Package ‘msgl’

May 8, 2019

Type Package
Title Multinomial Sparse Group Lasso
Version 2.3.9
Date 2019-05-07

Description Multinomial logistic regression with sparse group lasso penalty. Simultaneous feature selection and parameter estimation for classification. Suitable for high dimensional multiclass classification with many classes. The algorithm computes the sparse group lasso penalized maximum likelihood estimate. Use of parallel computing for cross validation and subsampling is supported through the 'foreach' and 'doParallel' packages. Development version is on GitHub, please report package issues on GitHub.

URL http://www.sciencedirect.com/science/article/pii/S0167947313002168,
 https://github.com/nielsrhansen/msgl
BugReports https://github.com/nielsrhansen/msgl/issues
License GPL (>= 2)
LazyLoad yes
Imports methods, tools, utils, stats
Depends R (>= 3.2.4), Matrix, sglOptim (>= 1.3.7)
LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH, sglOptim
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation yes
Author Martin Vincent [aut],
 Niels Richard Hansen [ctb, cre]
Maintainer Niels Richard Hansen <niels.r.hansen@math.ku.dk>
Repository CRAN
Date/Publication 2019-05-08 08:00:10 UTC
Description

Simultaneous feature selection and parameter estimation for classification. Suitable for high
dimensional multiclass classification with many classes. The algorithm computes the sparse group
lasso penalized maximum likelihood estimate. Use of parallel computing for cross validation and
subsampling is supported through the foreach and doParallel packages. Development version is
on GitHub, please report package issues on GitHub.

Details

For a classification problem with K classes and p features (covariates) dived into m groups. The
multinomial logistic regression with sparse group lasso penalty estimator is a sequence of minimizers
(one for each lambda given in the lambda argument) of

$$
\hat{R}(\beta) + \lambda \left((1 - \alpha) \sum_{J=1}^{m} \gamma_{J} \| \beta^{(J)} \|_{2} + \alpha \sum_{i=1}^{n} \xi_{i} |\hat{\beta}_{i}| \right)
$$
where \hat{R} is the weighted empirical log-likelihood risk of the multinomial regression model. The vector $\beta^{(J)}$ denotes the parameters associated with the J'th group of features (default is one covariate per group, hence the default dimension of $\beta^{(J)}$ is K). The group weights $\gamma \in [0, \infty)^m$ and parameter weights $\xi \in [0, \infty)^n$ may be explicitly specified.

Author(s)

Martin Vincent

Examples

```r
# Load some data
data(PrimaryCancers)

# A quick look at the data
dim(x)
table(classes)

# A smaller subset with three classes
small <- which(classes %in% c("CCA", "CRC", "Pancreas"))
classes <- classes[small, drop = TRUE]
x <- x[small, ]

# Do cross validation using 2 parallel units
c1 <- makeCluster(2)
registerDoParallel(c1)

# Do 4-fold cross validation on a lambda sequence of length 100.
# The sequence is decreasing from the data derived lambda.max to 0.2*lambda.max
fit.cv <- msgl::cv(x, classes, fold = 4, lambda = 0.2, use_parallel = TRUE)
stopCluster(c1)

# Print information about models
# and cross validation errors (estimated expected generalization error)
fit.cv
```

Description

Returns the index of the best model, in terms of lowest error rate

Usage

```r
## S3 method for class 'msgl'
best_model(object, ...)
```
Arguments

object a msgl object

Value

index of the best model.

Author(s)

Martin Vincent

classes

Class vector

Description

Class vector

coef.msgl Nonzero coefficients

Description

This function returns the nonzero coefficients (that is the nonzero entries of the beta matrices)

Usage

S3 method for class 'msgl'
coef(object, index = 1:nmod(object), ...)

Arguments

object a msgl object

index indices of the models

... ignored

Value

a list of length length(index) with nonzero coefficients of the models

Author(s)

Martin Vincent
Examples

data(SimData)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl::fit(x, classes, alpha = .5, lambda = lambda)

the nonzero coefficients of the models 1, 10 and 20
coef(fit, index = c(1,10,20))

Cross Validation

Description

Multinomial sparse group lasso cross validation, with or without parallel backend.

Usage

cv(x, classes, sampleWeights = NULL, grouping = NULL,
groupWeights = NULL, parameterWeights = NULL, alpha = 0.5,
standardize = TRUE, lambda, d = 100, fold = 10L,
cv.indices = list(), intercept = TRUE, sparse.data = is(x, "sparseMatrix"), max.threads = NULL, use_parallel = FALSE,
algorithm.config = msgl.standard.config)

Arguments

x design matrix, matrix of size \(N \times p \).
classes factor of length \(N \).
sampleWeights sample weights, a vector of length \(N \).
grouping grouping of features (covariates), a vector of length \(p \). Each element of the vector specifying the group of the feature.
groupWeights the group weights, a vector of length \(m \) (the number of groups). If groupWeights = NULL default weights will be used. Default weights are 0 for the intercept and

\[\sqrt{K} \cdot \text{number of features in the group} \]

for all other weights.

parameterWeights a matrix of size \(K \times p \). If parameterWeights = NULL default weights will be used. Default weights are is 0 for the intercept weights and 1 for all other weights.#'

alpha the \(\alpha \) value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
standardize: if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.

lambda: lambda.min relative to lambda.max or the lambda sequence for the regularization path.

d: length of lambda sequence (ignored if length(lambda) > 1)

fold: the fold of the cross validation, an integer larger than 1 and less than N + 1. Ignored if cv.indices != NULL. If fold <= max(table(classes)) then the data will be split into fold disjoint subsets keeping the ration of classes approximately equal. Otherwise the data will be split into fold disjoint subsets without keeping the ration fixed.

cv.indices: a list of indices of a cross validation splitting. If cv.indices = NULL then a random splitting will be generated using the fold argument.

intercept: should the model include intercept parameters

sparse.data: if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.

max.threads: Deprecated (will be removed in 2018), instead use use.parallel = TRUE and registre parallel backend (see package ’doParallel’). The maximal number of threads to be used.

use.parallel: If TRUE the foreach loop will use %dopar%. The user must registre the parallel backend.

algorithm.config: the algorithm configuration to be used.

Value:

link: the linear predictors – a list of length length(lambda) one item for each lambda value, with each item a matrix of size K × N containing the linear predictors.

response: the estimated probabilities - a list of length length(lambda) one item for each lambda value, with each item a matrix of size K × N containing the probabilities.

classes: the estimated classes - a matrix of size N × d with d = length(lambda).

cv.indices: the cross validation splitting used.

features: number of features used in the models.

parameters: number of parameters used in the models.

classes.true: the true classes used for estimation, this is equal to the classes argument

Author(s):

Martin Vincent

Examples:

data(SimData)

A quick look at the data
dim(x)
Err.msgl

Setup clusters
cl <- makeCluster(2)
registerDoParallel(cl)

Run cross validation using 2 clusters
Using a lambda sequence ranging from the maximal lambda to 0.7 * maximal lambda
fit.cv <- msgl::cv(x, classes, alpha = 0.5, lambda = 0.7, use_parallel = TRUE)

Stop clusters
stopCluster(cl)

Print some information
fit.cv

Cross validation errors (estimated expected generalization error)
Misclassification rate
Err(fit.cv)

Negative log likelihood error
Err(fit.cv, type="loglike")

Err.msgl Compute error rates

Description

Compute error rates. If type = "rate" then the misclassification rates will be computed. If type = "count" then the misclassification counts will be computed. If type = "loglike" then the negative log likelihood error will be computed.

Usage

```r
## S3 method for class 'msgl'
Err(object, data = NULL, response = object$classes.true,
    classes = response, type = "rate", ...)
```

Arguments

- object: a msgl object
- data: a matrix of
- response: a vector of classes
- classes: a vector of classes
- type: type of error rate
- ...: ignored
Value

 a vector of error rates

Author(s)

 Martin Vincent

Examples

data(SimData)
x.all <- x
x.1 <- x[1:50,]
x.2 <- x[51:100,]
classes.all <- classes
classes.1 <- classes[1:50]
classes.2 <- classes[51:100]

Fit models using x.1
lambda <- msgl::lambda(x.1, classes.1, alpha = .5, d = 25, lambda.min = 0.075)
fit <- msgl::fit(x.1, classes.1, alpha = .5, lambda = lambda)

Training errors:

Misclassification rate
Err(fit, x.1)

Misclassification count
Err(fit, x.1, type = "count")

Negative log likelihood error
Err(fit, x.1, type="loglike")

Misclassification rate of x.2
Err(fit, x.2, classes.2)

Do cross validation
fit.cv <- msgl::cv(x.all, classes.all, alpha = .5, lambda = lambda)

Cross validation errors (estimated expected generalization error)

Misclassification rate
Err(fit.cv)

Negative log likelihood error
Err(fit.cv, type="loglike")

Do subsampling
test <- list(1:20, 21:40)
train <- lapply(test, function(s) (1:length(classes.all))[!s])

fit.sub <- msgl::subsampling(x.all, classes.all, alpha = .5,
features.msgl

lambda = lambda, training = train, test = test)

Mean misclassification error of the tests
Err(fit.sub)

Negative log likelihood error
Err(fit.sub, type="loglike")

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracts the nonzero features for each model.</td>
</tr>
</tbody>
</table>

Usage

```
## S3 method for class 'msgl'
features(object, ...)
```

Arguments

- **object**: a msgl object
- **...**: ignored

Value

a list of of length nmod(x) containing the nonzero features (that is nonzero columns of the beta matrices)

Author(s)

Martin Vincent

Examples

```r
data(SimData)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl::fit(x, classes, alpha = .5, lambda = lambda)

# the nonzero features of model 1, 10 and 25
features(fit)[c(1,10,25)]

# count the number of nonzero features in each model
sapply(features(fit), length)
```
features_stat.msgl Extract feature statistics

Description

Extracts the number of nonzero features (or group) in each model.

Usage

```r
## S3 method for class 'msgl'
features_stat(object, ...)
```

Arguments

- `object`: a msgl object
- `...`: ignored

Value

A vector of length `nmod(x)` or a matrix containing the number of nonzero features (or group) of the models.

Author(s)

Martin Vincent

fit Fit a multinomial sparse group lasso regularization path.

Description

Fit a sequence of multinomial logistic regression models using sparse group lasso, group lasso or lasso. In addition to the standard parameter grouping the algorithm supports further grouping of the features.

Usage

```r
fit(x, classes, sampleWeights = NULL, grouping = NULL,
    groupWeights = NULL, parameterWeights = NULL, alpha = 0.5,
    standardize = TRUE, lambda, d = 100, return_indices = NULL,
    intercept = TRUE, sparse.data = is(x, "sparseMatrix"),
    algorithm.config = msgl.standard.config)
```
Arguments

x design matrix, matrix of size $N \times p$.
classes classes, factor of length N.
sampleWeights sample weights, a vector of length N.
grouping grouping of features, a vector of length p. Each element of the vector specifying
 the group of the feature.
groupWeights the group weights, a vector of length m (the number of groups). If groupWeights = NULL
 default weights will be used. Default weights are 0 for the intercept and
 $\sqrt{K \cdot \text{number of features in the group}}$
 for all other weights.

parameterWeights a matrix of size $K \times p$. If parameterWeights = NULL default weights will be used. Default weights are 0 for the intercept weights and 1 for all other
weights.

alpha the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group
lasso penalty.
standardize if TRUE the features are standardize before fitting the model. The model pa-
rameters are returned in the original scale.

lambda lambda.min relative to lambda.max or the lambda sequence for the regulariza-
uration path.

return_indices the indices of lambda values for which to return a the fitted parameters.

intercept should the model fit include intercept parameters (note that due to standardiza-
tion the returned beta matrix will always have an intercept column)
sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as
sparse by default.

algorithm.config the algorithm configuration to be used.

Details

For a classification problem with K classes and p features (covariates) dived into m groups. This
function computes a sequence of minimizers (one for each lambda given in the lambda argument) of

$$
\hat{R}(\beta) + \lambda \left((1 - \alpha) \sum_{J=1}^{m} \gamma_J \|\beta^{(J)}\|_2 + \alpha \sum_{i=1}^{n} \xi_i |\beta_i| \right)
$$

where \hat{R} is the weighted empirical log-likelihood risk of the multinomial regression model. The vector $\beta^{(J)}$ denotes the parameters associated with the J'th group of features (default is one co-
variate per group, hence the default dimension of $\beta^{(J)}$ is K). The group weights $\gamma \in [0, \infty)^m$ and
parameter weights $\xi \in [0, \infty)^n$ may be explicitly specified.
Value

- **beta**: the fitted parameters – a list of length `length(lambda)` with each entry a matrix of size $K \times (p + 1)$ holding the fitted parameters
- **loss**: the values of the loss function
- **objective**: the values of the objective function (i.e. loss + penalty)
- **lambda**: the lambda values used
- **classes.true**: the true classes used for estimation, this is equal to the `classes` argument

Author(s)

Martin Vincent

Examples

data(SimData)

A quick look at the data
dim(x)
table(classes)

Fit multinominal sparse group lasso regularization path
using a lambda sequence ranging from the maximal lambda to 0.5 * maximal lambda

fit <- msgl::fit(x, classes, alpha = 0.5, lambda = 0.5)

Print some information about the fit
fit

Model 10, i.e. the model corresponding to lambda[10]
models(fit)[[10]]

The nonzero features of model 10
features(fit)[[10]]

The nonzero parameters of model 10
parameters(fit)[[10]]

The training errors of the models.
Err(fit, x)
Note: For high dimensional models the training errors are almost always over optimistic,
instead use `msgl::cv` to estimate the expected errors by cross validation

lambda

Computes a lambda sequence for the regularization path

Description

Computes a decreasing lambda sequence of length d. The sequence ranges from a data determined maximal lambda λ_{max} to the user inputed lambda.min.
Usage

lambda(x, classes, sampleWeights = NULL, grouping = NULL,
groupWeights = NULL, parameterWeights = NULL, alpha = 0.5,
d = 100L, standardize = TRUE, lambda.min, intercept = TRUE,
sparse.data = is(x, "sparseMatrix"), lambda.min.rel = FALSE,
algorithm.config = msgl.standard.config)

Arguments

x design matrix, matrix of size \(N \times p \).
classes classes, factor of length \(N \).
sampleWeights sample weights, a vector of length \(N \).
grouping grouping of features, a vector of length \(p \). Each element of the vector specifying the group of the covariate.
groupWeights the group weights, a vector of length \(m + 1 \) (the number of groups). The first element of the vector is the intercept weight. If groupWeights = NULL default weights will be used. Default weights are 0 for the intercept and
\[
\sqrt{K} \cdot \text{number of features in the group}
\]
for all other weights.
parameterWeights a matrix of size \(K \times (p + 1) \). The first column of the matrix is the intercept weights. Default weights are is 0 for the intercept weights and 1 for all other weights.
alpha the \(\alpha \) value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
d the length of lambda sequence
standardize if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.
lambda.min the smallest lambda value in the computed sequence.
intercept should the model include intercept parameters
sparse.data if TRUE \(x \) will be treated as sparse, if \(x \) is a sparse matrix it will be treated as sparse by default.
lambda.min.rel is lambda.min relative to lambda.max? (i.e. actual lambda min used is lambda.min*lambda.max, with lambda.max the computed maximal lambda value)
algorithm.config the algorithm configuration to be used.

Value

a vector of length \(d \) containing the computed lambda sequence.

Author(s)

Martin Vincent
Examples

```r
data(simdata)

# A quick look at the data
dim(x)
table(classes)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 100, lambda.min = 0.01)
```

models.msgl

Extract the fitted models

Description

Returns the fitted models, that is the estimated \(\beta \) matrices.

Usage

```r
## S3 method for class 'msgl'
models(object, index = 1:nmod(object), ...)
```

Arguments

- `object`: a msgl object
- `index`: indices of the models to be returned
- `...`: ignored

Value

A list of \(\beta \) matrices.

Author(s)

Martin Vincent
Create a new algorithm configuration

Description

With the exception of **verbose**, it is not recommended to change any of the default values.

Usage

```r
msgl.algorithm.config(tolerance_penalized_main_equation_loop = 1e-10,
                      tolerance_penalized_inner_loop_alpha = 1e-04,
                      tolerance_penalized_inner_loop_beta = 1,
                      tolerance_penalized_inner_loop_alpha = 0.01,
                      tolerance_penalized_outer_loop_alpha = 0.01,
                      tolerance_penalized_outer_loop_beta = 0,
                      tolerance_penalized_outer_loop_gamma = 1e-05,
                      use_bound_optimization = TRUE,
                      use_stepsize_optimization_in_penalizeed_loop = TRUE,
                      stepsize_opt_penalized_initial_t = 1, stepsize_opt_penalized_a = 0.1,
                      stepsize_opt_penalized_b = 0.1, max_iterations_outer = 1e+05,
                      inner_loop_convergence_limit = 1e+05, verbose = TRUE)
```

Arguments

- `tolerance_penalized_main_equation_loop`: tolerance threshold.
- `tolerance_penalized_inner_loop_alpha`: tolerance threshold.
- `tolerance_penalized_inner_loop_beta`: tolerance threshold.
- `tolerance_penalized_middel_loop_alpha`: tolerance threshold.
- `tolerance_penalized_outer_loop_alpha`: tolerance threshold.
- `tolerance_penalized_outer_loop_beta`: tolerance threshold.
- `tolerance_penalized_outer_loop_gamma`: tolerance threshold.
- `use_bound_optimization`: if TRUE, hessian bound check will be used.
- `use_stepsize_optimization_in_penalizeed_loop`: if TRUE, step-size optimization will be used.
- `stepsize_opt_penalized_initial_t`: initial step-size.
- `stepsize_opt_penalized_a`: step-size optimization parameter.
stepsize_opt_penalized_b
step-size optimization parameter.
max_iterations_outer
max iteration of outer loop
inner_loop_convergence_limit
inner loop convergence limit.
verbose
If TRUE some information, regarding the status of the algorithm, will be printed in the R terminal.

Value
A configuration.

Author(s)
Martin Vincent

Examples
data(SimData)

A quick look at the data
dim(x)
table(classes)

Create configuration
cfg <- msgl::algorithm.config(verb = FALSE)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 50,
lambda.min = 0.05, algorithm.config = cfg)

fit <- msgl::fit(x, classes, alpha = .5, lambda = lambda,
algorithm.config = cfg)
msgl.standard.config
Standard msgl algorithm configuration

Description

```r
code
msgl.standard.config <- msgl.algorithm.config()
```

Usage

`msgl.standard.config`

Format

An object of class `list` of length 15.

Author(s)

Martin Vincent

nmod.msgl
Number of models used for fitting

Description

Returns the number of models used for fitting. Note that `cv` and `subsampling` objects does not containing any models even though `nmod` returns a positive number.

Usage

```r
## S3 method for class 'msgl'
nmod(object, ...)
```

Arguments

- `object` a `msgl` object
 - `...` not used

Value

the number of models in `object`
Author(s)
Martin Vincent

Examples

data(SimData)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl::fit(x, classes, alpha = .5, lambda = lambda)

the number of models
nmod(fit)

df <- data.frame(x)
fit <- msgl::fit(x, y)

Description
Extracts the nonzero parameters for each model.

Usage

```r
## S3 method for class 'msgl'
parameters(object, ...) 
```

Arguments

- `object`: a msgl object
- `...`: ignored

Value

A list of length `nmod(x)` containing the nonzero parameters of the models.

Author(s)

Martin Vincent

Examples

data(SimData)

lambda <- msgl::lambda(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl::fit(x, classes, alpha = .5, lambda = lambda)
parameters_stat.msgl

the nonzero parameters of model 1, 10 and 25
parameters(fit)[c(1,10,25)]

count the number of nonzero parameters in each model
sapply(parameters(fit), sum)

parameters_stat.msgl Extracting parameter statistics

Description

Extracts the number of nonzero parameters in each model.

Usage

S3 method for class 'msgl'
parameters_stat(object, ...)

Arguments

 object a msgl object
 ... ignored

Value

 a vector of length nmod(x) or a matrix containing the number of nonzero parameters of the models.

Author(s)

 Martin Vincent

predict.msgl Predict

Description

Computes the linear predictors, the estimated probabilities and the estimated classes for a new data set.

Usage

S3 method for class 'msgl'
predict(object, x, sparse.data = is(x, "sparseMatrix"),
 ...)

Arguments

- **object**: an object of class msgl, produced with `msgl`.
- **x**: a data matrix of size $N_{\text{new}} \times p$.
- **sparse.data**: if TRUE, x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.
- **...**: ignored.

Value

- **link**: the linear predictors – a list of length `length(fit$beta)` one item for each model, with each item a matrix of size $K \times N_{\text{new}}$ containing the linear predictors.
- **response**: the estimated probabilities – a list of length `length(fit$beta)` one item for each model, with each item a matrix of size $K \times N_{\text{new}}$ containing the probabilities.
- **classes**: the estimated classes – a matrix of size $N_{\text{new}} \times d$ with $d = \text{length(fit$beta)}$.

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x.1 <- x[1:50,]
x.2 <- x[51:100,]
classes.1 <- classes[1:50]
classes.2 <- classes[51:100]
lambda <- msgl::lambda(x.1, classes.1, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl::fit(x.1, classes.1, alpha = .5, lambda = lambda)

# Predict classes of new data set x.2
res <- predict(fit, x.2)

# The error rates of the models
Err(res, classes = classes.2)

# The predicted classes for model 20
res$classes[,20]
```
PrimaryCancers

PrimaryCancers Primary cancer samples.

Description

Data set consisting of microRNA normalized expression measurements of primary cancer samples.

Format

A design matrix and a class vector

- \(x \) design matrix
- \(\text{classes} \) class vector

References

print.msgl Print function for msgl

Description

This function will print some general information about the msgl object

Usage

```r
## S3 method for class 'msgl'
print(x, ...)
```

Arguments

- \(x \) msgl object
- ... ignored

Author(s)

Martin Vincent
Examples

data(SimData)

Estimation

lambda <- mglm::lambda(x, classes, alpha = .5, d = 25, lambda.min = 0.075)
fit <- mglm::fit(x, classes, alpha = .5, lambda = lambda)

Print some information about the estimated models
fit

Cross validation

fit.cv <- mglm::cv(x, classes, alpha = .5, lambda = lambda)

Print some information
fit.cv

Subsampling

test <- list(1:20, 21:40)
train <- lapply(testL function(s) (1:length(classes))[s])

lambda <- mglm::lambda(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit.sub <- mglm::subsampling(x, classes, alpha = .5, lambda = lambda, training = train, test = test)

Print some information
fit.sub

SimData Simulated data set

Description

The use of this data set is only intended for testing and examples. The data set contains 100 simulated samples grouped into 10 classes. For each sample 400 features have been simulated.

Format

A design matrix and a class vector

x design matrix

classes class vector ...
subsampling
Multinomial sparse group lasso generic subsampling procedure

Description
Multinomial sparse group lasso generic subsampling procedure using multiple possessors

Usage
```r
subsampling(x, classes, sampleWeights = NULL, grouping = NULL, 
            groupWeights = NULL, parameterWeights = NULL, alpha = 0.5, 
            standardize = TRUE, lambda, d = 100, training, test, 
            intercept = TRUE, sparse.data = is(x, "sparseMatrix"), 
            collapse = FALSE, max.threads = NULL, use_parallel = FALSE, 
            algorithm.config = msgl.standard.config)
```

Arguments
- `x` design matrix, matrix of size $N \times p$.
- `classes` classes, factor of length N.
- `sampleWeights` sample weights, a vector of length N.
- `grouping` grouping of features (covariates), a vector of length p. Each element of the vector specifying the group of the feature.
- `groupWeights` the group weights, a vector of length m (the number of groups). If `groupWeights = NULL` default weights will be used. Default weights are 0 for the intercept and
 $\sqrt{K \cdot \text{number of features in the group}}$
 for all other weights.
- `parameterWeights` a matrix of size $K \times p$. If `parameterWeights = NULL` default weights will be used. Default weights are 0 for the intercept weights and 1 for all other weights.
- `alpha` the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
- `standardize` if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.
- `lambda` lambda.min relative to lambda.max or the lambda sequence for the regularization path (that is a vector or a list of vectors with the lambda sequence for the subsamples).
- `d` length of lambda sequence (ignored if length(lambda) > 1)
- `training` a list of training samples, each item of the list corresponding to a subsample. Each item in the list must be a vector with the indices of the training samples for the corresponding subsample. The length of the list must equal the length of the test list.
test a list of test samples, each item of the list corresponding to a subsample. Each item in the list must be vector with the indices of the test samples for the corresponding subsample. The length of the list must equal the length of the training list.

intercept should the model include intercept parameters

sparse.data if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.

collapse if TRUE the results for each subsample will be collapse into one result (this is useful if the subsamples are not overlapping)

max.threads Deprecated (will be removed in 2018), instead use use.parallel = TRUE and register parallel backend (see package ’doParallel’). The maximal number of threads to be used.

use.parallel If TRUE the foreach loop will use %dopar%. The user must register the parallel backend.

algorithm.config the algorithm configuration to be used.

Value

link the linear predictors – a list of length length(test) with each element of the list another list of length length(lambda) one item for each lambda value, with each item a matrix of size $K \times N$ containing the linear predictors.

response the estimated probabilities – a list of length length(test) with each element of the list another list of length length(lambda) one item for each lambda value, with each item a matrix of size $K \times N$ containing the probabilities.

classes the estimated classes – a list of length length(test) with each element of the list a matrix of size $N \times d$ with $d =$length(lambda).

features number of features used in the models.

parameters number of parameters used in the models.

classes.true a list of length length(training), containing the true classes used for estimation.

Author(s)

Martin Vincent

Examples

data(SimData)

A quick look at the data
dim(x)
table(classes)

test <- list(1:20, 21:40)
train <- lapply(test, function(s) (1:length(classes))[s])
Run subsampling
Using a lambda sequence ranging from the maximal lambda to 0.5 * maximal lambda
fit.sub <- msgl::subsampling(x, classes, alpha = 0.5, lambda = 0.5, training = train, test = test)

Print some information
fit.sub

Mean misclassification error of the tests
Err(fit.sub)

Negative log likelihood error
Err(fit.sub, type="loglike")

x
Design matrix

Description

Design matrix
Index

*Topic **datasets**
 msgl.standard.config, 17

*Topic **data**
 classes, 4
 PrimaryCancers, 21
 SimData, 22
 x, 25

best_model.msgl, 3

classes, 4
coeff.msgl, 4
cv, 5

Err.msgl, 7

features.msgl, 9
features_stat.msgl, 10
fit, 10

lambda, 12

models.msgl, 14
msgl-package, 2
msgl.algorithm.config, 15
msgl.c.config, 16
msgl.standard.config, 17

nmod.msgl, 17

parameters.msgl, 18
parameters_stat.msgl, 19
predict.msgl, 19
PrimaryCancers, 21
print.msgl, 21

SimData, 22
subsampling, 23

x, 25