Package ‘msma’

February 6, 2020

Type Package
Title Multiblock Sparse Multivariable Analysis
Version 2.1
Date 2020-02-06
Author Atsushi Kawaguchi
Maintainer Atsushi Kawaguchi <kawa_a24@yahoo.co.jp>
Depends mvtnorm
Description Several functions can be used to analyze multiblock multivariable data. If the input is a single matrix, then principal components analysis (PCA) is implemented. If the input is a list of matrices, then multiblock PCA is implemented. If the input is two matrices, for exploratory and objective variables, then partial least squares (PLS) analysis is implemented. If the input is two lists of matrices, for exploratory and objective variables, then multiblock PLS analysis is implemented. Additionally, if an extra outcome variable is specified, then a supervised version of the methods above is implemented. For each method, sparse modeling is also incorporated. Functions for selecting the number of components and regularized parameters are also provided.
License GPL (>= 2)
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-06 11:00:05 UTC

R topics documented:

msma-package ... 2
cvmsma ... 2
msma ... 4
ncompssearch ... 7
optparasearch ... 10
plot.msma ... 12
Description

A Package for Implementation of the method

Author(s)

Atsushi Kawaguchi. <kawa_a24@yahoo.co.jp>

References

See Also

msma

cvmsma

Cross-Validation

Description

cross-validated method to evaluate the fit of "msma".

Usage

cvmsma(
 x,
 Y = NULL,
 Z = NULL,
 comp = 1,
 lambdaX,
 lambdaY = NULL,
 lambdaXsup = NULL,
 lambdaYsup = NULL,
 eta = 1,
)
```
type = "lasso",
inX = NULL,
inY = NULL,
inXsup = NULL,
inYsup = NULL,
muX = 0,
muY = 0,
nfold = 5,
seed = 1,
intseed = 1
)
```

Arguments

- `X`: a (list of) matrix, explanatory variable(s).
- `Y`: a (list of) matrix, objective variable(s).
- `Z`: a (list of) matrix, response variable(s).
- `comp`: numeric scalar for the maximum number of components to be considered.
- `lambdaX`: numeric vector of regularized parameters for X with length equal to the number of blocks. If omitted, no regularization is conducted.
- `lambdaY`: numeric vector of regularized parameters for Y with length equal to the number of blocks. If omitted, no regularization is conducted.
- `lambdaXsup`: numeric vector of regularized parameters for the super weight of X with length equal to the number of blocks. If omitted, no regularization is conducted.
- `lambdaYsup`: numeric vector of regularized parameters for the super weight of Y with length equal to the number of blocks. If omitted, no regularization is conducted.
- `eta`: numeric scalar the parameter indexing the penalty family.
- `type`: a character.
- `inX`: a (list of) numeric vector to specify the variables of X which are always in the model.
- `inY`: a (list of) numeric vector to specify the variables of X which are always in the model.
- `inXsup`: a (list of) numeric vector to specify the blocks of X which are always in the model.
- `inYsup`: a (list of) numeric vector to specify the blocks of Y which are always in the model.
- `muX`: a numeric scalar for the weight of X for the supervised.
- `muY`: a numeric scalar for the weight of Y for the supervised.
- `nfold`: number of folds - default is 5.
- `seed`: number of seed for the random number.
- `intseed`: seed number for the random number in the parameter estimation algorithm.

Details

k-fold cross-validation for msma
Value

err The mean cross-validated errors which has three elements consisting of the mean of errors for X and Y, the errors for X and for Y.

Examples

data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

One Component CV
cv1 = cvmsma(X, Y, comp = 1, lambdaX=2, lambdaY=1:3, nfold=5, seed=1)
cv1

Two Component CV
cv2 = cvmsma(X, Y, comp = 2, lambdaX=2, lambdaY=1:3, nfold=5, seed=1)
cv2

msma Multiblock Sparse Partial Least Squares

Description

This is a function for a matrix decomposition method incorporating sparse and supervised modeling for a multiblock multivariable data analysis.

Usage

msma(X, ...)

Default S3 method:
msma(
 X,
 Y = NULL,
 Z = NULL,
 comp = 2,
 lambdaX = NULL,
 lambdaY = NULL,
 lambdaXsup = NULL,
 lambdaYsup = NULL,
 eta = 1,
 type = "lasso",
 inX = NULL,
 inY = NULL,
 inXsup = NULL,
 inYsup = NULL,
 muX = 0,
muY = 0,
defmethod = "canonical",
scaling = TRUE,
verbose = FALSE,
intseed = 1,
...)

S3 method for class 'msma'
print(x, ...)

Arguments

- **X**: a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.
- **...**: further arguments passed to or from other methods.
- **Y**: a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.
- **Z**: a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.
- **comp**: numeric scalar for the maximum number of components to be considered.
- **lambdaX**: numeric vector of regularized parameters for X, with a length equal to the number of blocks. If lambdaX is omitted, no regularization is conducted.
- **lambdaY**: numeric vector of regularized parameters for Y, with a length equal to the number of blocks. If lambdaY is omitted, no regularization is conducted.
- **lambdaXsup**: numeric vector of regularized parameters for the super weight of X with length equal to the number of blocks. If omitted, no regularization is conducted.
- **lambdaYsup**: numeric vector of regularized parameters for the super weight of Y with length equal to the number of blocks. If omitted, no regularization is conducted.
- **eta**: numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.
- **type**: a character, indicating the penalty family. In this version, only one choice is available: "lasso."
- **inX**: a vector or list of numeric vectors specifying the variables in X, always included in the model.
- **inY**: a vector or list of numeric vectors specifying the variables in Y, always included in the model.
- **inXsup**: a (list of) numeric vector to specify the blocks of X which are always in the model.
- **inYsup**: a (list of) numeric vector to specify the blocks of Y which are always in the model.
- **muX**: a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.
- **muY**: a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.
defmethod
Scaling method: a character representing the deflation method. This version has only the choice
"canonical."
scaling
Scaling: a logical, indicating whether or not data scaling is performed. The default is
TRUE.
verbose
Verbose: information
intseed
Seed: seed number for the random number in the parameter estimation algorithm.
x
Input: an object of class "msma", usually, a result of a call to msma

Details
msma requires at least one input X (a matrix or list). In this case, (multiblock) PCA is conducted.
If Y is also specified, then a PLS is conducted using X as explanatory variables and Y as objective
variables. This function scales each data matrix to a mean of 0 and variance of 1 in the default.
The block structure can be represented as a list. If Z is also specified, a supervised version is
implemented, and the degree is controlled by muX or muY, where 0 <= muX <= 1, 0 <= muY <= 1,
and 0 <= muX + muY < 1. If a positive lambdaX or lambdaY is specified, then a sparse estimation
based on the L1 penalty is implemented.

Value

dmode
Which modes "PLS" or "PCA"
X
Scaled X which has a list form.
Y
Scaled Y which has a list form.
Xscale
Scaling information for X. The means and standard deviations for each block of
X are returned.
Yscale
Scaling information for Y. The means and standard deviations for each block of
Y are returned.
comp
the number of components
wbX
block loading for X
sbX
block score for X
wbY
block loading for Y
sbY
block score for Y
ssX
super score for X
wsX
super loading for X
ssY
super score for Y
wsY
super loading for Y
nzwbX
number of nonzeros in block loading for X
nzwbY
number of nonzeros in block loading for Y
nzwsX
number of nonzeros in super loading for X
nzwsY
number of nonzeros in super loading for Y
selectXnames
names of selected variables for X
selectYnames
names of selected variables for Y
Examples

data
```r
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y
```

One Component
```r
fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
```

Two Component
```r
fit2 = msma(X, Y, comp=2, lambdaX=2, lambdaY=1:3)
```

Matrix data
```r
sigma = matrix(0.8, 10, 10)
diag(sigma) = 1
X2 = rmvnorm(50, rep(0, 10), sigma)
Y2 = rmvnorm(50, rep(0, 10), sigma)
```

```r
fit3 = msma(X2, Y2, comp=1, lambdaX=2, lambdaY=2)
```

Sparse Principal Component Analysis
```r
fit5 = msma(X2, comp=5, lambdaX=2.5)
```

```
summary(fit5)
```

ncompsearch

Search for Number of Components

Description

Determination of the number of components based on cross-validated method or Bayesian information criterion (BIC)

Usage

```r
ncompsearch(
  X,
  Y = NULL,
  Z = NULL,
  comps = 1:3,
  lambdaX = NULL,
  lambdaY = NULL,
  lambdaXsup = NULL,
  lambdaYsup = NULL,
  eta = 1,
  type = "lasso",
)```
### Arguments

**X**
- a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.

**Y**
- a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.

**Z**
- a vector, response variable(s) for implementing the supervised version of (multiblock) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.

**comps**
- numeric vector for the maximum numbers of components to be considered.

**lambdaX**
- numeric vector of regularized parameters for X, with a length equal to the number of blocks. If lambdaX is omitted, no regularization is conducted.

**lambdaY**
- numeric vector of regularized parameters for Y, with a length equal to the number of blocks. If lambdaY is omitted, no regularization is conducted.

**lambdaXsup**
- numeric vector of regularized parameters for the super weight of X with length equal to the number of blocks. If omitted, no regularization is conducted.

**lambdaYsup**
- numeric vector of regularized parameters for the super weight of Y with length equal to the number of blocks. If omitted, no regularization is conducted.

**eta**
- numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.

**type**
- a character, indicating the penalty family. In this version, only one choice is available: "lasso."

**inX**
- a (list of) numeric vector to specify the variables of X which are always in the model.
**ncompsearch**

inY  
a (list of) numeric vector to specify the variables of X which are always in the model.

inXsup  
a (list of) numeric vector to specify the blocks of X which are always in the model.

inYsup  
a (list of) numeric vector to specify the blocks of Y which are always in the model.

muX  
a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.

muY  
a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.

nfold  
number of folds - default is 5.

regpara  
logical, If TRUE, the regularized parameters search is also conducted simultaneously.

maxrep  
numeric scalar for the number of iteration.

minpct  
minimum candidate parameters defined as a percentile of automatically determined (possible) candidates.

maxpct  
maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.

criterion  
a character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.

whichselect  
which blocks selected.

intseed  
seed number for the random number in the parameter estimation algorithm.

x  
an object of class "ncompsearch", usually, a result of a call to ncompsearch

...  
further arguments passed to or from other methods.

**Details**

This function searches for the optimal number of components.

**Value**

- **comps**  
  numbers of components

- **mincriterion**  
  minimum criterion values

- **criterions**  
  criterion values

- **optncomp**  
  optimal number of components based on minimum cross-validation error

**Examples**

```r
data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

number of components search
ncompl = ncompsearch(X, Y, comps = c(1, 5, 10*(1:2)), nfold=5)
plot(ncompl)
```
Parameters Search

Description

Combined method for optimizing the number of components and regularized parameters for "msma".

Usage

```r
optparasearch(
 X,
 Y = NULL,
 Z = NULL,
 search.method = c("simultaneous", "regpara1st", "ncomp1st", "regparaonly")[[1]],
 eta = 1,
 type = "lasso",
 inX = NULL,
 inY = NULL,
 muX = 0,
 muY = 0,
 comp = 1,
 nfold = 5,
 maxrep = 3,
 minpct = 0,
 maxpct = 1,
 maxpct4ncomp = NULL,
 criterion = c("BIC", "CV")[[1]],
 whichselect = NULL,
 homo = NULL,
 intseed = 1
)
```

## S3 method for class 'optparasearch'
print(x, ...)

Arguments

- **X**: a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.
- **Y**: a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.
- **Z**: a vector, response variable(s) for implementing the supervised version of (multi-block) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.
- **search.method**: a character indicating search methods, see Details. Default is "simultaneous".
eta
numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.

type
a character, indicating the penalty family. In this version, only one choice is available: "lasso."

inX
a vector or list of numeric vectors specifying the variables in X, always included in the model

inY
a vector or list of numeric vectors specifying the variables in Y, always included in the model

muX
a numeric scalar for the weight of X for the supervised case. 0 <= muX <= 1.

muY
a numeric scalar for the weight of Y for the supervised case. 0 <= muY <= 1.

comp
numeric scalar for the number of components to be considered or the maximum candidate number of components.

nfold
number of folds - default is 5.

maxrep
numeric scalar for the number of iteration.

minpct
minimum candidate parameters defined as a percentile of automatically determined (possible) candidates.

maxpct
maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.

maxpct4ncomp
maximum candidate parameters defined as a percentile of automatically determined (possible) candidates.

criterion
a character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.

whichselect
which blocks selected.

homo
same parameters.

intseed
seed number for the random number in the parameter estimation algorithm.

x
an object of class "optparasearch", usually, a result of a call to optparasearch

... further arguments passed to or from other methods.

Details
A function for identifying the regularized sparseness parameters lambdaX and lambdaY and the number of components for mSma. Four search methods are available. The "simultaneous" method identifies the number of components by searching the regularized parameters in each component. The "regpara1st" identifies the regularized parameters by fixing the number of components, then searching for the number of components with the selected regularized parameters. The "ncomp1st" method identifies the number of components with a regularized parameter of 0, then searches for the regularized parameters with the selected number of components. The "regparaonly" method searches for the regularized parameters with a fixed number of components.
plot.msma

### Value ###
- **optncomp**: Optimal number of components
- **optlambdaX**: Optimal parameters for X
- **optlambdaY**: Optimal parameters for Y
- **mincriterion**: Minimum criterion value
- **criteria**: All resulting criterion values in the process
- **pararange**: Range of candidates parameters

### Examples ###
```r
data
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

Regularized parameters search
opt1 = optparasearch(X, Y, search.method = "regparaonly", comp=1, nfold=5, maxrep=2)
fit4 = msma(X, Y, comp=opt1$optncomp, lambdaX=opt1$optlambdaX, lambdaY=opt1$optlambdaY)
summary(fit4)

Restrict search range
opt2 = optparasearch(X, Y, comp=3, nfold=5, maxrep=2, minpct=0.5)
opt2
```

---

**plot.msma**  
*Plot msma*

### Description ###

plot method for class "msma".

### Usage ###
```r
S3 method for class 'msma'
plot(
 x,
 v = c("weight", "score", "cpev")[1],
 axes = 1,
 block = c("block", "super")[1],
 plottype = c("bar", "scatter")[1],
 XY = c("X", "Y", "XY")[1],
 col = NULL,
 signflip = FALSE,
 ...
)
```
predict.msma

Arguments

- `x`: an object of class "msma." Usually, a result of a call to `msma`.
- `v`: a character, "weight" for the weight, "score" for the score, and "cpev" for the cumulative percentage of explained variance (CPEV).
- `axes`: a numeric (or vector), specifying the component(s) to plot.
- `block`: a character, indicating which the "block" or "super" is used.
- `plottype`: a character, indicating the plot type. "bar" for the bar plot, "scatter" for the scatter plot.
- `XY`: a character, indicating "X" or "Y". "XY" for the scatter plots using X and Y scores from PLS.
- `col`: a color vector.
- `signflip`: a logical if the sign in the block is flipped to pose the super as possitive.
- `...`: further arguments passed to or from other methods.

Details

This function provides a plot of results.

Examples

tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y
fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
plot(fit1)

predict.msma

Description

predict method for class "msma".

Usage

## S3 method for class 'msma'
predict(object, newX, newY = NULL, ...)

Arguments

- `object`: an object of class "msma", usually, a result of a call to `msma`.
- `newX`: a matrix in which to look for variables with which to predict X.
- `newY`: a matrix in which to look for variables with which to predict Y.
- `...`: further arguments passed to or from other methods.
Details

This function produces a prediction from new data based on `msma` fit. It is mainly used in cross-validation.

Value

- `X` predicted X
- `sbX` block score for X
- `Y` predicted Y
- `sbY` block score for Y

Examples

##### data #####
```r
tmppdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmppdata$X; Y = tmppdata$Y
```

##### Two Component #####
```r
fit2 = msma(X, Y, comp=2, lambdaX=2, lambdaY=1:3)
summary(fit2)
```

##### Predict #####
```r
test = predict(fit2, newX=X, newY=Y)
```

---

regparasearch  
**Regularized Parameters Search**

Description

Regularized parameters search method for "msma".

Usage

```r
regparasearch(
 X,
 Y = NULL,
 Z = NULL,
 eta = 1,
 type = "lasso",
 inX = NULL,
 inY = NULL,
 inXsup = NULL,
 inYsup = NULL,
 muX = 0,
 muY = 0,
 comp = 1,
```
regparasearch

```r
nfold = 5,
maxrep = 3,
minpct = 0,
maxpct = 1,
criterion = c("CV", "BIC")[1],
whichselect = NULL,
homo = NULL,
intseed = 1
)

S3 method for class 'regparasearch'
print(x, ...)
```

### Arguments

- **X**: a matrix or list of matrices indicating the explanatory variable(s). This parameter is required.
- **Y**: a matrix or list of matrices indicating objective variable(s). This is optional. If there is no input for Y, then PCA is implemented.
- **Z**: a vector, response variable(s) for implementing the supervised version of (multiblock) PCA or PLS. This is optional. The length of Z is the number of subjects. If there is no input for Z, then unsupervised PLS/PCA is implemented.
- **eta**: numeric scalar indicating the parameter indexing the penalty family. This version contains only choice 1.
- **type**: a character, indicating the penalty family. In this version, only one choice is available: "lasso."
- **inX**: a (list of) numeric vector to specify the variables of X which are always in the model.
- **inY**: a (list of) numeric vector to specify the variables of X which are always in the model.
- **inXsup**: a (list of) numeric vector to specify the blocks of X which are always in the model.
- **inYsup**: a (list of) numeric vector to specify the blocks of Y which are always in the model.
- **muX**: a numeric scalar for the weight of X for the supervised case. 0 \(\leq\) muX \(\leq\) 1.
- **muY**: a numeric scalar for the weight of Y for the supervised case. 0 \(\leq\) muY \(\leq\) 1.
- **comp**: numeric scalar for the maximum number of components to be considered.
- **nfold**: number of folds. Default is 5.
- **maxrep**: numeric scalar for the number of iteration.
- **minpct**: percent of minimum candidate parameters.
- **maxpct**: percent of maximum candidate parameters.
- **criterion**: a character, the evaluation criterion, "CV" for cross-validation, based on a matrix element-wise error, and "BIC" for Bayesian information criteria. The "BIC" is the default.
whichselect which blocks selected.
homo same parameters.
intseed seed number for the random number in the parameter estimation algorithm.
x an object of class "regparasearch", usually, a result of a call to regparasearch
... further arguments passed to or from other methods.

Details

This is a function for identifying the regularized parameters of sparseness lambdaX and lambdaY for msma. The initial range of candidates is computed based on fit, with regularized parameter values of 0. A binary search is conducted for dividing the parameter range into two regions. The representative value for the region is a median value, and the optimal region is selected using the minimum criteria obtained from the fit with that median value. The CV error or BIC can be used as criteria. The selected region is also divided into two region and the same process is iterated by maxrep times. Thus, the final median value in the selected region is set to be the optimal regularized parameter. The search is conducted with combinations of parameters for X and Y. The range of candidates for regularized parameters can be restricted, with a percentile of the limit (minimum or maximum) for the range.

Value

- optlambdaX Optimal parameters for X
- optlambdaY Optimal parameters for Y
- mincriterion Minimum of criterion values
- criterions Resulting criterion value
- pararange Range of candidates parameters

Examples

##### data #####
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = c(20, 15), seed=1)
X = tmpdata$X; Y = tmpdata$Y

##### Regularized parameters search #####
opt1 = regparasearch(X, Y, comp=1, criterion="BIC", maxrep=2,
whichselect=c("X", "Y", "Xsup", "Ysup"))
opt1
fit4 = msma(X, Y, comp=1, lambdaX=opt1$optlambdaX, lambdaY=opt1$optlambdaY,
lambdaXsup=opt1$optlambdaXsup, lambdaYsup=opt1$optlambdaYsup)
fit4
summary(fit4)
**simdata**

**Simulate Data sets**

**Description**

This is a function for generating multiblock data based on the multivariable normal distribution.

**Usage**

```r
simdata(n = 100, rho = 0.8, Yps = c(100, 120, 150), Xps = 500, seed = 1)
```

**Arguments**

- `n` a numeric scalar, sample size.
- `rho` a numeric scalar, correlation coefficient.
- `Yps` a numeric vector, numbers of columns for Y. The length of vector corresponds to the number of blocks.
- `Xps` a numeric vector, numbers of columns for X. The length of vector corresponds to the number of blocks.
- `seed` a seed number for generating random numbers.

**Details**

The output is a list of matrices.

**Value**

- `X` Simulated X which has a list form
- `Y` Simulated Y which has a list form

---

**strsimdata**

**Structured Simulate Data sets**

**Description**

This is a function for generating multiblock data based on the multivariable normal distribution.
Usage

```r
strsimdata(
 n = 100,
 ncomp = 5,
 WX = NULL,
 Xps = 10,
 Yps = FALSE,
 rho = 0.8,
 Z = FALSE,
 seed = 1,
 minpct = 0.25,
 maxpct = 0.75
)
```

Arguments

- `n`: a numeric scalar, sample size.
- `ncomp`: number of components
- `WX`: a matrix or a list, weights.
- `Xps`: a numeric vector, numbers of columns for X. The length of vector corresponds to the number of blocks.
- `Yps`: a numeric vector, numbers of columns for Y. The length of vector corresponds to the number of blocks.
- `rho`: a numeric, correlation
- `Z`: outcome
- `seed`: a seed number for generating random numbers.
- `minpct`: minimum percent of nonzero
- `maxpct`: maximum percent of nonzero

Details

The output is a list of matrices.

Value

- `X`: Simulated X which has a list form
- `Y`: Simulated Y which has a list form
summarize.msma

Summarizing Fits

Description
summary method for class "msma".

Usage

## S3 method for class 'msma'
summary(object, ...)

## S3 method for class 'summary.msma'
print(x, ...)

Arguments

object, x
an object of class "msma", usually, a result of a call to msma

... further arguments passed to or from other methods.

Details
This function provide the summary of results.

Examples

##### data #####
tmpdata = simdata(n = 50, rho = 0.8, Yps = c(10, 12, 15), Xps = 20, seed=1)
X = tmpdata$X; Y = tmpdata$Y

##### One Component #####
fit1 = msma(X, Y, comp=1, lambdaX=2, lambdaY=1:3)
summary(fit1)
Index

*Topic documentation
  msma-package, 2

cvmsma, 2

msma, 2, 4, 6, 13, 14, 19
msma-package, 2

ncompsearch, 7, 9

optparasearch, 10

plot.msma, 12
plot.ncompsearch (ncompsearch), 7
predict.msma, 13
print.msma (msma), 4
print.ncompsearch (ncompsearch), 7
print.optparasearch (optparasearch), 10
print.regparasearch (regparasearch), 14
print.summary.msma (summary.msma), 19
regparasearch, 14, 16

simdata, 17
strsimdata, 17
summary.msma, 19