 scale = 1, lower.limits = -Inf, upper.limits = Inf,
 penalty.factor.init = rep(1, ncol(x)), seed = 1001,
 parallel = FALSE, verbose = FALSE)

Arguments

x Data matrix.

y Response vector if family is "gaussian", "binomial", or "poisson". If
 family is "cox", a response matrix created by Surv.

family Model family, can be "gaussian", "binomial", "poisson", or "cox".

init Type of the penalty used in the initial estimation step. Can be "enet" or "ridge".
 See glmnet for details.

alphas Vector of candidate alphas to use in cv.glmnet.

tune Parameter tuning method for each estimation step. Possible options are "cv",
 "ebic", "bic", and "aic". Default is "cv".

nfolds Fold numbers of cross-validation when tune = "cv".

rule Lambda selection criterion when tune = "cv", can be "lambda.min" or "lambda.1se".
 See cv.glmnet for details.

ebic.gamma Parameter for Extended BIC penalizing size of the model space when tune = "ebic",
 default is 1. For details, see Chen and Chen (2008).

nsteps Maximum number of adaptive estimation steps. At least 2, assuming adaptive
 elastic-net has only one adaptive estimation step.

tune.nsteps Optimal step number selection method (aggregate the optimal model from the
 each step and compare). Options include "max" (select the final-step model
 directly), or compare these models using "ebic", "bic", or "aic". Default is
 "max".

ebic.gamma.nsteps Parameter for Extended BIC penalizing size of the model space when tune.nsteps = "ebic",
 default is 1.

scale Scaling factor for adaptive weights: weights = coefficients^(1-scale).
lower.limits Lower limits for coefficients. Default is -Inf. For details, see glmnet.
upper.limits Upper limits for coefficients. Default is Inf. For details, see glmnet.
penalty.factor.init The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is rep(1, ncol(x)).
seed Random seed for cross-validation fold division.
parallel Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the doParallel package and run registerDoParallel() with the number of CPU cores before calling this function.
verbose Should we print out the estimation progress?

Value
List of model coefficients, glmnet model object, and the optimal parameter set.

Author(s)
Nan Xiao <https://nanx.me>

References

Examples
dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)

print(msaenet.fit)
msaenet.nzv(msaenet.fit)
msaenet.fp(msaenet.fit, 1:5)
msaenet.tp(msaenet.fit, 1:5)
msaenet.pred <- predict(msaenet.fit, dat$x.te)
msaenet.rmse(dat$y.te, msaenet.pred)
plot(msaenet.fit)
Get the Number of False Negative Selections

Description

Get the number of false negative selections from msaenet model objects, given the indices of true variables (if known).

Usage

msaenetNfn(object, true.idx)

Arguments

object An object of class msaenet produced by aenet, amnet, asnet, msaenet, msamnet, or msasnet.
true.idx Vector. Indices of true variables.

Value

Number of false negative variables in the model.

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)
msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)
msaenet.fn(msaenet.fit, 1:5)
msaenet.fp

Get the Number of False Positive Selections

Description

Get the number of false positive selections from msaenet model objects, given the indices of true variables (if known).

Usage

```r
msaenet.fp(object, true.idx)
```

Arguments

- `object`: An object of class `msaenet` produced by `aenet`, `amnet`, `asnet`, `msaenet`, `msamnet`, or `msasnet`.
- `true.idx`: Vector. Indices of true variables.

Value

Number of false positive variables in the model.

Author(s)

Nan Xiao <https://nanx.me>

Examples

```r
dat <- msaenet.sim.gaussian(
  n = 150, p = 500, rho = 0.6,
  coef = rep(1, 5), snr = 2, p.train = 0.7,
  seed = 1001
)
msaenet.fit <- msaenet(
  dat$x.tr, dat$y.tr,
  alphas = seq(0.2, 0.8, 0.2),
  nsteps = 3L, seed = 1003
)
msaenet.fp(msaenet.fit, 1:5)
```
Mean Absolute Error (MAE)

Description
Compute mean absolute error (MAE).

Usage
msaenet.mae(yreal, ypred)

Arguments
- ypred: Vector. Predicted response.

Value
MAE

Author(s)
Nan Xiao <https://nanx.me>

Mean Squared Error (MSE)

Description
Compute mean squared error (MSE).

Usage
msaenet.mse(yreal, ypred)

Arguments
- ypred: Vector. Predicted response.

Value
MSE

Author(s)
Nan Xiao <https://nanx.me>
msaenet.nzv

Get Indices of Non-Zero Variables

Description

Get the indices of non-zero variables from msaenet model objects.

Usage

msaenet.nzv(object)

Arguments

object An object of class msaenet produced by aenet, amnet, asnet, msaenet, msamnet, or msasnet.

Value

Indices vector of non-zero variables in the model.

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)

msaenet.nzv(msaenet.fit)

coefficients of non-zero variables
coef(msaenet.fit)[msaenet.nzv(msaenet.fit)]
Get Indices of Non-Zero Variables in All Steps

Description

Get the indices of non-zero variables in all steps from msaenet model objects.

Usage

msaenet.nzv.all(object)

Arguments

object An object of class msaenet produced by aenet, amnet, asnet, msaenet, msamnet, or msasnet.

Value

List containing indices vectors of non-zero variables in all steps.

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)

msaenet.nzv.all(msaenet.fit)
msaenet.rmse
\textit{Root Mean Squared Error (RMSE)}

\textbf{Description}
Compute root mean squared error (RMSE).

\textbf{Usage}
\texttt{msaenet.rmse(yreal, ypred)}

\textbf{Arguments}
\begin{itemize}
\item \texttt{yreal} \hspace{1cm} Vector. True response.
\item \texttt{ypred} \hspace{1cm} Vector. Predicted response.
\end{itemize}

\textbf{Value}
RMSE

\textbf{Author(s)}
Nan Xiao \texttt{<https://nanx.me>}

msaenet.rmsle
\textit{Root Mean Squared Logarithmic Error (RMSLE)}

\textbf{Description}
Compute root mean squared logarithmic error (RMSLE).

\textbf{Usage}
\texttt{msaenet.rmsle(yreal, ypred)}

\textbf{Arguments}
\begin{itemize}
\item \texttt{yreal} \hspace{1cm} Vector. True response.
\item \texttt{ypred} \hspace{1cm} Vector. Predicted response.
\end{itemize}

\textbf{Value}
RMSLE

\textbf{Author(s)}
Nan Xiao \texttt{<https://nanx.me>}

msaenet.sim.binomial

Generate Simulation Data for Benchmarking Sparse Regressions (Binomial Response)

Description

Generate simulation data for benchmarking sparse logistic regression models.

Usage

msaenet.sim.binomial(n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001)

Arguments

n Number of observations.
p Number of variables.
rho Correlation base for generating correlated variables.
coef Vector of non-zero coefficients.
snr Signal-to-noise ratio (SNR).
p.train Percentage of training set.
seed Random seed for reproducibility.

Value

List of x.tr, x.te, y.tr, and y.te.

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.binomial(
 n = 300, p = 500, rho = 0.6,
 coef = rep(1, 10), snr = 3, p.train = 0.7,
 seed = 1001
)
dim(dat$x.tr)
dim(dat$x.te)
table(dat$y.tr)
table(dat$y.te)
msaenet.sim.cox

Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)

Description

Generate simulation data for benchmarking sparse Cox regression models.

Usage

msaenet.sim.cox(n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50),
 snr = 1, p.train = 0.7, seed = 1001)

Arguments

n Number of observations.
p Number of variables.
rho Correlation base for generating correlated variables.
coef Vector of non-zero coefficients.
 snr Signal-to-noise ratio (SNR).
p.train Percentage of training set.
seed Random seed for reproducibility.

Value

List of x.tr, x.te, y.tr, and y.te.

Author(s)

Nan Xiao <https://nanx.me>

References

Examples

dat <- msaenet.sim.cox(
 n = 300, p = 500, rho = 0.6,
 coef = rep(1, 10), snr = 3, p.train = 0.7,
 seed = 1001
)
dim(dat$x.tr)
dim(dat$x.te)
dim(dat$y.tr)
dim(dat$y.te)
msaenet.sim.gaussian

Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)

Description

Generate simulation data (Gaussian case) following the settings in Xiao and Xu (2015).

Usage

```r
msaenet.sim.gaussian(n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001)
```

Arguments

- `n` Number of observations.
- `p` Number of variables.
- `rho` Correlation base for generating correlated variables.
- `coef` Vector of non-zero coefficients.
- `snr` Signal-to-noise ratio (SNR). SNR is defined as

 \[
 \frac{\text{Var}(E(y|X))}{\text{Var}(Y - E(y|X))} = \frac{\text{Var}(f(X))}{\text{Var}(\varepsilon)} = \frac{\text{Var}(X^T \beta)}{\text{Var}(\varepsilon)} = \frac{\text{Var}(\beta^T \Sigma \beta)}{\sigma^2}.
 \]
- `p.train` Percentage of training set.
- `seed` Random seed for reproducibility.

Value

List of `x.tr`, `x.te`, `y.tr`, and `y.te`.

Author(s)

Nan Xiao <https://nanx.me>

References

Examples

```r
dat <- msaenet.sim.gaussian(
  n = 300, p = 500, rho = 0.6,
  coef = rep(1, 10), snr = 3, p.train = 0.7,
  seed = 1001
)

dim(dat$x.tr)
dim(dat$x.te)
```

Description

Generate simulation data for benchmarking sparse Poisson regression models.

Usage

```r
msaenet.sim.poisson(n = 300, p = 500, rho = 0.5, coef = rep(0.2,
  50), snr = 1, p.train = 0.7, seed = 1001)
```

Arguments

- `n`: Number of observations.
- `p`: Number of variables.
- `rho`: Correlation base for generating correlated variables.
- `coef`: Vector of non-zero coefficients.
- `snr`: Signal-to-noise ratio (SNR).
- `p.train`: Percentage of training set.
- `seed`: Random seed for reproducibility.

Value

List of `x.tr`, `x.te`, `y.tr`, and `y.te`.

Author(s)

Nan Xiao <https://nanx.me>
Examples

dat <- msaenet.sim.poisson(
 n = 300, p = 500, rho = 0.6,
 coef = rep(1, 10), snr = 3, p.train = 0.7,
 seed = 1001
)

dim(dat$x.tr)
dim(dat$x.te)

msaenet.tp

Get the Number of True Positive Selections

Description

Get the number of true positive selections from msaenet model objects, given the indices of true variables (if known).

Usage

msaenet.tp(object, true.idx)

Arguments

 object An object of class msaenet produced by aenet, amnet, asnet, msaenet, msamnet,
 or msasnet.
 true.idx Vector. Indices of true variables.

Value

Number of true positive variables in the model.

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
msamnet

Description

Multi-Step Adaptive MCP-Net

Usage

\[
\text{msamnet}(x, y, \text{family} = \text{c("gaussian", "binomial", "poisson", "cox")},
\text{init} = \text{c("mnet", "ridge")}, \text{gammas} = 3, \text{alphas} = \text{seq}(0.05, 0.95, 0.05),
\text{tune} = \text{c("cv", "ebic", "bic", "aic")}, \text{nfolds} = 5L,
\text{ebic.gamma} = 1, \text{nsteps} = 2L, \text{tune.nsteps} = \text{c("max", "ebic", "bic", "aic")},
\text{ebic.gamma.nsteps} = 1, \text{scale} = 1, \text{eps} = 1e-04,
\text{max.iter} = 10000L, \text{penalty.factor.init} = \text{rep}(1, ncol(x)),
\text{seed} = 1001, \text{parallel} = \text{FALSE}, \text{verbose} = \text{FALSE})
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Data matrix.</td>
</tr>
<tr>
<td>y</td>
<td>Response vector if family is "gaussian", "binomial", or "poisson". If family is "cox", a response matrix created by \text{Surv}.</td>
</tr>
<tr>
<td>family</td>
<td>Model family, can be "gaussian", "binomial", "poisson", or "cox".</td>
</tr>
<tr>
<td>init</td>
<td>Type of the penalty used in the initial estimation step. Can be "mnet" or "ridge".</td>
</tr>
<tr>
<td>gammas</td>
<td>Vector of candidate gammas (the concavity parameter) to use in MCP-Net. Default is 3.</td>
</tr>
<tr>
<td>alphas</td>
<td>Vector of candidate alphas to use in MCP-Net.</td>
</tr>
<tr>
<td>tune</td>
<td>Parameter tuning method for each estimation step. Possible options are "cv", "ebic", "bic", and "aic". Default is "cv".</td>
</tr>
<tr>
<td>nfolds</td>
<td>Fold numbers of cross-validation when tune = "cv".</td>
</tr>
<tr>
<td>ebic.gamma</td>
<td>Parameter for Extended BIC penalizing size of the model space when tune = "ebic", default is 1. For details, see Chen and Chen (2008).</td>
</tr>
<tr>
<td>nsteps</td>
<td>Maximum number of adaptive estimation steps. At least 2, assuming adaptive MCP-net has only one adaptive estimation step.</td>
</tr>
<tr>
<td>tune.nsteps</td>
<td>Optimal step number selection method (aggregate the optimal model from the each step and compare). Options include "max" (select the final-step model directly), or compare these models using "ebic", "bic", or "aic". Default is "max".</td>
</tr>
<tr>
<td>ebic.gamma.nsteps</td>
<td>Parameter for Extended BIC penalizing size of the model space when tune.nsteps = "ebic", default is 1.</td>
</tr>
</tbody>
</table>
scale Scaling factor for adaptive weights: \textit{weights} = \textit{coefficients}^{(-\textit{scale})}.

eps Convergence threshold to use in MCP-net.

max.iter Maximum number of iterations to use in MCP-net.

penalty.factor.init The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is \texttt{rep(1, ncol(x))}.

seed Random seed for cross-validation fold division.

parallel Logical. Enable parallel parameter tuning or not, default is \texttt{FALSE}. To enable parallel tuning, load the \texttt{doparallel} package and run \texttt{registerDoParallel()} with the number of CPU cores before calling this function.

verbose Should we print out the estimation progress?

Value

List of model coefficients, \texttt{ncvreg} model object, and the optimal parameter set.

Author(s)

Nan Xiao \texttt{<https://nanx.me>}

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = \texttt{rep(1, 5)}, snr = 2, p.train = 0.7,
 seed = 1001
)

msamnet.fit <- msamnet(
 dat$x.tr, dat$y.tr,
 alphas = \texttt{seq(0.3, 0.9, 0.3)},
 nsteps = 3L, seed = 1003
)

print(msamnet.fit)
msaenet.nzv(msamnet.fit)
msaenet.fp(msamnet.fit, 1:5)
msaenet.tp(msamnet.fit, 1:5)
msamnet.pred <- \texttt{predict(msamnet.fit, dat$x.te)}
msaenet.rmse(dat$y.te, msamnet.pred)
plot(msamnet.fit)
msasnet

Multi-Step Adaptive SCAD-Net

Description

Multi-Step Adaptive SCAD-Net

Usage

msasnet(x, y, family = c("gaussian", "binomial", "poisson", "cox"),
init = c("snet", "ridge"), gammas = 3.7, alphas = seq(0.05, 0.95,
0.05), tune = c("cv", "ebic", "bic", "aic"), nfolds = 5L,
abic.gamma = 1, nsteps = 2L, tune.nsteps = c("max", "ebic", "bic",
"aic"), abic.gamma.nsteps = 1, scale = 1, eps = 1e-07,
max.iter = 10000L, penalty.factor.init = rep(1, ncol(x)),
seed = 1001, parallel = FALSE, verbose = FALSE)

Arguments

x
Data matrix.

y
Response vector if family is "gaussian", "binomial", or "poisson". If
family is "cox", a response matrix created by Surv.

family
Model family, can be "gaussian", "binomial", "poisson", or "cox".

init
Type of the penalty used in the initial estimation step. Can be "snet" or "ridge".

gammas
Vector of candidate gammas (the concavity parameter) to use in SCAD-Net. De-
dfault is 3.7.

alphas
Vector of candidate alphas to use in SCAD-Net.

tune
Parameter tuning method for each estimation step. Possible options are "cv",
"ebic", "bic", and "aic". Default is "cv".

nfolds
Fold numbers of cross-validation when tune = "cv".

abic.gamma
Parameter for Extended BIC penalizing size of the model space when tune = "ebic",
default is 1. For details, see Chen and Chen (2008).

nsteps
Maximum number of adaptive estimation steps. At least 2, assuming adaptive
SCAD-net has only one adaptive estimation step.

tune.nsteps
Optimal step number selection method (aggregate the optimal model from the
each step and compare). Options include "max" (select the final-step model
directly), or compare these models using "ebic", "bic", or "aic". Default is
"max".

abic.gamma.nsteps
Parameter for Extended BIC penalizing size of the model space when tune.nsteps = "ebic",
default is 1.

scale
Scaling factor for adaptive weights: weights = coefficients^(-scale).

eps
Convergence threshhold to use in SCAD-net.
max.iter

Maximum number of iterations to use in SCAD-net.

penalty.factor.init

The multiplicative factor for the penalty applied to each coefficient in the initial estimation step. This is useful for incorporating prior information about variable weights, for example, emphasizing specific clinical variables. To make certain variables more likely to be selected, assign a smaller value. Default is `rep(1, ncol(x))`.

seed

Random seed for cross-validation fold division.

parallel

Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the `doParallel` package and run `registerDoParallel()` with the number of CPU cores before calling this function.

verbose

Should we print out the estimation progress?

Value

List of model coefficients, `ncvreg` model object, and the optimal parameter set.

Author(s)

Nan Xiao <https://nanx.me>

Examples

data <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)
msasnet.fit <- msasnet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.3, 0.9, 0.3),
 nsteps = 3L, seed = 1003
)
print(msasnet.fit)
msaenet.nzv(msasnet.fit)
msaenet.fp(msasnet.fit, 1:5)
msaenet.tp(msasnet.fit, 1:5)
msasnet.pred <- predict(msasnet.fit, dat$x.te)
msaenet.rmse(dat$y.te, msasnet.pred)
plot(msasnet.fit)
plot.msaenet

Plot msaenet Model Objects

Description

Plot msaenet model objects.

Usage

```r
## S3 method for class 'msaenet'
plot(x, type = c("coef", "criterion", "dotplot"),
     nsteps = NULL, highlight = TRUE, col = NULL, label = FALSE,
     label.vars = NULL, label.pos = 2, label.offset = 0.3,
     label.cex = 0.7, label.srt = 90, xlab = NULL, ylab = NULL,
     abs = FALSE, ...)
```

Arguments

- `x`: An object of class msaenet produced by `aenet`, `amnet`, `asnet`, `msaenet`, `msamnet`, or `msasnet`.
- `type`: Plot type, "coef" for a coefficient path plot across all estimation steps; "criterion" for a scree plot of the model evaluation criterion used (CV error, AIC, BIC, or EBIC); "dotplot" for a Cleveland dot plot of the coefficients estimated by the model at the optimal step.
- `nsteps`: Maximum number of estimation steps to plot. Default is to plot all steps.
- `highlight`: Should we highlight the "optimal" step according to the criterion? Default is TRUE.
- `col`: Color palette to use for the coefficient paths. If it is NULL, a default color palette will be assigned.
- `label`: Should we label all the non-zero variables of the optimal step in the coefficient plot or the dot plot? Default is FALSE. If TRUE and label.vars = NULL, the index of the non-zero variables will be used as labels.
- `label.vars`: Labels to use for all the variables if label = "TRUE".
- `label.pos`: Position of the labels. See argument pos in text for details.
- `label.offset`: Offset of the labels. See argument offset in text for details.
- `label.cex`: Character expansion factor of the labels. See argument cex in text for details.
- `label.srt`: Label rotation in degrees for the Cleveland dot plot. Default is 90. See argument srt in par for details.
- `xlab`: Title for x axis. If is NULL, will use the default title.
- `ylab`: Title for y axis. If is NULL, will use the default title.
- `abs`: Should we plot the absolute values of the coefficients instead of the raw coefficients in the Cleveland dot plot? Default is FALSE.
- `...`: Other parameters (not used).
Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msasnet.fit <- msasnet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 5L, tune.nsteps = "ebic",
 seed = 1003
)

plot(msasnet.fit)
plot(msasnet.fit, label = TRUE)
plot(msasnet.fit, label = TRUE, nsteps = 5)
plot(msasnet.fit, type = "criterion")
plot(msasnet.fit, type = "criterion", nsteps = 5)
plot(msasnet.fit, type = "dotplot", label = TRUE)
plot(msasnet.fit, type = "dotplot", label = TRUE, abs = TRUE)

**predict.msaenet
Make Predictions from an msaenet Model**

Description

Make predictions on new data by a msaenet model object.

Usage

```r
## S3 method for class 'msaenet'
predict(object, newx, ...)
```

Arguments

- `object`
 An object of class msaenet produced by `aenet`, `amnet`, `asnet`, `msaenet`, `msamnet`,
 or `msasnet`.

- `newx`
 New data to predict with.

- `...`
 Additional parameters, particularly prediction type in `predict.glmnet`, `predict.ncvreg`,
 or `predict.ncvsurv`.

Value

Numeric matrix of the predicted values.
Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)

msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)

msaenet.pred <- predict(msaenet.fit, dat$x.te)
msaenet.rmse(dat$y.te, msaenet.pred)

print.msaenet

Print msaenet Model Information

Description

Print msaenet model objects (currently, only printing the model information of the final step).

Usage

S3 method for class 'msaenet'
print(x, ...)

Arguments

x
An object of class msaenet.

...
Additional parameters for print (not used).

Author(s)

Nan Xiao <https://nanx.me>

Examples

dat <- msaenet.sim.gaussian(
 n = 150, p = 500, rho = 0.6,
 coef = rep(1, 5), snr = 2, p.train = 0.7,
 seed = 1001
)
msaenet.fit <- msaenet(
 dat$x.tr, dat$y.tr,
 alphas = seq(0.2, 0.8, 0.2),
 nsteps = 3L, seed = 1003
)

print(msaenet.fit)
Index

aenet, 3, 8, 11, 12, 14, 15, 21, 26, 27
amnet, 4
asnet, 6

coeff, 8
coeff.msaenet, 8
cv.glmnet, 3, 9

glmnet, 3, 9, 10

msaenet, 8, 9, 11, 12, 14, 15, 21, 26, 27
msaenet-package, 2
msaenet.fn, 11
msaenet.fp, 12
msaenet.mae, 13
msaenet.mse, 13
msaenet.nzv, 14
msaenet.nzv.all, 15
msaenet.rmse, 16
msaenet.rmsle, 16
msaenet.sim.binomial, 17
msaenet.sim.cox, 18
msaenet.sim.gaussian, 19
msaenet.sim.poisson, 20
msaenet.tp, 21
msamnet, 8, 11, 12, 14, 15, 21, 22, 26, 27
msasnet, 8, 11, 12, 14, 15, 21, 24, 26, 27

par, 26
plot.msaenet, 26
predict.glmnet, 27
predict.msaenet, 27
predict.ncvreg, 27
predict.ncvsurv, 27
print, 28
print.msaenet, 28

Surv, 3, 5, 6, 9, 22, 24

text, 26

30