Package ‘msma’

May 4, 2018

Type Package
Title Multiblock Sparse Multivariable Analysis
Version 1.1
Date 2018-05-01
Author Atsushi Kawaguchi
Maintainer Atsushi Kawaguchi <kawa_a24@yahoo.co.jp>
Depends mvtnorm
Description Several functions can be used to analyze multiblock multivariable data. If the input is a single matrix, then principal components analysis (PCA) is implemented. If the input is a list of matrices, then multiblock PCA is implemented. If the input is two matrices, for exploratory and objective variables, then partial least squares (PLS) analysis is implemented. If the input is two lists of matrices, for exploratory and objective variables, then multiblock PLS analysis is implemented. Additionally, if an extra outcome variable is specified, then a supervised version of the methods above is implemented. For each method, sparse modeling is also incorporated. Functions for selecting the number of components and regularized parameters are also provided.
License GPL (>= 2)
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-04 03:50:13 UTC

R topics documented:

msma-package .. 2
cvmsma .. 2
msma ... 4
ncompsearch .. 7
optparasearch ... 9
plot.msma ... 11
msma-package

Multiblock Sparse Multivariable Analysis Package

Description

A Package for implementation of multiblock multivariable data analysis.

Author(s)

Atsushi Kawaguchi. <kawa_a24@yahoo.co.jp>

References

See Also

msma

cvmsma

Cross-Validation

Description

Cross-validated method to evaluate the fit of msma.

Usage

cvmsma(X, Y = NULL, Z = NULL, comp = 1, lambdaX, lambdaY = NULL, eta = 1, type = "lasso", inX = NULL, inY = NULL, muX = 0, muY = 0, nfold = 5, seed = 1, intseed = 1)
Arguments

X a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.

Y a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.

Z a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.

comp numeric scalar for the number of components to be considered.

lambdaX numeric vector of regularized parameters for X, with a length equal to the number of blocks. If lambdaX is omitted, no regularization is conducted.

lambdaY numeric vector of regularized parameters for Y, with a length equal to the number of blocks. If lambdaY is omitted, no regularization is conducted.

eta numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.

type a character, indicating the penalty family. In this version, only one choice is available: "lasso."

inX a vector or list of numeric vectors specifying the variables in X, always included in the model

inY a vector or list of numeric vectors specifying the variables in Y, always included in the model

muX a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.

muY a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.

nfold number of folds - default is 5.

seed seed number for the random number in the cross-validation.

intseed seed number for the random number in the parameter estimation algorithm.

Details

k-fold cross-validation for mmsma. The evaluation is based on the matrix element-wise errors.

Value

cv msma 3

err The mean cross-validated errors which has three elements consisting of the mean of predict errors for X and Y, the errors for X and for Y in the PLS and only the errors for X in the PCA.

Examples

data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

One Component CV
cv1 = cvmsma(X, Y, comp = 1, lambdaX=2, lambdaY=1:3, nfold=5, seed=1)
Multiblock Sparse Multivariable Analysis

Description

This is a function for a matrix decomposition method incorporating sparse and supervised modeling for a multiblock multivariable data analysis.

Usage

msma(x, ...)

Default S3 method:
msma(X, Y = NULL, Z = NULL, comp = 2, lambdaX = NULL, lambdaY = NULL, ena = 1, type = "lasso", inX = NULL, inY = NULL, muX = 0, muY = 0, defmethod = "canonical", scaling = TRUE, verbose = FALSE, intseed = 1, ...)

S3 method for class 'msma'
print(x, ...)

Arguments

X a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.

... further arguments passed to or from other methods.

Y a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.

Z a vector, response variable(s) for implementing the supervised version of (multiblock) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.

comp numeric scalar for the number of components to be considered.

lambdaX numeric vector of regularized parameters for X, with a length equal to the number of blocks. If lambdaX is omitted, no regularization is conducted.

lambdaY numeric vector of regularized parameters for Y, with a length equal to the number of blocks. If lambdaY is omitted, no regularization is conducted.

eta numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.
type a character, indicating the penalty family. In this version, only one choice is available: "lasso."

inX a vector or list of numeric vectors specifying the variables in X, always included in the model.
inY a vector or list of numeric vectors specifying the variables in Y, always included in the model.

muX a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.

muY a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.

defmethod a character representing the deflation method. This version has only the choice "canonical."

scaling a logical, indicating whether or not data scaling is performed. The default is TRUE.

verbose information

intseed seed number for the random number in the parameter estimation algorithm.

x an object of class "msma." Usually, a result of a call to msma.

Details

msma requires at least one input X (a matrix or list). In this case, (multiblock) PCA is conducted. If Y is also specified, then a PLS is conducted using X as explanatory variables and Y as objective variables. This function scales each data matrix to a mean of 0 and variance of 1 in the default. The block structure can be represented as a list. If Z is also specified, a supervised version is implemented, and the degree is controlled by muX or muY, where 0 <= muX <= 1, 0 <= muY <= 1, and 0 <= muX + muY < 1. If a positive lambdaX or lambdaY is specified, then a sparse estimation based on the L1 penalty is implemented.

Value

dmode Indicates mode "PLS" or "PCA"

X Scaled X, which has a list form.

Y Scaled Y, which has a list form.

Xscale Scaling information for X. The mean and standard deviation values for each block of X are returned.

Yscale Scaling information for Y. The mean and standard deviation values for each block of Y are returned.

comp Number of components

wbX Block loading for X. The list has the same length as that of the input list X (number of blocks) and consists of a matrix. The number of variables is present in the row and the number of components is present in the column.

sbX Block score for X. The list has the same length as that of the input list X (number of blocks) and consists of a matrix, with the number of subjects in the row and the number of components in the column.

wbY Block loading for Y. The list has same length as that of the input list Y (number of blocks) and consists of a matrix, with the number of variables in the row and the number of components in the column.
Block score for Y. The list has same length as that of the input list Y (number of blocks) and consists of a matrix, with the number of subjects in the row and the number of components in the column.

Super score for X. In the matrix, the number of subjects is in the row and the number of components is in the column.

Super loading for X. In the matrix, the number of blocks is in the row and the number of components is in the column.

Super score for Y. In the matrix, the number of subjects is in the row and the number of components is in the column.

Super loading for Y. In the matrix, the number of blocks is in the row and the number of components is in the column.

Number of nonzeros in block loading for X

Number of nonzeros in block loading for Y

Names of selected variables for X. This returns from the original names of X

Names of selected variables for Y. This returns from the original names of Y

Examples

```r
data CCCCC
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

One Component

fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
fit1

Two Component

fit2 = msma(X, Y, comp=2, lambdaX=2, lambdaY=1:3)
fit2

Matrix data

sigma = matrix(0.8, 10, 10)
diag(sigma) = 1
X2 = rmvnorm(50, rep(0, 10), sigma)
Y2 = rmvnorm(50, rep(0, 10), sigma)

fit3 = msma(X2, Y2, comp=1, lambdaX=2, lambdaY=2)
fit3

Sparse Principal Component Analysis

fit5 = msma(X2, comp=5, lambdaX=2.5)
summary(fit5)
```
ncompsearch

Search for Number of Components

Description

Determination of the number of components based on cross-validated method or Bayesian information criterion (BIC)

Usage

```r
ncompsearch(X, Y = NULL, Z = NULL, comps = 1:3, lambdaX = NULL,
lambdaY = NULL, eta = 1, type = "lasso", inX = NULL, inY = NULL,
mux = 0, muy = 0, nfold = 5, regpara = FALSE, maxrep = 3,
minpct = 0, maxpct = 1, criterion = c("BIC", "CV")[1], intseed = 1)
```

```r
## S3 method for class 'ncompsearch'
print(x, ...)
```

```r
## S3 method for class 'ncompsearch'
plot(x, ...)
```

Arguments

- **X**
 - a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.
- **Y**
 - a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.
- **Z**
 - a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.
- **comps**
 - numeric vector for the candidates for the numbers of components to be selected.
- **lambdaX**
 - numeric vector of regularized parameters for X, with a length equal to the number of blocks. If lambdaX is omitted, no regularization is conducted.
- **lambdaY**
 - numeric vector of regularized parameters for Y, with a length equal to the number of blocks. If lambdaY is omitted, no regularization is conducted.
- **eta**
 - numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.
- **type**
 - a character, indicating the penalty family. In this version, only one choice is available: "lasso."
- **inX**
 - a vector or list of numeric vectors specifying the variables in X, always included in the model
- **inY**
 - a vector or list of numeric vectors specifying the variables in Y, always included in the model
- **mux**
 - a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.
muY a numeric scalar for the weight of Y for the supervised case. \(0 \leq \mu_Y \leq 1 \).
nfold number of folds - default is 5.
regpara logical, If TRUE, the regularized parameters search is also conducted simultaneously.
maxrep numeric scalar for the number of iteration.
minpct minimum candidate parameters defined as a percentile of automatically determined (possible) candidates.
maxpct maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.
criterion a character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.
intseed seed number for the random number in the parameter estimation algorithm.
x an object of class "ncompsearch", usually, a result of a call to ncompsearch
...

Details

This function searches for the optimal number of components.

Value

combs numbers of components
mincriterion minimum criterion value
criteria criterion values
optncomp optimal number of components with the minimum criteria value

Examples

data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

number of components search
ncompl = ncompsearch(X, Y, comps = c(1, 5, 10*(1:5)), nfold=5)
plot(ncompl)
Parameters Search

Description

Combined method for optimizing the number of components and regularized parameters for "msma".

Usage

optparasearch(x, Y = NULL, Z = NULL, search.method = c("simultaneous", "regparalst", "ncomplst", "regparaonly"))[1], eta = 1, type = "lasso", inX = NULL, inY = NULL, muX = 0, muY = 0, comp = 1, nfold = 5, maxrep = 3, minpct = 0, maxpct = 1, criterion = c("BIC", "CV")[1], intseed = 1)

S3 method for class 'optparasearch'
print(x, ...)

Arguments

X a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.

Y a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.

Z a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.

search.method a character indicating search methods, see Details. Default is "simultaneous".

eta numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.

type a character, indicating the penalty family. In this version, only one choice is available: "lasso."

inX a vector or list of numeric vectors specifying the variables in X, always included in the model

inY a vector or list of numeric vectors specifying the variables in Y, always included in the model

muX a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.

muY a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.

comp numeric scalar for the number of components to be considered or the maximum candidate number of components.

nfold number of folds - default is 5.

maxrep numeric scalar for the number of iteration.
minimum candidate parameters defined as a percentile of automatically determined (possible) candidates.

maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.

A character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.

seed number for the random number in the parameter estimation algorithm.

an object of class "optparasearch", usually, a result of a call to \texttt{optparasearch}

further arguments passed to or from other methods.

A function for identifying the regularized sparseness parameters lambdaX and lambdaY and the number of components for \texttt{msma}. Four search methods are available. The "simultaneous" method identifies the number of components by searching the regularized parameters in each component. The "regpara1st" identifies the regularized parameters by fixing the number of components, then searching for the number of components with the selected regularized parameters. The "ncomp1st" method identifies the number of components with a regularized parameter of 0, then searches for the regularized parameters with the selected number of components. The "regparaonly" method searches for the regularized parameters with a fixed number of components.

Optimal number of components

Optimal parameters for X

Optimal parameters for Y

Minimum criterion value

All resulting criterion values in the process

Range of candidates parameters

\texttt{tmpdata} = \texttt{simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)}

\texttt{X = tmpdata$X; Y = tmpdata$Y}

\texttt{opt1 = optparasearch(X, Y, search.method = "regparaonly", comp=1, nfold=5, maxrep=2)}

\texttt{fit4 = msma(X, Y, comp=opt1$optncomp, lambdaX=opt1$optlambdaX, lambdaY=opt1$optlambdaY)}

\texttt{summary(fit4)}

\texttt{opt2 = optparasearch(X, Y, comp=3, nfold=5, maxrep=2, minpct=0.5)}

\texttt{opt2}
plot.msma

Description
plot method for class "msma".

Usage
S3 method for class 'msma'
plot(x, v = c("weight", "score", "cpev")[1], axes = 1,
 block = c("block", "super")[1], plottype = c("bar", "scatter")[1],
 XY = c("X", "Y", "XY")[1], col = NULL, signflip = FALSE, ...)

Arguments
x an object of class "msma." Usually, a result of a call to msma
v a character, "weight" for the weight, "score" for the score, and "cpev" for the
cumulative percentage of explained variance (CPEV).
axes a numeric (or vector), specifying the component(s) to plot.
block a character, indicating which the "block" or "super" is used.
plottype a character, indicating the plot type. "bar" for the bar plot, "scatter" for the
scatter plot.
XY a character, indicating "X" or "Y". "XY" for the scatter plots using X and Y
scores from PLS.
col a color vector.
signflip a logical if the sign in the block is flipped to pose the super as positive.
... further arguments passed to or from other methods.

Details
This function provides a plot of results.

Examples
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
plot(fit1)
Description

predict method for class "msma".

Usage

S3 method for class 'msma'
predict(object, newX, newY = NULL, ...)

Arguments

- **object**: an object of class "msma." Usually, a result of a call to msma.
- **newX**: a matrix in which to look for the variables used to predict X. This is required.
- **newY**: a matrix in which to look for the variables used to predict Y.
- **...**: further arguments passed to or from other methods.

Details

This function produces a prediction from new data based on msma fit. It is mainly used in cross-validation.

Value

- **X**: predicted X
- **sbX**: block score for X
- **Y**: predicted Y
- **sbY**: block score for Y

Examples

```r
#### data ####
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

#### Two Component ####
fit2 = msma(X, Y, comp=2, lambdaX=2, lambdaY=1:3)
summary(fit2)

#### Predict ####
test = predict(fit2, newX=X, newY=Y)
```
Description

Regularized parameters search method for "msma".

Usage

regparasearch(x, y = NULL, z = NULL, eta = 1, type = "lasso",
inX = NULL, inY = NULL, muX = 0, muY = 0, comp = 1, nfold = 5,
maxrep = 3, minpct = 0, maxpct = 1, criterion = c("BIC", "CV")[1],
intseed = 1)

S3 method for class 'regparasearch'
print(x, ...)

Arguments

X a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.
Y a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.
Z a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.
eta numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.
type a character, indicating the penalty family. In this version, only one choice is available: "lasso."
inX a vector or list of numeric vectors specifying the variables in X, always included in the model
inY a vector or list of numeric vectors specifying the variables in Y, always included in the model
muX a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.
muY a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.
comp numeric scalar for the number of components to be considered.
nfold number of folds. Default is 5.
maxrep numeric scalar for the number of iterations.
minpct minimum candidate parameters defined as a percentile of automatically determined (possible) candidates.
maxpct maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.
criterion a character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.

intseed seed number for the random number in the parameter estimation algorithm.

x an object of class "regparasearch", usually, a result of a call to regparasearch

Details

This is a function for identifying the regularized parameters of sparseness lambdaX and lambdaY for msma. The initial range of candidates is computed based on fit, with regularized parameter values of 0. A binary search is conducted for dividing the parameter range into two regions. The representative value for the region is a median value, and the optimal region is selected using the minimum criteria obtained from the fit with that median value. The CV error or BIC can be used as criteria. The selected region is also divided into two region and the same process is iterated by maxrep times. Thus, the final median value in the selected region is set to be the optimal regularized parameter. The search is conducted with combinations of parameters for X and Y. The range of candidates for regularized parameters can be restricted, with a percentile of the limit (minimum or maximum) for the range.

Value

optlambdax Optimal parameters for X
optlambday Optimal parameters for Y
mincriterion Minimum criterion value
criteria All resulting criterion values in the process
pararange Range of candidates parameters

Examples

####### data #######
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

####### Regularized parameters search #######
opt1 = regparasearch(X, Y, comp=1, nfold=5, maxrep=2)
 opt1
fit4 = msma(X, Y, comp=1, lambdaX=opt1$optlambdax, lambdaY=opt1$optlambday)
 fit4
 summary(fit4)

####### Restrict search range #######
opt2 = regparasearch(X, Y, comp=1, nfold=5, maxrep=2, minpct=0.5)
 opt2
simdata

Generate Test Data Sets

Description

This is a function for generating multiblock data based on the multivariable normal distribution.

Usage

```r
simdata(n = 100, rho = 0.8, Yps = c(100, 120, 150), Xps = 500, seed = 1)
```

Arguments

- `n`: a numeric scalar for sample size.
- `rho`: a numeric scalar. Correlation coefficient for all matrices.
- `Yps`: a numeric vector indicating the numbers of columns for Y. The length of the vector corresponds to the number of blocks.
- `Xps`: a numeric vector indicating the numbers of columns for X. The length of the vector corresponds to the number of blocks.
- `seed`: a seed number for generating random numbers for reproducibility. Should be changed in an iterative study.

Details

The output is a list of matrices.

Value

- `X`: Simulated X, which has a list form
- `Y`: Simulated Y, which has a list form

summary.msma

Summarizing Fits

Description

summary method for class "msma".

Usage

```r
## S3 method for class 'msma'
summary(object, ...)
```

```r
## S3 method for class 'summary.msma'
print(x, ...)
```
Arguments

object, x an object of class "msma." Usually, a result of a call to msma
... further arguments passed to or from other methods.

Details

This function provides a summary of results.

Examples

```R
# data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
summary(fit1)
```
Index

*Topic documentation
 msma-package, 2

 cvmsma, 2

 msma, 2, 4, 5, 11, 12, 16
 msma-package, 2

 ncompsearch, 7

 optparasearch, 9

 plot.msma, 11
 plot.ncompsearch(ncompsearch), 7
 predict.msma, 12
 print.msma(msma), 4
 print.ncompsearch(ncompsearch), 7
 print.optparasearch(optparasearch), 9
 print.regparasearch(regparasearch), 13
 print.summary.msma(summary.msma), 15

 regparasearch, 13

 simdata, 15
 summary.msma, 15