Package ‘msir’

March 15, 2019

Version 1.3.2
Date 2019-03-14
Title Model-Based Sliced Inverse Regression
Description An R package for dimension reduction based on finite Gaussian mixture modeling of inverse regression.
Depends R (>= 3.0)
Imports mclust (>= 5.4), stats, utils, graphics, grDevices
Suggests knitr (>= 1.20), rmarkdown (>= 1.10), rgl (>= 0.100)
License GPL (>= 2)
VignetteBuilder knitr
URL https://mclust-org.github.io/msir
Repository CRAN
ByteCompile true
LazyData yes
Encoding UTF-8
RoxygenNote 6.1.1
NeedsCompilation no
Author Luca Scrucca [aut, cre] (<https://orcid.org/0000-0003-3826-0484>)
Maintainer Luca Scrucca <luca.scrucca@unipg.it>
Date/Publication 2019-03-15 08:40:02 UTC

R topics documented:

 msir-package ... 2
 loess.sd ... 2
 msir ... 4
 msir.bic ... 6
 msir.nslices .. 8
 msir.permutation.test .. 8
Description

An R package that implements MSIR, a dimension reduction method based on Gaussian finite mixture models. The basis of the subspace is estimated by modeling the inverse distribution within slice using finite mixtures of Gaussians, with number of components and covariance matrix parameterization selected by BIC or defined by the user. The method provides an extension to sliced inverse regression (SIR) and allows to overcome the main limitation of SIR, i.e., the failure in the presence of regression symmetric relationships, without the need to impose further assumptions.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

msir

Description

Local Polynomial Regression Fitting with Variability bands

Nonparametric estimation of mean function with variability bands.

Usage

loess.sd(x, y = NULL, nsigma = 1, ...)

panel.loess(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
 col.smooth = "red", span = 2/3, degree = 2, nsigma = 1, ...)
Arguments

- **x**: a vector of values for the predictor variable \(x \).
- **y**: a vector of values for the response variable \(y \).
- **nsigma**: a multiplier for the standard deviation function.
- **col, bg, pch, cex**: numeric or character codes for the color(s), point type and size of points; see also `par`.
- **col.smooth**: color to be used by `lines` for drawing the smooths.
- **span**: smoothing parameter for `loess`.
- **degree**: the degree of the polynomials to be used, see `loess`.
- **...** further argument passed to the function `loess`.

Value

The function `loess.sd` computes the loess smooth for the mean function and the mean plus and minus \(k \) times the standard deviation function.

The function `panel.loess` can be used to add to a scatterplot matrix panel a smoothing of mean function using loess with variability bands at plus and minus \(\text{nsigmas} \) times the standard deviation.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

- `loess`

Examples

```r
data(cars)
plot(cars, main = "loess.sd(cars)")
lines(l <- loess.sd(cars))
lines(l$x, l$upper, lty=2)
lines(l$x, l$lower, lty=2)
```
Description

A dimension reduction method based on Gaussian finite mixture models which provides an extension to sliced inverse regression (SIR). The basis of the subspace is estimated by modeling the inverse distribution within slice using Gaussian finite mixtures with number of components and covariance matrix parameterization selected by BIC or defined by the user.

Usage

```r
msir(x, y, nslices = msir.n_slices, slice.function = msir.slices,
      modelNames = NULL, G = NULL, cov = c("mle", "regularized"), ...)
```

Arguments

- `x`: A \((n \times p)\) design matrix containing the predictors data values.
- `y`: A \((n \times 1)\) vector of data values for the response variable. It can be a numeric vector (regression) but also a factor (classification). In the latter case, the levels of the factor define the slices used.
- `nslices`: The number of slices used, unless `y` is a factor. By default the value returned by `msir.n_slices`.
- `slice.function`: The slice functions to be used, by default `msir.slices`, but the user can provide a different slicing function.
- `modelNames`: A vector of character strings indicating the Gaussian mixture models to be fitted as described in `mclustModelNames`. If a vector of strings is given they are used for all the slices. If a list of vectors is provided then each vector refers to a single slice.
- `G`: An integer vector specifying the numbers of mixture components used in fitting Gaussian mixture models. If a list of vectors is provided then each vector refers to a single slice.
- `cov`: The predictors marginal covariance matrix. Possible choices are:
 - "mle": for the maximum likelihood estimate
 - "regularized": for a regularized estimate of the covariance matrix (see `msir.regularizedSigma`)
 - R matrix: a \((p \times p)\) user defined covariance matrix
- `...`: other arguments passed to `msir.compute`.

Value

Returns an object of class 'msir' with attributes:

- `call`: the function call.
msir

x

the design matrix.

y

the response vector.

slice.info

output from slicing function.

mixmod

a list of finite mixture model objects as described in mclustModel.

loglik

the log-likelihood for the mixture models.

f

a vector of length equal to the total number of mixture components containing the fraction of observations in each fitted component within slices.

mu

a matrix of component within slices predictors means.

sigma

the marginal predictors covariance matrix.

M

the msir kernel matrix.

evalues

the eigenvalues from the generalized eigen-decomposition of M.

evectors

the raw eigenvectors from the generalized eigen-decomposition of M ordered according to the eigenvalues.

basis

the normalized eigenvectors from the generalized eigen-decomposition of M ordered according to the eigenvalues.

std.basis

standardized basis vectors obtained by multiplying each coefficient of the eigenvectors by the standard deviation of the corresponding predictor. The resulting coefficients are scaled such that all predictors have unit standard deviation.

numdir

the maximal number of directions estimated.

dir

the estimated MSIR directions from mean-centered predictors.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

summary.msir, plot.msir, dr

Examples

1-dimensional simple regression
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- exp(0.5 * x%*%b) + 0.1*runif(n)
MSIR <- msir(x, y)
summary(MSIR)
plot(MSIR, type = "2Dplot")
1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x %*% b)^2 + 0.1*runif(n)
MSIR <- msir(x, y)
summary(MSIR)
plot(MSIR, type = "2Dplot")
plot(MSIR, type = "coefficients")

2-dimensional response curve
n <- 300
p <- 5
b1 <- c(1, 1, 1, rep(0, p-3))
b2 <- c(1,-1,-1, rep(0, p-3))
b <- cbind(b1,b2)
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- x %*% b1 + (x %*% b1)^3 + 4*(x %*% b2)^2 + runif(n)
MSIR <- msir(x, y)
summary(MSIR)
plot(MSIR, which = 1:2)
Not run: plot(MSIR, type = "spinplot")
plot(MSIR, which = 1, type = "2Dplot", span = 0.7)
plot(MSIR, which = 2, type = "2Dplot", span = 0.7)

msir.bic

BIC-type criterion for dimensionality

Description

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

```r
msir.bic(object, type = 1, plot = FALSE)
```

Arguments

- `object` a 'msir' object
- `plot` if TRUE a plot of the criterion is shown.
- `M` the kernel matrix. See details below.
- `x` the predictors data matrix. See details below.
- `type` See details below.
- `nslices` the number of slices. See details below.
- `tol` a tolerance value
Details

This BIC-type criterion for the determination of the structural dimension selects d as the maximizer of

$$G(d) = l(d) - \text{Penalty}(p, d, n)$$

where $l(d)$ is the log-likelihood for dimensions up to d, p is the number of predictors, and n is the sample size. The term $\text{Penalty}(p, d, n)$ is the type of penalty to be used:

- **type** = 1: $\text{Penalty}(p, d, n) = -(p - d) \log(n)$
- **type** = 2: $\text{Penalty}(p, d, n) = 0.5Cd(2p-d+1)$, where $C = (0.5 \log(n)+0.1n^{1/3})/2\text{nslices}/n$
- **type** = 3: $\text{Penalty}(p, d, n) = 0.5Cd(2p - d +1)$, where $C = \log(n)\text{nslices}/n$
- **type** = 4: $\text{Penalty}(p, d, n) = 1/2d\log(n)$

Value

Returns a list with components:

- `evals` - eigenvalues
- `l` - log-likelihood
- `crit` - BIC-type criterion
- `d` - selected dimensionality

The `msir.bic` also assign the above information to the corresponding `msir` object.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA.

See Also

msir

Examples

```r
# 1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x*b)^2 + 0.1*runif(n)
MSIR <- msir(x, y)
msir.bic(MSIR, plot = TRUE)
summary(MSIR)
msir.bic(MSIR, type = 3, plot = TRUE)
summary(MSIR)
```
msir.nslices

Default number of slices

Description

This function computes a Sturges’ type number of slices to be used as default in the msir function.

Usage

msir.nslices(n, p)

Arguments

n
the number of observations in the sample.
p
the number of predictors in the sample.

Value

The function returns a single value, i.e. the number of slices.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

See Also

msir

msir.permutation.test

Permutation test for dimensionality

Description

Approximates marginal dimension test significance levels by sampling from the permutation distribution.

Usage

msir.permutation.test(object, npermute = 99, numdir = object$numdir, verbose = TRUE)

Arguments

object
a 'msir' object.
npermute
number of permutations to compute.
numdir
maximum value of the dimension to test.
verbose
if TRUE a textual progress bar is shown during computation.
msir.permutation.test

Details

The function approximates significance levels of the marginal dimension tests based on a permutation test.

Value

The function returns a list with components:

- `summary`: a table containing the hypotheses, the test statistics, the permutation p-values.
- `npermute`: the number of permutations used.

Furthermore, it also assigns the above information to the corresponding 'msir' object.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

`dr`

Examples

```r
## Not run:
# 1-dimensional simple regression
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- exp(0.5 * x%*%b) + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.permutation.test(MSIR)
summary(MSIR)
## End(Not run)
```
msir.regularizedSigma Regularized estimate of predictors covariance matrix.

Description

This function computes a regularized version of the covariance matrix of the predictors. Among the possible models the one which maximizes BIC is returned.

Usage

msir.regularizedSigma(x, inv = FALSE, model = c("XII", "XXI", "XXX"))

Arguments

x Ahe predictors data matrix.
inv A logical specifying what must be returned. If TRUE the inverse of the estimated covariance matrix is returned, otherwise the estimated covariance matrix (default).
model A character string specifying the available models:
 • XII: diagonal equal variances
 • XXI: diagonal unequal variances
 • XXX: full covariance matrix

Value

A $(p \times p)$ covariance matrix estimate.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

See Also

msir
msir.slices

Slice a vector into slices of approximately equal size

Description
Function used for slicing a continuous response variable.

Usage
msir.slices(y, nslices)

Arguments
y a vector of n values
nslices the number of slices, no larger than n

Value
Returns a list with components:
slice.indicator an indicator variable for the slices.
nslices the actual number of slices produced.
slice.sizes the number of observations in each slice.

Author(s)
Luca Scrucca <luca.scrucca@unipg.it>

See Also
msir

plot.msir

Plot method for 'msir' objects.

Description
Plots directions and other information from MSIR estimation.

Usage
S3 method for class 'msir'
plot(x, which,
 type = c("pairs", "2Dplot", "spinplot", "evals", "coefficients"),
 span = NULL, std = TRUE, ylab, xlab, restore.par = TRUE, ...)
plot.msir

Arguments

- **x**: a 'msir' object.
- **which**: a vector of value(s) giving the directions for which the plot should be drawn.
- **type**: the type of plot to be drawn.
- **span**: the span of smoother (only for type = "pairs" | "2Dplot").
- **std**: if TRUE coefficients are standardized (only for type = "coefficients").
- **ylab**: a character string for the y-axis label.
- **xlab**: a character string for the x-axis label.
- **restore.par**: if TRUE the graphical parameters (see *par*) changed are restored to the previous state. If you want to manipulate the resulting plot you should set `restore.par = FALSE`.
- **...**: additional arguments.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

- `msir`

Examples

```r
## Not run:
# 2-dimensional response curve
n <- 300
p <- 5
b1 <- c(1, 1, 1, rep(0, p-3))
b2 <- c(1, -1, -1, rep(0, p-3))
b <- cbind(b1, b2)
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- x %*% b1 + (x %*% b1)^3 + 4*(x %*% b2)^2 + rnorm(n)
MSIR <- msir(x, y)
summary(MSIR)
plot(MSIR)
plot(MSIR, which = 1:2)
plot(MSIR, type = "2Dplot", which = 1, span = 0.7)
plot(MSIR, type = "2Dplot", which = 2, span = 0.7)
plot(MSIR, type = "spinplot")
plot(MSIR, type = "evalues")
plot(MSIR, type = "coefficients")

## End(Not run)
```
predict.msir

Model-based Sliced Inverse Regression directions

Description

MSIR estimates a set of $d \leq p$ orthogonal direction vectors of length p which are estimates of the basis of the dimensional reduction subspace.

Usage

```r
## S3 method for class 'msir'
predict(object, dim = 1:object$numdir, newdata, ...)
```

Arguments

- `object`: an object of class 'msir' resulting from a call to `msir`.
- `dim`: the dimensions of the reduced subspace used for prediction.
- `newdata`: a data frame or matrix giving the data. If missing the data obtained from the call to `msir` are used.
- `...`: further arguments passed to or from other methods.

Value

The function returns a matrix of points projected on the subspace spanned by the estimated basis vectors.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

See Also

- `{msir}`

Examples

```r
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- exp(0.5 * x %*% b) + 0.1*rnorm(n)
pairs(cbind(y,x), gap = 0)
```
spinplot <- msir(x, y)
summary(MSIR)
plot(MSIR, which = 1, type = "2Dplot")
all.equal(predict(MSIR), MSIR$dir)
predict(MSIR, dim = 1:2)

x0 <- matrix(rnorm(n*p), nrow = n, ncol = p)
y0 <- exp(0.5 * x0%*%b) + 0.1 * rnorm(n)
plot(predict(MSIR, dim = 1, newdata = x0, y0)

spinplot

Rotating three-dimensional plot

Description
General function to draw a rgl-based rotating 3D scatterplot.

Usage

spinplot(x, y, z,
 scaling = c("abc", "aaa"),
 rem.lin.trend = FALSE,
 uncor.vars = FALSE,
 fit.ols = FALSE,
 fit.smooth = FALSE,
 span = 0.75,
 ngrid = 25,
 markby,
 pch.points = 1,
 col.points = "black",
 cex.points = 1,
 col.axis = "gray50",
 col.smooth = "limegreen",
 col.ols = "lightsteelblue",
 background = "white",
 ...
)

Arguments

x a vector of values for the variable in the horizontal (H) screen axis.
y a vector of values for the variable in the vertical (V) screen axis.
z a vector of values for the variable in the out-of-screen (O) axis.
scaling the scaling applied. Two possible values are "abc" and "aaa".
rem.lin.trend a logical specifying if the linear trend should be remove. If TRUE then the vertical axis is replaced by e(V|H,O), i.e. the residuals from a linear fit of the vertical axis variable on the others.
spinplot

Details

This function is mainly based on the functionality of the spin-plot function once available in XLisp-Stat software https://en.wikipedia.org/wiki/XLispStat, and the adds-on introduced by the Arc software http://www.stat.umn.edu/arc/index.html.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

Examples

```r
# Not run:
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- 2*x1 + x2^2 + 0.5*rnorm(100)
spinplot(x1, y, x2)
spinplot(x1, y, x2, scaling = "aaa")
spinplot(x1, y, x2, rem.lin.trend = "TRUE")
spinplot(x1, y, x2, fit.smooth = TRUE)
spinplot(x1, y, x2, fit.ols = TRUE)

x <- iris[,1:3]
y <- iris[,5]
```
spinplot(x)
spinplot(x, markby = y)
spinplot(x, markby = y, col.points = c("dodgerblue2", "orange", "green3"))
spinplot(x, markby = y, pch = c(0,3,1), col.points = c("dodgerblue2", "orange", "green3"))

to save plots use
rgl.postscript("plot.pdf", fmt="pdf")
or
rgl.snapshot("plot.png")

End(Not run)

summary.msir

Summary and print methods for 'msir' objects

Description

Summary and print methods for 'msir' objects.

Usage

```
## S3 method for class 'msir'
summary(object, numdir = object$numdir, std = FALSE, verbose = TRUE, ...)
## S3 method for class 'summary.msir'
print(x, digits = max(5,getOption("digits") - 3), ...)
```

Arguments

- `object` a 'msir' object
- `numdir` the number of directions to be shown.
- `std` if TRUE the coefficients basis are scaled such that all predictors have unit standard deviation.
- `verbose` if FALSE the coefficients basis are omitted; by default `verbose = TRUE`.
- `x` a 'summary.msir' object.
- `digits` the significant digits to use.
- `...` additional arguments.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

See Also

- `msir`
Index

+Topic **dplot**
 - plot.msir, 11
+Topic **htest**
 - msir.permutation.test, 8
+Topic **loess**
 - loess.sd, 2
+Topic **multivariate**
 - msir, 4
+Topic **package**
 - msir-package, 2
+Topic **regression**
 - msir, 4
 - msir.bic, 6
 - msir.permutation.test, 8
 - plot.msir, 11

bicDimRed(msir.bic), 6

dr, 5, 9

loess, 3, 15
loess.sd, 2

mclustModel, 5
mclustModelNames, 4
msir, 2, 4, 7, 8, 10–13, 16
msir-package, 2
msir.bic, 6
msir.nslices, 4, 8
msir.permutation.test, 8
msir.regularizedSigma, 4, 10
msir.slices, 4, 11

panel.loess(loess.sd), 2
par, 3, 12
plot.msir, 5, 11
predict.msir, 13
print.msir, 4
print.summary.msir(summary.msir), 16

spinplot, 14
summary.msir, 5, 16