Package ‘mstate’

July 11, 2024

Version 0.3.3
Date 2024-07-03
Title Data Preparation, Estimation and Prediction in Multi-State Models
Depends survival (>= 3.1)
Imports rlang, data.table, lattice, RColorBrewer, viridisLite
Suggests cmprsk, ggplot2, knitr, rmarkdown, relsurv (>= 2.2-5)
License GPL (>= 2)
Encoding UTF-8
URL https://github.com/hputter/mstate
NeedsCompilation yes
Repository CRAN
RoxygenNote 7.2.3
BugReports https://github.com/hputter/mstate/issues
VignetteBuilder knitr
Author Hein Putter [aut, cre],
 Liesbeth C. de Wreede [aut],
 Marta Fiocco [aut],
 Ronald B. Geskus [ctb],
 Edouard F. Bonneville [aut],
 Damjan Manevski [ctb]
Maintainer Hein Putter <H.Putter@lumc.nl>
Date/Publication 2024-07-11 21:30:06 UTC
Contents

mstate-package ... 3
aidssi .. 4
bmt .. 5
crprep.default ... 6
Cuminc ... 9
cutLMms .. 11
EBMT cause of death data 12
EBMT data .. 13
EBMT platelet recovery data 14
EBMT year of relapse data 15
ELOS .. 16
etm2msdata ... 17
events .. 18
expand.covs ... 19
expand.covs.msdata .. 20
haz_function ... 22
Liver cirrhosis data .. 23
LMAJ .. 24
MarkovTest ... 25
modify_transMat .. 28
msboot ... 29
msboot.relsurv .. 30
msboot.relsurv.boot ... 31
msdata2etm .. 33
msfit ... 33
msfit.relsurv ... 35
msprep ... 37
mssample ... 40
paths .. 43
plot.Cuminc ... 44
plot.MarkovTest ... 46
plot.msfit ... 48
plot.probrans .. 50
print.MarkovTest ... 53
print.msdata ... 54
print.summary.msfit ... 55
print.summary.probrans .. 56
probrans .. 56
redrank .. 58
summary.Cuminc ... 61
summary.msfit .. 61
summary.probrans .. 63
trans2tra ... 65
transhelp ... 66
transMat .. 67
varHaz.fixed .. 68
mstate-package

Data preparation, estimation and prediction in multi-state models

Description

Functions for data preparation, descriptives, (hazard) estimation and prediction (Aalen-Johansen) in competing risks and multi-state models.

Details

Package: mstate
Type: Package
Version: 0.2.10
Date: 2016-12-03
License: GPL 2.0

Author(s)

Liesbeth de Wreede, Marta Fiocco, Hein Putter. Maintainer: Hein Putter <H.Putter@lumc.nl>

References

Data from the Amsterdam Cohort Studies on HIV infection and AIDS

Description

These data sets give the times (in years) from HIV infection to AIDS, SI switch and death in 329 men who have sex with men (MSM). Data are from the period until combination anti-retroviral therapy became available (1996). For more background information on the cohort, ccr5 and SI, see Geskus et al. (2000, 2003)

Format

aidssi

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>patnr</td>
<td>Patient identification number</td>
</tr>
<tr>
<td>time</td>
<td>Time from HIV infection to first of SI appearance and AIDS, or last follow-up</td>
</tr>
<tr>
<td>status</td>
<td>Event indicator; 0 = censored, 1 = AIDS, 2 = SI appearance</td>
</tr>
<tr>
<td>cause</td>
<td>Failure cause; factor with levels "event-free", "AIDS", "SI"</td>
</tr>
<tr>
<td>ccr5</td>
<td>CCR5 genotype; factor with levels "WW" (wild type allele on both chromosomes), "WM" (mutant allele on one chromosome)</td>
</tr>
</tbody>
</table>

aidssi2

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>patnr</td>
<td>Patient identification number</td>
</tr>
<tr>
<td>entry.time</td>
<td>Time from HIV infection to cohort entry. Value is zero if HIV infection occurred while in follow-up.</td>
</tr>
<tr>
<td>aids.time</td>
<td>Time from HIV infection to AIDS, or last follow-up if AIDS was not observed</td>
</tr>
<tr>
<td>aids.stat</td>
<td>Event indicator with respect to AIDS, with values 0 (censored) and 1 (AIDS)</td>
</tr>
<tr>
<td>si.time</td>
<td>Time from HIV infection to SI switch, or last follow-up if SI switch was not observed</td>
</tr>
<tr>
<td>si.stat</td>
<td>Event indicator with respect to SI switch, with values 0 (no switch) and 1 (switch)</td>
</tr>
<tr>
<td>death.time</td>
<td>Time from HIV infection to death, or last follow-up if death was not observed</td>
</tr>
<tr>
<td>death.stat</td>
<td>Event indicator with respect to death; 0 = alive, 1 = dead</td>
</tr>
<tr>
<td>age.inf</td>
<td>Age at HIV infection</td>
</tr>
<tr>
<td>ccr5</td>
<td>CCR5 genotype; factor with levels "WW" (wild type allele on both chromosomes), "WM" (mutant allele on one chromosome)</td>
</tr>
</tbody>
</table>

Details

aidssi contains follow-up data until the first of AIDS and SI switch. It was used as example for the competing risks analyses in Putter, Fiocco, Geskus (2007) and in Geskus (2016).

aidssi2 extends the aidssi data set in three ways. First, it considers events after the initial one. Second, it includes the entry times of the individuals that entered the study after HIV infection. Third, age at HIV infection has been added as extra covariable. Numbers differ slightly from the aidssi data set. Some individuals were diagnosed with AIDS only when they died and others had their last follow-up at AIDS diagnosis. In order to prevent two transitions to happen at the same time, their time to AIDS was shortened by 0.25 years. This data set was used as example for the multi-state analyses in Geskus (2016).
bmt

Source

References

Description
A data frame of 137 rows (patients) and 22 columns. The included variables are

- **group**: Disease group; 1 = ALL, 2 = AML Low Risk, 3 = AML High Risk
- **t1**: Time in days to death or last follow-up
- **t2**: Disease-free survival time in days (time to relapse, death or last follow-up)
- **d1**: Death indicator; 1 = dead, 0 = alive
- **d2**: Relapse indicator; 1 = relapsed, 0 = disease-free
- **d3**: Disease-free survival indicator; 1 = dead or relapsed, 0 = alive and disease-free
- **ta**: Time in days to Acute Graft-versus-Host Disease (AGVHD)
- **da**: Acute GVHD indicator; 1 = Acute GVHD, 0 = No Acute GVHD
- **tc**: Time (days) to Chronic Graft-versus-Host Disease (CGVHD)
- **dc**: Chronic GVHD indicator; 1 = Chronic GVHD, 0 = No Chronic GVHD
- **tp**: Time (days) to platelet recovery
- **dp**: Platelet recovery indicator; 1 = platelets returned to normal, 0 = platelets never returned to normal
- **z1**: Patient age in years
- **z2**: Donor age in years
- **z3**: Patient sex; 1 = male, 0 = female
- **z4**: Donor sex; 1 = male, 0 = female
- **z5**: Patient CMV status; 1 = CMV positive, 0 = CMV negative
- **z6**: Donor CMV status; 1 = CMV positive, 0 = CMV negative
- **z7**: Waiting time to transplant in days
- **z8**: FAB; 1 = FAB grade 4 or 5 and AML, 0 = Otherwise
- **z9**: Hospital; 1 = The Ohio State University, 2 = Alferd, 3 = St. Vincent, 4 = Hahnemann
- **z10**: MTX used as a Graft-versus-Host prophylactic; 1 = yes, 0 = no
crprep.default

Format

A data frame, see `data.frame`.

References

crprep.default Function to create weighted data set for competing risks analyses

Description

This function converts a dataset that is in short format (one subject per line) into a counting process format with time-varying weights that correct for right censored and left truncated data. With this data set, analyses based on the subdistribution hazard can be performed.

Usage

```r
## Default S3 method:
crprep(
  Tstop,
  status,
  data,
  trans = 1,
  cens = 0,
  Tstart = 0,
  id,
  strata,
  keep,
  shorten = TRUE,
  rm.na = TRUE,
  origin = 0,
  prec.factor = 1000,
  ...
)
```

Arguments

- **Tstop** Either 1) a vector containing the time at which the follow-up is ended, or 2) a character string indicating the column name in `data` that contains the end times (see Details).
- **status** Either 1) a vector describing status at end of follow-up, having the same length as `Tstop`, or 2) a character string indicating the column name that contains this information.
- **data** Data frame in which to interpret `Tstart`, `status`, `Tstart`, `id`, `strata` and `keep`, if given as character value (specification 2, "by name").
trans
Values of status for which weights are to be calculated.

cens
Value that denotes censoring in status column.

Tstart
Either 1) a vector containing the time at which the follow-up is started, having the same length as Tstop, or 2) a character string indicating the column name that contains the entry times, or 3) one numeric value in case it is the same for every subject. Default is 0.

id
Either 1) a vector, having the same length as Tstop, containing the subject identifiers, or 2) a character string indicating the column name containing these subject identifiers. If not provided, a column id is created with subjects having values 1,...,n.

strata
Either 1) a vector of the same length as Tstop, or 2) a character string indicating the column name that contains this information. Weights are calculated for per value in this vector.

keep
Either 1) a data frame or matrix or a numeric or factor vector containing covariate(s) that need to be retained in the output dataset. Number of rows/length should correspond with Tstop, or 2) a character vector containing the column names of these covariates in data.

shorten
Logical. If true, number of rows in output is reduced by collapsing rows within a subject in which weights do not change.

rm.na
Logical. If true, rows for which status is missing are deleted.

origin
Substract origin time units from all Tstop and Tstart times.

prec.factor
Factor by which to multiply the machine’s precision. Censoring and truncation times are shifted by prec.factor*precision if event times and censoring/truncation times are equal.

...
Further arguments to be passed to or from other methods. They are ignored in this function.

Details

For each event type as specified via trans, individuals with a competing event remain in the risk set with weights that are determined by the product-limit forms of the time-to-censoring and time-to-entry estimates. Typically, their weights change over follow-up, and therefore such individuals are split into several rows. Censoring weights are always computed. Truncation weights are computed only if Tstart is specified.

If several event types are specified at once, regression analyses using the stacked format data set can be performed (see Putter et al. 2007 and Chapter 4 in Geskus 2016). The data set can also be used for a regression on the cause-specific hazard by restricting to the subset subset=count==0.

Missing values are allowed in Tstop, status, Tstart, strata and keep. Rows for which Tstart or Tstart is missing are deleted.

There are two ways to supply the data. If given "by value" (option 1), the actual data vectors are used. If given "by name" (option 2), the column names are specified, which are read from the data set in data. In general, the second option is preferred.

If data are given by value, the following holds for the naming of the columns in the output data set. If keep, strata or id is a vector from a (sub)-list, e.g. obj$name2$name1, then the column name
is based on the most inner part (i.e., "name1"). If it is a vector of the form obj[,"name1"], then the
column is named "name1". For all other vector specifications, the name is copied as is. If keep is a
data.frame or a named matrix, the same names are used for the covariate columns in the output data
set. If keep is a matrix without names, then the covariate columns are given the names "V1" until "Vk".
The current function does not allow to create a weighted data set in which the censoring and/or
truncation mechanisms depend on covariates via a regression model.

Value
A data frame in long (counting process) format containing the covariates (replicated per subject).
The following column names are used:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tstart</td>
<td>start dates of dataset</td>
</tr>
<tr>
<td>Tstop</td>
<td>stop dates of dataset</td>
</tr>
<tr>
<td>status</td>
<td>status of the subject at the end of that row</td>
</tr>
<tr>
<td>weight.cens</td>
<td>weights due to censoring mechanism</td>
</tr>
<tr>
<td>weight.trunc</td>
<td>weights due to truncation mechanism (if present)</td>
</tr>
<tr>
<td>count</td>
<td>row number within subject and event type under consideration</td>
</tr>
<tr>
<td>failcode</td>
<td>event type under consideration</td>
</tr>
<tr>
<td>id</td>
<td>subject identifier</td>
</tr>
<tr>
<td>strata</td>
<td>variables as specified in strata and/or keep are included as well (see Details).</td>
</tr>
</tbody>
</table>

Variables as specified in strata and/or keep are included as well (see Details).

Author(s)
Ronald Geskus

References
Geskus RB (2011). Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model

Geskus, Ronald B. (2016). Data Analysis with Competing Risks and Intermediate States. CRC
Press, Boca Raton.

models. Statistics in Medicine 26, 2389–2430.

Examples
data(aidssi)
aidssi.w <- crprep("time", "cause", data=aidssi, trans=c("AIDS","SI"),
 cens="event-free", id="patnr", keep="ccr5")

calculate cause-specific cumulative incidence, no truncation,
compare with Cuminc (also from mstate)
ci <- Cuminc(aidssi$Time, aidssi$Status)
sf <- survfit(Surv(Tstart,Tstop,status=="AIDS")~1, data=aidssi.w,
Weighted survival functions and associated standard errors

```r
sf <- survfit(Surv(Tstart,Tstop,status=="SI")~1, data=aidssi.w, 
weight=weight.cens, subset=failcode=="SI")
plot(sf, fun="event", mark.time=FALSE)
lines(CI.1~time,data=ci,type="s",col="red")
```

Fine and Gray regression for cause 1
```r
cw <- coxph(Surv(Tstart,Tstop,status=="AIDS")~ccr5, data=aidssi.w, 
weight=weight.cens, subset=failcode=="AIDS")
cw
```

Gray's log-rank test
```r
aidssi.wCCR <- crprep("time", "cause", data=aidssi, trans=c("AIDS","SI"), 
cens="event-free", id="patnr", strata="ccr5")
test.AIDS <- coxph(Surv(Tstart,Tstop,status=="AIDS")~ccr5, data=aidssi.wCCR, 
weights=weight.cens, subset=failcode=="AIDS")
test.SI <- coxph(Surv(Tstart,Tstop,status=="SI")~ccr5, data=aidssi.wCCR, 
weights=weight.cens, subset=failcode=="SI")
```

score test statistic and p-value
c(test.AIDS$score, 1-pchisq(test.AIDS$score,1)) # AIDS
c(test.SI$score, 1-pchisq(test.SI$score,1)) # SI

This can be compared with the results of cuminc (cmprsk)
```r
with(aidssi, cuminc(time, status, group=ccr5)$Tests)
```

Note: results are not exactly the same

Cuminc

Calculate nonparametric cumulative incidence functions and associated standard errors

Description

This function computes nonparametric cumulative incidence functions and associated standard errors for each value of a group variable.

Usage

```r
Cuminc(time, status, data, group, na.status = c("remove", "extra"), ...)
```

Arguments

- **time**: Either 1) a numeric vector containing the failure times or 2) a string containing the column name indicating these failure times
- **status**: Either 1) a numeric, factor or character vector containing the failure codes or 2) a string containing the column name indicating these failure codes
data

When appropriate, a data frame containing time, status and/or group variables

group

Optionally, name of column in data indicating a grouping variable; cumulative incidence functions are calculated for each value or level of group. If missing no groups are considered

na.status

One of "remove" (default) or "extra", indicating whether subjects with missing cause of failure should be removed or whether missing cause of failure should be treated as a separate cause of failure

...

Allows extra arguments for future extensions, but for now just used for backwards compatibility (e.g. allowing use of defunct failcodes argument in reverse dependencies).

Details

The estimated cumulative incidences are as described in Putter, Fiocco & Geskus (2007); the standard errors are the square roots of the Greenwood variance estimators, see eg. Andersen, Borgan, Gill & Keiding (1993), de Wreede, Fiocco & Putter (2009), and they correspond to the variances in eg. Marubini & Valsecchi (1995). In case of no censoring, the estimated cumulative incidences and variances reduce to simple binomial frequencies and their variances.

Value

An object of class "Cuminc", which is a data frame containing the estimated failure-free probabilities and cumulative incidences and their standard errors. The names of the dataframe are time, Surv, seSurv, and cuminc and secuminc followed by the values or levels of the failcodes. If group was specified, a group variable is included with the same name and values/levels as the original grouping variable, and with estimated cumulative incidences (SE) for each value/level of group.

Cuminc is now simply a wrapper around survfit of the survival package with type="mstate", only maintained for backward compatibility. The survfit object is kept as attribute (attr("survfit")), and the print, plot and summary functions are simply print, plot and summary applied to the survfit object. Subsetting the "Cuminc" object results in subsetting the data frame, not in subsetting the survfit object.

Author(s)

Hein Putter <H.Putter@lumc.nl>

References

Examples

```r
### These data were used in Putter, Fiocco & Geskus (2007)
data(aidssi)
ci <- Cuminc(time=aidssi$time, status=aidssi$status)
head(ci); tail(ci)
ci <- Cuminc(time="time", status="status", data=aidssi, group="ccr5")
head(ci); tail(ci)

### Some fake data
fake <- data.frame(surv=c(seq(2,10,by=2),seq(1,13,by=3),seq(1,13,by=3)),
                  stat=rep(0:3,5),Tstage=c(1:4,rep(1:4,rep(4,4))))
fake$stat[fake$stat==0 & fake$Tstage==2] <- 3
fake$stat[fake$stat==3 & fake$Tstage==1] <- 2
fake
Cuminc(time="surv", status="stat", data=fake)
# If we remove all entries with status=0,
# we should get binomial sample probabilities and corresponding SEs
fake0 <- fake[fake$stat!=0,]
Cuminc(time="surv", status="stat", data=fake0)
```

cutLMms

Cut a multi-state data set at a landmark time point

Description

Given a dataset in long format, for instance generated by `msprep`, this function cuts a multi-state
data frame (object of type "msdata") at a landmark time point LM. Administrative censoring can be
applied at time cens, equal for all individuals.

Usage

```r
cutLMms(msdata, LM, cens)
```

Arguments

- **msdata**: An object of class "msdata", such as output by `msprep`
- **LM**: The landmark time point at which the cut is to be made
- **cens**: The time point at which administrative censoring is to be applied; if missing, no
 administrative censoring will be applied

Details

The function has a similar purpose as the `cutLM` function in the `dynpred` package. Only follow-up
after a landmark time point LM is considered, so all subjects who are no longer at risk are removed.
Column time is updated based on the new Tstart and Tstop.
EBMT cause of death data

Value

An object of class "msdata" again, containing only follow-up data after LM. The data frame contains an extra column Tentry with the time of entry into the present state.

Author(s)

Hein Putter <H.Putter@lumc.nl>

References

Examples

tmat <- trans.illdeath(names=c("Tx","PR","RelDeath"))
data(ebmt3) # data from Section 4 of Putter, Fiocco & Geskus (2007)
msbmt <- msprep(time=c(NA,"prtime","rfstime"),status=c(NA,"prstat","rfstat"),
data=ebmt3,trans=tmat)
Cut at 5 years
cutLMms(msbmt, LM=1826)
events(cutLMms(msbmt, LM=1826))

EBMT cause of death data

Data from the European Society for Blood and Marrow Transplantation (EBMT)

Description

A data frame of 8966 patients transplanted at the EBMT. The included variables are

id Patient identification number

time Time in months from transplantation to death or last follow-up

status Survival status; 0 = censored; 1,...,6 = death due to the following causes: Relapse (1), GvHD (2), Bacterial infections (3), Viral infections (4), Fungal infections (5), Other causes (6)

cod Cause of death as factor with levels "Alive", "Relapse", "GvHD", "Bacterial", "Viral", "Fungal", "Other"

dissub Disease subclassification; factor with levels "AML", "ALL", "CML"

match Donor-recipient gender match; factor with levels "No gender mismatch", "Gender mismatch"

tcd T-cell depletion; factor with levels "No TCD", "TCD", "Unknown"

age Patient age at transplant; factor with levels "<=20", "20-40", ">40"
EBMT data

Format

A data frame, see `data.frame`.

Source

We acknowledge the European Society for Blood and Marrow Transplantation (EBMT) for making available these data. Disclaimer: these data were simplified for the purpose of illustration of the analysis of competing risks and multi-state models and do not reflect any real life situation. No clinical conclusions should be drawn from these data.

References

EBMT data

Data from the European Society for Blood and Marrow Transplantation (EBMT)

Description

A data frame of 2279 patients transplanted at the EBMT between 1985 and 1998. These data were used in Fiocco, Putter & van Houwelingen (2008), van Houwelingen & Putter (2008, 2012) and de Wreede, Fiocco & Putter (2011). The included variables are

- **id** Patient identification number
- **rec** Time in days from transplantation to recovery or last follow-up
- **rec.s** Recovery status; 1 = recovery, 0 = censored
- **ae** Time in days from transplantation to adverse event (AE) or last follow-up
- **ae.s** Adverse event status; 1 = adverse event, 0 = censored
- **recae** Time in days from transplantation to both recovery and AE or last follow-up
- **recae.s** Recovery and AE status; 1 = both recovery and AE, 0 = no recovery or no AE or censored
- **rel** Time in days from transplantation to relapse or last follow-up
- **rel.s** Relapse status; 1 = relapse, 0 = censored
- **srv** Time in days from transplantation to death or last follow-up
- **srv.s** Relapse status; 1 = dead, 0 = censored
- **agecl** Patient age at transplant; factor with levels ",<=20", "20-40", ">40"
- **proph** Prophylaxis; factor with levels "no", "yes"
- **match** Donor-recipient gender match; factor with levels "no gender mismatch", "gender mismatch"

Format

A data frame, see `data.frame`.
EBMT platelet recovery data

We acknowledge the European Society for Blood and Marrow Transplantation (EBMT) for making available these data. Disclaimer: these data were simplified for the purpose of illustration of the analysis of competing risks and multi-state models and do not reflect any real life situation. No clinical conclusions should be drawn from these data.

References

EBMT platelet recovery data

Data from the European Society for Blood and Marrow Transplantation (EBMT)

Description

A data frame of 2204 patients transplanted at the EBMT between 1995 and 1998. These data were used in Section 4 of the tutorial on competing risks and multi-state models (Putter, Fiocco & Geskus, 2007). The included variables are

- **id** Patient identification number
- **prtime** Time in days from transplantation to platelet recovery or last follow-up
- **prstat** Platelet recovery status; 1 = platelet recovery, 0 = censored
- **rfstime** Time in days from transplantation to relapse or death or last follow-up (relapse-free survival time)
- **rfsstat** Relapse-free survival status; 1 = relapsed or dead, 0 = censored
- **dissub** Disease subclassification; factor with levels "AML", "ALL", "CML"
- **age** Patient age at transplant; factor with levels "<=20", "20-40", ">40"
- **drmatch** Donor-recipient gender match; factor with levels "No gender mismatch", "Gender mismatch"
- **tcd** T-cell depletion; factor with levels "No TCD", "TCD"

Format

A data frame, see `data.frame`.
Source

We acknowledge the European Society for Blood and Marrow Transplantation (EBMT) for making available these data. Disclaimer: these data were simplified for the purpose of illustration of the analysis of competing risks and multi-state models and do not reflect any real life situation. No clinical conclusions should be drawn from these data.

References

EBMT year of relapse data

Data from the European Society for Blood and Marrow Transplantation (EBMT)

Description

A data frame of 1977 patients transplanted for CML. The included variables are

- **patid** Patient identification number
- **srv** Time in days from transplantation to death or last follow-up
- **srvstat** Survival status; 1 = death; 0 = censored
- **rel** Time in days from transplantation to relapse or last follow-up
- **relstat** Relapse status; 1 = relapsed; 0 = censored
- **yrel** Calendar year of relapse; factor with levels "1993-1996", "1997-1999", "2000-"
- **age** Patient age at transplant (years)
- **score** Gratwohl score; factor with levels "Low risk", "Medium risk", "High risk"

Format

A data frame, see `data.frame`.

Source

We acknowledge the European Society for Blood and Marrow Transplantation (EBMT) for making available these data. Disclaimer: these data were simplified for the purpose of illustration of the analysis of competing risks and multi-state models and do not reflect any real life situation. No clinical conclusions should be drawn from these data.
Expected length of stay

Description

Given a "probtrans" object, ELOS calculates the (restricted) expected length of stay in each of the states of the multi-state model.

Usage

ELOS(pt, tau)

Arguments

- **pt**: An object of class "probtrans"
- **tau**: The horizon until which ELOS is calculated; if missing, the maximum of the observed transition times is taken

Details

The object `pt` needs to be a "probtrans" object, obtained with forward prediction (the default, direction="forward", in the call to `probtrans`). The restriction to `tau` is there because, as in ordinary survival analysis, the probability of being in a state can be positive until infinity, resulting in infinite values. The (restricted, until `tau`) expected length of stay in state `h`, given in state `g` at time `s`, is given by the integral from `s` to `tau` of \(P_{gh}(s,t) \), see for instance Beyersmann and Putter (2014).

Value

A K x K matrix (with K number of states), with the (g,h)’th element containing \(E_{gh}(s,\tau) \). The starting time point \(s \) is inferred from `pt` (the smallest time point, should be equal to the `predt` value in the call to `probtrans`). The row- and column names of the matrix have been named “from1” until “fromK” and “in1” until “inK”, respectively.

Author(s)

Hein Putter <H.Putter@lumc.nl>

Examples

```r
# transition matrix for illness-death model
tmat <- trans.illdeath()
# data in wide format, for transition 1 this is dataset E1 of # Therneau & Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
  dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
  x1=c(1,1,0,0,0),x2=c(6:1))
# data in long format using mprep
tglong <- mprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
  ```
data=tg,keep=c("x1","x2"),trans=tmat)
events
events(tglong)
table(tglong$status,tglong$to,tglong$from)
expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
Cox model with different covariate
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
 data=tglong,method="breslow")
summary(cx)
new data, to check whether results are the same for transition 1 as
those in appendix E.1 of Therneau & Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
HVH <- msfit(cx,newdata,trans=tmat)
probtrans
pt <- probtrans(HVH,predt=0)
ELOS until last observed time point
ELOS(pt)
Restricted ELOS until tau=10
ELOS(pt, tau=10)

etm2msdata

Converts between etm and msdata format

Description

Converts multi-state data back and forth between etm and msdata formats. Covariates have to be dealt with separately.

Usage

```
etm2msdata(etmdata, id, tra, covs)
```

Arguments

- **etmdata**: Multi-state data in etm format
- **id**: Column name identifying the subject id
- **tra**: Transition matrix in etm format
- **covs**: Vector of column names containing covariates to be included

Details

msdata2etm will convert from msdata format to etm format; etm2msdata will convert from etm format to msdata format. Both msdata2etm and etm2msdata work with basic time-fixed covariates. Time-dependent covariates are not supported. The function msdata2etm will work for transition-specific covariates, but the result does not really make much sense when used in etm.
Author(s)

Hein Putter <H.Putter@lumc.nl>

Examples

Transition matrix for illness-death model
tmat <- trans.illdeath()

Data in wide format, for transition 1 this is dataset E1 of
Therneau & Grambsch (T&G)
tg <- data.frame(id=1:6,illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
x1=c(1,1,0,0,0,0),x2=c(6:1))

Data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
data=tg,keep=c("x1","x2"),trans=tmat, id="id")

Same thing in etm format
tra <- trans2tra(tmat)
tgetm <- msdata2etm(tglong, id="id")
tgetm <- msdata2etm(tglong, id="id", covs=c("x1", "x2")) # with covariates

And back
etm2msdata(tgetm, id="id", tra=tra)
etm2msdata(tgetm, id="id", tra=tra, covs=c("x1", "x2")) # with covariates

Description

Given a dataset in long format, for instance generated by msprep, and a transition matrix for the multi-state model, this function counts the number of observed transitions in the multi-state model and gives their percentages.

Usage

events(msdata)

Arguments

msdata An object of class "msdata", such as output by msprep

Details

Although msdata does not need to be the result of a call to msprep, it does need to be an object of class "msdata", which is essentially a data frame in long format, with one row for each transition for which the subject is at risk. The columns from, to, and status need to be present, with appropriate meaning, see msprep. The msdata argument needs to have a "trans" attributes, which holds the transition matrix of the multi-state model.
Value

A list containing two tables, the first, called Frequencies, with the number of observed transitions in the multi-state model occurring in msdata, the second, called Proportions, with the corresponding proportions.

Author(s)

Hein Putter <H.Putter@lumc.nl>

Examples

tmat <- trans.illdeath(names=c("Tx","PR","RelDeath"))
data(ebmt3) # data from Section 4 of Putter, Fiocco & Geskus (2007)
msebmt <- msprep(time=c(NA,"prtime","rfstime"),status=c(NA,"prstat","rfsstat"),
data=ebmt3,trans=tmat)
events(msebmt) # see Fig 13 of Putter, Fiocco & Geskus (2007)

Description

Given a competing risks dataset in stacked format, and one or more covariates, this function adds type-specific covariates to the dataset. The original dataset with the type-specific covariates appended is returned.

Usage

expand.covs(data, ...)

Arguments

data An object of class "msdata", such as output by msprep

Arguments

... Further arguments to be passed to or from other methods. They are ignored in this function.

Details

Type-specific covariates can be used to analyse separate effects on all event types in a single analysis based on a stacked data set (Putter, Fiocco & Geskus (2007) and Geskus (2016)). It is only unambiguously defined for numeric covariates or for explicit codings. Rows that contain the data for that specific event type have the value copied from the original covariate in case it is numeric. In all other rows it has the value zero. If the covariate is a factor, it will be expanded on the design matrix given by model.matrix. For standard "treatment contrasts" this means that dummy variables are created. If the covariate is a factor, the column name combines the name of the covariate with the specific event type. If longnames=TRUE, both parts are intersected by the specific labels in the coding. Missing values in the basic covariates are allowed and result in missing values in the expanded covariates.
Value

An data frame object of the same class as the data argument, containing the design matrix for the
type-specific covariates, either on its own (append=FALSE) or appended to the data (append=TRUE).

Author(s)

Ronald Geskus and Hein Putter <H.Putter@lumc.nl>

References

models. Statistics in Medicine 26, 2389–2430.

See Also

expand.covs.msdata.

Examples

small data set in stacked format
tg <- data.frame(time=c(5,5,1,1,9,9),status=c(1,0,2,2,0,1),failcode=rep(c("I","II"),3),
x1=c(1,1,2,2,2,2),x2=c(3,3,2,2,1,1))
tg$x1 <- factor(tg$x1,labels=c("male","female"))
expanded covariates
expand.covs(tg,covs=c("x1","x2"))
expand.covs(tg,covs=c("x1","x2"),longnames=TRUE)
expand.covs(tg,covs=c("x1","x2"),append=FALSE)

Description

Given a multi-state dataset in long format, and one or more covariates, this function adds transition-specific covariates, expanding the original covariate(s), to the dataset. The original dataset with the transition-specific covariates appended is returned.

Usage

S3 method for class 'msdata'
expand.covs(data, covs, append = TRUE, longnames = TRUE, ...)
Arguments

- **data**: An object of class "msdata", such as output by `msprep`.
- **covs**: A character vector containing the names of the covariates in `data` to be expanded.
- **append**: Logical value indicating whether or not the design matrix for the expanded covariates should be appended to the data (default=TRUE).
- **longnames**: Logical value indicating whether or not the labels are to be used for the names of the expanded covariates that are categorical (default=TRUE); in case of FALSE numbers from 1 up to the number of contrasts are used.
- **...**: Further arguments to be passed to or from other methods. They are ignored in this function.

Details

For a given basic covariate Z, the transition-specific covariate for transition s is called Z.s. The concept of transition-specific covariates in the context of multi-state models was introduced by Andersen, Hansen & Keiding (1991), see also Putter, Fiocco & Geskus (2007). It is only unambiguously defined for numeric covariates or for explicit codings. Then it will take the value 0 for all rows in the long format dataframe for which trans does not equal s. For the rows for which trans equals s, the original value of Z is copied. In `expand.covs`, when a given covariate is a factor, it will be expanded on the design matrix given by `model.matrix`. Missing values in the basic covariates are allowed and result in missing values in the expanded covariates.

Value

An object of class 'msdata', containing the design matrix for the transition-specific covariates, either on its own (append=FALSE) or appended to the data (append=TRUE).

Author(s)

Hein Putter <H.Putter@lumc.nl>

References

Examples

```r
# transition matrix for illness-death model
tmat <- trans.illdeath()
# small data set in wide format
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
                 dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
                 x1=c(1,1,1,1,2,2),x2=c(6:1))
tg$x1 <- factor(tg$x1,labels=c("male","female"))
```
haz_function

-helper function that calculates excess and population hazards for a given transition

description

A function that calculates the excess and population hazards for a given transition. Code is based on function rs.surv from the relsurv package.

usage

haz_function(
 formula = formula(data),
 data,
 ratetable = relsurv::slopop,
 na.action,
 add.times,
 rmap,
 include.all.times = FALSE
)

arguments

formula A non-parametric Surv-based formula, e.g. Surv(times, status)~1

data A subset of the msprep object (dataset) where there's only data for the chosen transition

ratetable A table of event rates, organized as a ratetable object, such as slopop

na.action A missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is options()$na.action

add.times Additional times at which the hazards should be evaluated

rmap An optional list to be used if the variables are not organized and named in the same way as in the ratetable object

include.all.times Should hazards be evaluated at all times in seq(minimum time, maximum time, by=1). Default is FALSE
Liver cirrhosis data

Value
A list containing the needed hazards.

Author(s)
Damjan Manevski <damjan.manevski@mf.uni-lj.si>

See Also
msfit.relsurv

Liver cirrhosis data Abnormal prothrombin levels in liver cirrhosis

Description
A data frame of 488 liver cirrhosis patients from a randomized clinical trial concerning prednisone treatment in these patients. The dataset is in long format. The included variables are

- id Patient identification number
- from Starting state
- to Receiving state
- trans Transition number
- Tstart Starting time
- Tstop Transition time
- status Status variable; 1=transition, 0=censored
- treat Treatment; factor with levels "Placebo", "Prednisone"

Format
A data frame, see data.frame.

Details
This data was kindly provided by Per Kragh Andersen. It was introduced in Andersen, Borgan, Gill & Keiding (1993), Example 1.3.12, and used as illustration for computation of transition probabilities in multi-state models, see Sections IV.4 (Example IV.4.4) and VII.2 (Example VII.2.10).

References
Landmark Aalen-Johansen method

Description

This function implements the landmark Aalen-Johansen method of Putter & Spitoni (2016) for non-parametric estimation of transition probabilities in non-Markov models.

Usage

LMAJ(msdata, s, from, method = c("aalen", "greenwood"))

Arguments

- msdata: An "msdata" object, as for instance prepared by `link{msprep}`
- s: The prediction time point s from which transition probabilities are to be obtained
- from: Either a single state or a set of states in the state space 1,...,S
- method: The method for calculating variances, as in `probtrans`

Value

A data frame containing estimates and associated standard errors of the transition probabilities $P(X(t) = k \mid X(s) \in \text{from})$ with s and from the arguments of the function.

Author(s)

Hein Putter <H.Putter@lumc.nl>
Edouard F. Bonneville <e.f.bonneville@lumc.nl>

References

Examples

data(prothr)
tmat <- attr(prothr, "trans")
pr0 <- subset(prothr, treat="Placebo")
attr(pr0, "trans") <- tmat
pr1 <- subset(prothr, treat="Prednisone")
attr(pr1, "trans") <- tmat
c0 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=pr0)
c1 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=pr1)
msf0 <- msfit(c0, trans=tmat)
msf1 <- msfit(c1, trans=tmat)
Comparison as in Figure 2 of Titman (2015)
Aalen-Johansen
MarkovTest

Log-rank based test for the validity of the Markov assumption

Description

Log-rank based test for the validity of the Markov assumption

Usage

MarkovTest(
 data,
 id,
 formula = NULL,
 transition,
 grid,
 B = 1000,
 fn = list(function(x) mean(abs(x), na.rm = TRUE)),
 fn2 = list(function(x) mean(x, na.rm = TRUE)),
 min_time = 0,
 other_weights = NULL,
 dist = c("poisson", "normal")
)

Arguments

data Multi-state data in msdata format. Should also contain (dummy codings of) the relevant covariates; no factors allowed
id Column name in data containing subject id
formula Right-hand side of the formula. If NULL will fit with no covariates (formula="1" will also work), offset terms can also be specified.
MarkovTest

transition Transition number of the transition to be tested (in the transition matrix as attribute to data)
grid Grid of time points at which to compute the statistic
B Number of wild bootstrap replications to perform
fn A list of summary functions to be applied to the individual zbar traces (or a list of lists)
fn2 A list of summary functions to be applied to the overall chi-squared trace
min_time The minimum time for calculating optimal weights
other_weights Other (than optimal) weights can be specified here
dist Distribution of wild bootstrap random weights, either "poisson" for centred Poisson (default), or "normal" for standard normal

Details

Function MarkovTest performs the log-rank test described in Titman & Putter (2020). Function optimal_weights_matrix implements the optimal weighting for the state-specific trace. Function optimal_weights_multiple implements the optimal weighting for the chi-squared trace.

Value

MarkovTest returns an object of class "MarkovTest", which is a list with the following items:

orig_stat Summary statistic for each of the starting states
orig_ch_stat Overall chi-squared summary statistic
p_stat_wb P-values corresponding to each of the summary statistics for each starting state
p_ch_stat_wb P-values for overall chi-squared summary statistic
b_stat_wb Bootstrap summary statistics for each of the starting states
zbar Individual traces for each of the starting states
nobs_grid The number of events after time s for each s in the grid
Nsub Number of patients who are ever at risk of the transition of interest
est_quant Pointwise 2.5 and 97.5 quantile limits for each of the traces
obs_chisq_trace Trace of the chi-squared statistic
nch_wb_trace Individual values of the chi-squared statistic trace for the wild bootstrap samples
n_wb_trace Individual values of the log-rank z statistic traces for the wild bootstrap samples
est_cov Estimated covariance matrix between the log-rank statistics at each grid point
transition The transition number tested
from The from state of the transition tested
to The to state of the transition tested
B The number of wild bootstrap replications
dist The distribution used in the wild bootstrap
qualset Set of qualifying states corresponding to the components of the above traces
coxfit Fitted coxph object
fn List of functions applied to state-specific trace
fn2 List of functions applied to overall trace
Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>, transported to mstate by Hein Putter <H.Putter@lumc.nl>

References

Examples

```r
## Not run:
# Example provided by the prothrombin data
data("prothr")
# Apply Markov test to grid of monthly time points over the first 7.5 years
year <- 365.25
month <- year / 12
grid <- month * (1 : 90)
# Markov test for transition 1 (wild bootstrap based on 25 replications, 1000 recommended)
MT <- MarkovTest(prothr, id = "id", transition = 1,
                  grid = grid, B = 25)
# Plot traces
plot(MT, grid, what="states", idx=1:10, states=rownames(attr(prothr, "trans")),
     xlab="Days since randomisation", ylab="Log-rank test statistic",
     main="Transition Normal -> Low")
plot(MT, grid, what="overall", idx=1:10,
     xlab="Days since randomisation", ylab="Chi-square test statistic",
     main="Transition Normal -> Low")

# Example using optimal weights and adjustment for covariates
oweights_fun <-
optimal_weights_matrix(prothr, id = "id", grid=grid, transition = 1,
                        other_weights=list(
                            function(x) mean(abs(x),na.rm=TRUE),
                            function(x) max(abs(x),na.rm=TRUE)))
oweights_chi <- optimal_weights_multiple(prothr, id = "id", grid=grid, transition = 1)

# Formula in MarkovTest only works for continuous covariates and dummy coded variables
# No factors allowed
prothr$prednisone <- as.numeric(prothr$treat == "Prednisone")
MT <- MarkovTest(prothr, id = "id",
                 formula = "prednisone",
                 transition = 1,
                 grid = grid, B = 25,
                 fn = oweights_fun,
                 fn2 = list(
                     function(x) weighted.mean(x, w=oweights_chi, na.rm=TRUE),
                     function(x) mean(x, na.rm=TRUE),
                     function(x) max(x, na.rm=TRUE)))

## End(Not run)
```
modify_transMat

Upgrade the transMat object for the multi-state/relsurv setting.

Description
A function that upgrades the transMat object so that the population and excess-related transitions are included in the transition matrix.

Usage
modify_transMat(trans, split.transitions)

Arguments
- trans: The original transition matrix (usually generated using function transMat from mstate). Also often present in the msfit object.
- split.transitions: The transitions that should be split.

Value
An upgraded transition matrix that contains the population and excess transitions.

Author(s)
Damjan Manevski <damjan.manevski@mf.uni-lj.si>

See Also
transMat

Examples
transition matrix for illness-death model
trans <- transMat(list(c(2,3), c(4), c(), c()),
 names = c("Alive", "Relapse", "Non-relapse mortality", "Death after relapse"))
split.transitions <- c(2,3)
modify_transMat(trans, split.transitions)
Description

A generic nonparametric bootstrapping function for multi-state models.

Usage

```r
msboot(theta, data, B = 5, id = "id", verbose = 0, ...)
```

Arguments

- `theta`: A function of `data` and perhaps other arguments, returning the value of the statistic to be bootstrapped; the output of `theta` should be a scalar or numeric vector.
- `data`: An object of class ‘msdata’, such as output from `msprep`.
- `B`: The number of bootstrap replications; the default is taken to be quite small (5) since bootstrapping can be time-consuming.
- `id`: Character string indicating which column identifies the subjects to be resampled.
- `verbose`: The level of output; default 0 = no output, 1 = print the replication.
- `...`: Any further arguments to the function `theta`.

Details

The function `msboot` samples randomly with replacement subjects from the original dataset `data`. The individuals are identified with `id`, and bootstrap datasets are produced by concatenating all selected rows.

Value

Matrix of dimension (length of output of `theta`) x `B`, with b'th column being the value of `theta` for the b'th bootstrap dataset.

Author(s)

Marta Fiocco, Hein Putter <H.Putter@lumc.nl>

References

Examples

```r
tmat <- trans.illdeath()
data(ebmt1)
covs <- c("score","yrel")msebmt <- msprep(time=c(NA,"rel","srv"),status=c(NA,"relstat","srvstat"),
data=ebmt1,id="patid",keep=covs,trans=tmat)
# define a function (this one returns vector of regression coef's)
regcoefvec <- function(data) {
  cx <- coxph(Surv(Tstart,Tstop,status)~score+strata(trans),
              data=data,method="breslow")
  return(coef(cx))
}
regcoefvec(msebmt)
set.seed(1234)
msboot(theta=regcoefvec,data=msebmt,id="patid")
```

msboot.relsurv

Bootstrap function for upgraded multi-state models using relsurv

Description

A helper nonparametric bootstrapping function for variances in extended multi-state models using relative survival. This implementation is written based on function mstate::msboot.

Usage

```r
msboot.relsurv(
  theta,
  data,
  B = 10,
  id = "id",
  verbose = 0,
  transmat,
  all_times,
  split.transitions,
  rmap,
  time.format,
  boot_orig_msfit,
  ratetable = relsurv::slopop,
  add.times,
  ...
)
```

Arguments

- **theta**

 A function of data and perhaps other arguments, returning the value of the statistic to be bootstrapped
data An object of class 'msdata', such as output from msprep
B The number of bootstrap replications; the default is B=10
id Character string indicating which column identifies the subjects to be resampled
verbose The level of output; default 0 = no output, 1 = print the replication
transmat The transition matrix of class transMat
all_times All times at which the hazards have to be evaluated
split.transitions An integer vector containing the numbered transitions that should be split. Use same numbering as in the given transition matrix
rmap An optional list to be used if the variables in the dataset are not organized (and named) in the same way as in the ratetable object
time.format Define the time format which is used in the dataset Possible options: c('days', 'years', 'months'). Default is 'days'
boot_orig_msfit Logical, if true, do the bootstrap for the basic msfit model
ratetable The population mortality table. A table of event rates, organized as a ratetable object, see for example relsurv::slopop. Default is slopop
add.times Additional times at which hazards should be evaluated
... Any further arguments to the function theta

Value
A list of size B containing the results for every bootstrap replication.

Author(s)
Damjan Manevski <damjan.manevski@mf.uni-lj.si>, Marta Fiocco, Hein Putter <H.Putter@lumc.nl>

See Also
msboot

msboot.relsurv.boot Default theta function used for msboot.relsurv

Description
Helper function used for calling inside msboot.relsurv (used for every bootstrap dataset). This function is used for calculating split hazards and evaluating them at all needed times.
Usage

msboot.relsurv.boot(
 data,
 transmat,
 all_times,
 split.transitions,
 rmap,
 time.format,
 boot_orig_msfit = FALSE,
 ratetable = relsurv::slopop,
 add.times
)

Arguments

data An object of class 'msdata' containing a bootstrapped sample
transmat The transition matrix of class transMat
all_times All times at which the hazards have to be evaluated
split.transitions An integer vector containing the numbered transitions that should be split. Use
 same numbering as in the given transition matrix
rmap An optional list to be used if the variables in the dataset are not organized (and
 named) in the same way as in the ratetable object
time.format Define the time format which is used in the dataset Possible options: c('days',
 'years', 'months'). Default is 'days'
boot_orig_msfit Logical, if true, do the bootstrap for the basic msfit model
ratetable The population mortality table. A table of event rates, organized as a ratetable
 object, see for example relsurv::slopop. Default is slopop
add.times Additional times at which hazards should be evaluated

Value

A list of calculated values for the given bootstrap sample.

Author(s)

Damjan Manevski <damjan.manevski@mf.uni-lj.si>

See Also

msboot.relsurv
msdata2etm

Description

msdata to etm format

Usage

msdata2etm(msdata, id, covs)

Arguments

msdata Multi-state data in msdata format, as used in mstate
id Column name identifying the subject id
covs Vector of column names containing covariates to be included

msfit

Compute subject-specific transition hazards with (co-)variances

Description

This function computes subject-specific or overall cumulative transition hazards for each of the possible transitions in the multi-state model. If requested, also the variances and covariances of the estimated cumulative transition hazards are calculated.

Usage

msfit(
 object,
 newdata = NULL,
 variance = TRUE,
 vartype = c("aalen", "greenwood"),
 trans
)

Arguments

object A coxph object describing the fit of the multi-state model
newdata A data frame with the same variable names as those that appear in the coxph formula. Its use is somewhat different from survfit. See Details. The argument newdata may be omitted only if the right hand side of the formula in the coxph object is ~strata(trans)
variance A logical value indicating whether the (co-)variances of the subject-specific transition hazards should be computed. Default is TRUE
vartype A character string specifying the type of variances to be computed (so only needed if variance=TRUE). Possible values are "aalen" or "greenwood"

trans Transition matrix describing the states and transitions in the multi-state model. See trans in msprep for more detailed information

Details

The data frame needs to have one row for each transition in the multi-state model. An additional column strata (numeric) is needed to describe for each transition to which stratum it belongs. The name has to be strata, even if in the original coxph call another variable was used. For details refer to de Wreede, Fiocco & Putter (2010). So far, the results have been checked only for the "breslow" method of dealing with ties in coxph, so this is recommended.

Value

An object of class "msfit", which is a list containing

Haz A data frame with time, Haz, trans, containing the estimated subject-specific hazards for each of the transitions in the multi-state model

varHaz A data frame with time, Haz, trans1, trans2 containing the variances (trans1=trans2) and covariances (trans1<trans2) of the estimated hazards. This element is only returned when variance=TRUE

trans The transition matrix used

Author(s)

Hein Putter <H.Putter@lumc.nl>

References

See Also

plot.msfit
Examples

```r
# transition matrix for illness-death model
tmat <- trans.illdeath()
# data in wide format, for transition 1 this is dataset E1 of
# Therneau & Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,8,9),ills=c(1,0,1,1,0),
                 dt=c(5,1,9,7,12),ds=c(1,1,1,1,1),
                 x1=c(1,1,0,0,0),x2=c(6:1))
# data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
data=tg,keep=c("x1","x2"),trans=tmat)
# events
events(tglong)
table(tglong$status,tglong$to,tglong$from)
# expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
# Cox model with different covariate
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
data=tglong,method="breslow")
summary(cx)
# new data, to check whether results are the same for transition 1 as
# those in appendix E.1 of Therneau & Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
msfit(cx,newdata,trans=tmat)
```

msfit.relsurv

Extend a multi-state model using relative survival

Description

A function that takes a fitted msfit object and upgrades it using relative survival, where chosen transitions are split in population and excess transitions. This upgraded msfit object contains the split hazards based on the transition matrix (transMat). The (co)variance matrix is also upgraded, if provided.

Usage

```r
msfit.relsurv(
  msfit.obj,       # the fitted msfit object
  data,            # the data
  split.transitions,# split transitions
  ratetable = relsurv::slopop, # relative survival table
  rmap,            # mapping
  time.format = "days", # time format
  var.pop.haz = c("fixed", "bootstrap", "both"), # variance of population hazard
  B = 10,# bootstrap samples
  seed = NULL,    # random seed
)```

add.times,
substitution = TRUE,
link_trans_ind = FALSE
)

Arguments

msfit.obj The msfit object which has to be upgraded
data The data used for fitting the msfit model
split.transitions An integer vector containing the numbered transitions that should be split. Use same numbering as in the given transition matrix
ratetable The population mortality table. A table of event rates, organized as a ratetable object, see for example relsurv::slopop. Default is slopop
rmap An optional list to be used if the variables in the data are not organized (and named) in the same way as in the ratetable object
time.format Define the time format which is used in the data. Possible options: c(‘days’, ‘years’, ‘months’). Default is ‘days’
var.pop.haz If ‘fixed’ (default), the Greenwood estimator for the variances is used, where it is assumed that the variance of the population hazards is zero. If ‘bootstrap’, one gets bootstrap estimates for all all transitions. Option ‘both’ gives both variance estimates
B Number of bootstrap replications. Relevant only if var.pop.haz == ‘bootstrap’ or ‘both’. Default is B=10.
seed Set seed
add.times Additional times at which hazards should be evaluated
substitution Whether function substitute should be used for rmap argument. Default is TRUE
link_trans_ind Choose whether the linkage between the old and new transition matrix should be saved. Default is FALSE.

Value

Returns a msfit object that contains estimates for the extended model with split (population and excess) transitions.

Author(s)

Damjan Manevski <damjan.manevski@mf.uni-lj.si>

References


See Also

msfit
## Not run:
library(mstate)
# Load dataset:
data("ebmt1")
# Transition matrix:
tmat <- transMat(list(c(2,3), c(4), c(), c()), names = c("Alive relapse-free", "Relapse", "NRM", "DaR"))
# Data in long format using mstate
df <- msprep(time=c(NA,"rel","srv","srv"), status=c(NA,"relstat","srvstat","srvstat"),
data=ebmt1, trans=tmat)
# Generate demographic covariates (which are usually present in datasets)
# and based on them estimate the population hazard.
set.seed(510)
df$age <- runif(nrow(df), 45, 65)
df$sex <- sample(c("male", "female"), size = nrow(df), replace = TRUE)
df$dateHCT <- sample(seq(as.Date(1990/01/01), as.Date(2000/01/01)), nrow(df), replace = TRUE) # generate years
# Cox object:
cx <- coxph(Surv(Tstart,Tstop,status)~strata(trans),
  data=df,method="breslow")
# Basic multi-state model:
mod <- msfit(cx,trans=tmat)
# Extended multi-state model, where the two transition
# reaching death are split in excess and population parts.
# We assume patients live like in the Slovene population,
# thus we use Slovene mortality tables in this example.
# Variances estimated using 25 bootstrap replications.
mod.relsurv <- msfit.relsurv(msfit.obj = mod, data=df, split.transitions = c(2,3),
  ratetable = relsurv::slopop,
  rmap = list(age=age*365.241, year=dateHCT),
  time.format = "days",
  var.pop.haz = "bootstrap",
  B = 25)
# Estimate transition probabilities:
pt <- probtrans(mod.relsurv, predt=0, method='greenwood')
# Estimated cumulative hazards with the corresponding
# bootstrap standard errors at 300, 600, 900 days:
summary(object = mod.relsurv, times = c(300, 600, 900), conf.type = 'log')
# Estimated transition probabilities together with the corresponding
# bootstrap standard errors and log.boot confidence intervals
# at 300, 600, 900 days:
summary(object = pt, times = c(300, 600, 900), conf.type = 'log')
# Plot the measures:
plot(mod.relsurv, use.ggplot = TRUE)
plot(pt, use.ggplot = TRUE)
## End(Not run)
msprep

Function to prepare dataset for multi-state modeling in long format
from dataset in wide format

Description

This function converts a dataset which is in wide format (one subject per line, multiple columns indicating time and status for different states) into a dataset in long format (one line for each transition for which a subject is at risk). Selected covariates are replicated per subjects.

Usage

msprep(time, status, data, trans, start, id, keep)

Arguments

time Either 1) a matrix or data frame of dimension n x S (n being the number of individuals and S the number of states in the multi-state model), containing the times at which the states are visited or last follow-up time, or 2) a character vector of length S containing the column names indicating these times. In the latter cases, some elements of time may be NA, see Details

status Either 1) a matrix or data frame of dimension n x S, containing, for each of the states, event indicators taking the value 1 if the state is visited or 0 if it is not (censored), or 2) a character vector of length S containing the column names indicating these status variables. In the latter cases, some elements of status may be NA, see Details

data Data frame (not a tibble) in wide format in which to interpret time, status, id or keep, if appropriate

trans Transition matrix describing the states and transitions in the multi-state model. If S is the number of states in the multi-state model, trans should be an S x S matrix, with (i,j)-element a positive integer if a transition from i to j is possible in the multi-state model, NA otherwise. In particular, all diagonal elements should be NA. The integers indicating the possible transitions in the multi-state model should be sequentially numbered, 1,...,K, with K the number of transitions

start List with elements state and time, containing starting states and times of the subjects in the data. Default is NULL, in which case all subjects start in state 1 at time 0. If a single state and time are given this state and time is used for all subjects, otherwise the length of state and time should equal the number of subjects in data

id Either 1) a vector of length n containing the subject identifications, or 2) a character string indicating the column name containing these subject ids. If not provided, "id" will be assigned with values 1,...,n

keep Either 1) a data frame or matrix with n rows or a numeric or factor vector of length n containing covariate(s) that need to be retained in the output dataset, or 2) a character vector containing the column names of these covariates in data
Details

For `msprep`, the transition matrix should correspond to an irreversible acyclic Markov chain. In particular, on the diagonals only `NA`s are allowed.

The transition matrix, if irreversible and acyclic, will have starting states, i.e. states into which no transitions are possible. For these starting states `NA`s are allowed in the `time` and `status` arguments, either as columns, when specified as matrix or data frame, or as elements of the character vector when specified as character vector.

The function `msprep` uses a recursive algorithm through calls to the recursive function `msprepEngine`. First, with the current transition matrix, all starting states are detected (defined as states into which there are no transitions). For each of these starting states, all subjects starting from that state are selected and for each subject the next visited state is detected by looking at all transitions from that starting state and determining the smallest transition time with `status`=1. The recursive `msprepEngine` is called again with the starting states deleted from the transition matrix and with subjects deleted that either reached an absorbing state or that were censored. For the remaining subjects the starting states and times are updated in the next call. Datasets returned from the `msprepEngine` calls are appended to the current dataset in long format and finally sorted.

A warning is issued for a subject, if multiple transitions exist with the same smallest transition time (and `status`=0). In such cases the next transition cannot be determined unambiguously, and the state with the smallest number is chosen. In our experience, occasionally the shortest transition time has `status`=0, while a higher transition time has `status`=1. Then this larger transition time and the corresponding transition is selected. No warning is issued for these data inconsistencies.

Value

An object of class "msdata", which is a data frame in long (counting process) format containing the subject id, the covariates (replicated per subject), and

- `from` the starting state
- `to` the receiving state
- `trans` the transition number
- `Tstart` the starting time of the transition
- `Tstop` the stopping time of the transition
- `status` status variable, with 1 indicating an event (transition), 0 a censoring

The "msdata" object has the transition matrix as "trans" attribute.

Author(s)

Hein Putter <H.Putter@lumc.nl> and Marta Fiocco

References

Examples

# transition matrix for illness-death model
tmat <- trans.illdeath()
# some data in wide format
tg <- data.frame(stt=rep(0,6),sts=rep(0,6),
   ills=c(1,0,1,1,0,1),
   illt=c(1,1,6,6,8,9),
   dt=c(5,1,9,7,8,12),
   ds=c(1,1,1,1,1,1),
   x1=c(1,1,1,2,2,2),
   x2=c(6:1))
tg$x1 <- factor(tg$x1,labels=c("male","female"))
tg$patid <- factor(2:7,levels=1:8,labels=as.character(1:8))
# define time, status and covariates also as matrices
 tt <- matrix(c(rep(NA,6),tg$illt,tg$dt),6,3)
 st <- matrix(c(rep(NA,6),tg$ills,tg$ds),6,3)
 keepmat <- data.frame(gender=tg$x1,age=tg$x2)
# data in long format using msprep
msprep(time=tt,status=st,trans=tmat,keep=as.matrix(keepmat))
msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),data=tg,
       id="patid",keep=c("x1","x2"),trans=tmat)
# Patient no 5, 6 now start in state 2 at time t=4 and t=10
msprep(time=tt,status=st,trans=tmat,keep=keepmat,
       start=list(state=c(1,1,1,2,2,2),time=c(0,0,0,4,10)))

mssample

Sample paths through a multi-state model

Description

Given cumulative transition hazards sample paths through the multi-state model.

Usage

mssample(
   Haz,
   trans,
   history = list(state = 1, time = 0, tstate = NULL),
   beta.state = NULL,
   clock = c("forward", "reset"),
   output = c("state", "path", "data"),
   tvec,
   cens = NULL,
   M = 10,
   do.trace = NULL
)
Arguments

Haz
Cumulative hazards to be sampled from. These should be given as a data frame with columns time, Haz, trans, for instance as the Haz list element given by msfit.

trans
Transition matrix describing the multi-state model. See trans in msprep for more detailed information.

history
A list with elements state, specifying the starting state(s), time, the starting time(s), and tstate, a numeric vector of length the number of states, specifying at what times states have been visited, if appropriate. The default of tstate is NULL; more information can be found under Details.

The elements state and time may either be scalars or vectors, in which case different sampled paths may start from different states or at different times. By default, all sampled paths start from state 1 at time 0.

beta.state
A matrix of dimension (no states) x (no transitions) specifying estimated effects of times at which earlier states were reached on subsequent transitions. If these are not in the model, the value NULL (default) suffices; more information can be found under Details.

clock
Character argument, either "forward" (default) or "reset", specifying whether the time-scale of the cumulative hazards is in forward time ("forward") or duration in the present state ("reset").

output
One of "state", "path", or "data", specifying whether states, paths, or data should be output.

tvec
A numeric vector of time points at which the states or paths should be evaluated. Ignored if output="data"

cens
An independent censoring distribution, given as a data frame with time and Haz

M
The number of sampled trajectories through the multi-state model. The default is 10, since the procedure can become quite time-consuming

do.trace
An integer, specifying that the replication number should be written to the console every do.trace replications. Default is NULL in which case no output is written to the console during the simulation.

Details

The procedure is described in detail in Fiocco, Putter & van Houwelingen (2008). The argument beta.state and the element tstate from the argument history are meant to incorporate situations where the time at which some previous states were visited may affect future transition rates. The relation between time of visit of state s and transition k is assumed to be linear on the log-hazards; the corresponding regression coefficient is to be supplied as the (s,k)-element of beta.state, which is 0 if no such effect has been included in the model. If no such effects are present, then beta.state=NULL (default) suffices. In the tstate element of history, the s-th element is the time at which state s was visited. This is only relevant for states which have been visited prior to the beginning of sampling, i.e. before the time element of history; the elements of tstate are internally updated when in the sampling process new states are visited (only if beta.state is not NULL to avoid unnecessary computations).
Value

M simulated paths through the multi-state model given by `trans` and `Haz`. It is either a data frame with columns `time`, `pstate1`, ..., `pstateS` for S states when `output="state"`, or with columns `time`, `ppath1`, ..., `ppathP` for the P paths specified in `paths(trans)` when `output="path"`. When `output="data"`, the sampled paths are stored in an "msdata" object, a data frame in long format such as that obtained by `msprep`. This may be useful for (semi-)parametric bootstrap procedures, in which case `cens` may be used as censoring distribution (assumed to be independent of all transition times and independent of any covariates).

Author(s)

Marta Fiocco, Hein Putter <H.Putter@lumc.nl>

References


Examples

```r
transition matrix for illness-death model
tmat <- trans.illdeath()
data in wide format, for transition 1 this is dataset E1 of
Therneau & Grambsch (T&G)
tg <- data.frame(illt=c(1,1,6,6,8,9), ills=c(1,0,1,1,0,1),
 dt=c(5,1,9,7,8,12), ds=c(1,1,1,1,1,1),
 x1=c(1,1,0,0,0), x2=c(6,1))
data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
 data=tg,keep=c("x1","x2"),trans=tmat)
expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
Cox model with different covariate
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
 data=tglong,method="breslow")
new data, to check whether results are the same for transition 1 as T&G
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
fit <- msfit(cx,newdata,trans=tmat)
tv <- unique(fitHaztime)
mssample
set.seed(1234)
mssample(Haz=fit$Haz,trans=tmat,tvec=tv,M=100)
set.seed(1234)
paths(tmat)
mssample(Haz=fit$Haz,trans=tmat,tvec=tv,M=100,output="path")
set.seed(1234)
mssample(Haz=fit$Haz,trans=tmat,tvec=tv,M=100,output="data",do.trace=25)
```
paths

Find all possible trajectories through a given multi-state model

Description

For a given multi-state model, specified through a transition matrix, paths recursively finds all the possible trajectories or paths through that multi-state starting from a specified state. DO NOT USE for reversible or cyclic multi-state models.

Usage

paths(trans, start = 1)

Arguments

trans 
The transition matrix describing the multi-state model, see msprep

start 
The starting state for the trajectories

Details

The function is recursive. It starts in start, looks at what states can be visited from start, and appends the results of the next call to the current value (matrix). If the transition matrix contains loops, the function will find infinitely many paths, so do not use paths for reversible or cyclic multi-state models. A warning is not yet incorporated!

Value

A matrix, each row of which specifies a possible path through the multi-state model.

Author(s)

Hein Putter <H.Putter@lumc.nl>

Examples

```r
tmat <- matrix(NA, 5, 5)
tmat[1, 2:3] <- 1:2
tmat[1, 5] <- 3
tmat[2, 4:5] <- 4:5
tmat[3, 4:5] <- 6:7
tmat[4, 5] <- 8
paths(tmat)
paths(tmat, start=3)
```
plot.Cuminc  

Plot method for Cuminc objects

Description

Plot the estimates of the non-parametric Aalen-Johansen estimate of the cumulative incidence functions (competing risks data). Note this is a method for mstate::Cuminc and not cmprsk::cuminc. Both return the same estimates, though the former does so in a dataframe, and the latter in the list.

Usage

```r
S3 method for class 'Cuminc'
plot(
x,
use.ggplot = FALSE,
xlab = "Time",
ylab = "Probability",
xlim,
ylim,
lty,
legend,
cols,
conf.type = c("log", "plain", "none"),
conf.int = 0.95,
legend.pos = "right",
 facet = FALSE,
...
)
```

Arguments

- **x**: Object of class "Cuminc" to be printed or plotted
- **use.ggplot**: Default FALSE, set TRUE for ggplot version of plot
- **xlab**: A title for the x-axis; default is "Time"
- **ylab**: A title for the y-axis; default is "Probability"
- **xlim**: The x limits of the plot(s), default is range of time
- **ylim**: The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits
- **lty**: The line type, see `par`; default is 1
- **legend**: Character vector corresponding to number of absorbing states. In case of a grouped "Cuminc" object, with facet = FALSE the length of the vector is number absorbing states * group levels. Only relevant when use.ggplot = TRUE
- **cols**: Vector (numeric or character) specifying colours of the lines
- **conf.type**: Type of confidence interval - either "log" or "plain". See function details for details.
conf.int  Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.
legend.pos  The position of the legend, see legend; default is "topleft"
facet  Logical, in case of group used for "Cuminc", facet by it - only relevant when use.ggplot = TRUE
...
Further arguments to plot or print method

Details

Grouped cumulative incidences can be plotted either in the same plot or in facets, see the facet argument.

Value

A ggplot object if use.ggplot = T used, otherwise NULL.

Author(s)

Edouard F. Bonneville <e.f.bonneville@lumc.nl>

Examples

library(ggplot2)

data("aidssi")
head(aidssi)
si <- aidssi

# No grouping
cum_incid <- Cuminc(
  time = "time",
  status = "status",
  data = si
)

plot(
  x = cum_incid,
  use.ggplot = TRUE,
  conf.type = "none",
  lty = 1:2,
  conf.int = 0.95
)

# With grouping
cum_incid_grp <- Cuminc(
  time = "time",
  status = "status",
  group = "ccr5",
  data = si
)
plot(  
  x = cum_incid_grp,  
  use.ggplot = TRUE,  
  conf.type = "none",  
  lty = 1:4,  
  facet = TRUE  
)
plot.MarkovTest

  xlab                Text for x-axis label
  ylab                Text for y-axis label
  main                Text for title (main)
  ...                Further arguments to plot

Value

  No return value

Author(s)

  Hein Putter <H.Putter@lumc.nl>

See Also

  MarkovTest

Examples

## Not run:
# Example provided by the prothrombin data
data("prothr")
# Apply Markov test to grid of monthly time points over the first 7.5 years
year <- 365.25
month <- year / 12
grid <- month * (1:90)
# Markov test for transition 1 (wild bootstrap based on 100 replications)
MT <- MarkovTest(prothr, id = "id", transition = 1,
  grid = grid, B = 100)

plot(MT, grid, what="states", idx=1:50, states=rownames(attr(prothr, "trans")),
  xlab="Days since randomisation", ylab="Log-rank test statistic",
  main="Transition Normal -> Low")
plot(MT, grid,what="overall", idx=1:50,
  xlab="Days since randomisation", ylab="Chi-square test statistic",
  main="Transition Normal -> Low")

plot(MT, grid, what="states", quantiles=FALSE)  # only trace
plot(MT, grid, what="states")  # trace plus quantiles (default)
plot(MT, grid, what="states", idx=1:10)  # trace plus quantiles, plus first 10 bootstrap traces

plot(MT, grid, what="overall", quantiles=FALSE)  # only trace
plot(MT, grid, what="overall")  # trace plus quantiles (default)
plot(MT, grid, what="overall", idx=1:10)  # trace plus quantiles, plus first 10 bootstrap traces

## End(Not run)
plot.msfit

Plot method for an msfit object

Description

Plot method for an object of class "msfit". It plots the estimated cumulative transition intensities in the multi-state model.

Usage

## S3 method for class 'msfit'
plot(
x, type = c("single", "separate"),
cols, xlab = "Time", ylab = "Cumulative hazard", ylim,
lwd, lty, legend,
legend.pos = "right", bty = "n",
use.ggplot = FALSE, xlab = "Time",
ylim, scale_type = "fixed",
conf.int = 0.95, conf.type = "none",
...
)

Arguments

x Object of class "msfit", containing estimated cumulative transition intensities for all transitions in a multi-state model

type One of "single" (default) or "separate"; in case of "single", all estimated cumulative hazards are drawn in a single plot, in case of "separate", separate plots are shown for the estimated transition intensities

cols A vector specifying colors for the different transitions; default is 1:K (K no of transitions), when type="single", and 1 (black), when type="separate"

xlab A title for the x-axis; default is "Time"

ylab A title for the y-axis; default is "Cumulative hazard"

ylim The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits

lwd The line width, see par; default is 1
The line type, see `par`; default is 1

Character vector of length equal to the number of transitions, to be used in a
legend; if missing, these will be taken from the row- and column-names of
the transition matrix contained in `x$trans`. Also used as titles of plots for
type="separate"

The position of the legend, see `legend`; default is "topleft"

The box type of the legend, see `legend`

Default FALSE, set TRUE for ggplot version of plot

Limits of x axis, relevant if `use.ggplot = T`

"fixed", "free", "free_x" or "free_y", see scales argument of facet_wrap(). Only
relevant for `use.ggplot = T`

Confidence level (%) from 0-1 for the cumulative hazard, default is 0.95. Only
relevant for `use.ggplot = T`

Type of confidence interval - either "log" or "plain". See function details of
plot.probtrans for details

Further arguments to plot

No return value

Hein Putter &lt;H.Putter@lumc.nl&gt;

Edouard F. Bonneville &lt;e.f.bonneville@lumc.nl&gt;

See Also

`msfit`

Examples

```r
transition matrix for illness-death model
tmat <- trans.illdeath()

data in wide format, for transition 1 this is dataset E1 of
Therneau & Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
 dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
 x1=c(1,1,1,0,0,0),x2=c(6:1))

data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
 data=tg,keep=c("x1","x2"),trans=tmat)

events
events(tglong)
table(tglong$status,tglong$to,tglong$from)

expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))

Cox model with different covariate
```
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
data=tglong,method="breslow")
summary(cx)
# new data, to check whether results are the same for transition 1 as
# those in appendix E.1 of Therneau & Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
msf <- msfit(cx,newdata,trans=tmat)
# standard plot
plot(msf)
# specifying line width, color, and legend
plot(msf,lwd=2,col=c("darkgreen","darkblue","darkred"),legend=c("1->2","1->3","2->3"))
# separate plots
par(mfrow=c(2,2))
plot(msf,type="separate",lwd=2)
par(mfrow=c(1,1))

# ggplot version - see vignette for details
library(ggplot2)
plot(msf, use.ggplot = TRUE)

plot.probtrans

plot.probtrans  Plot method for a probtrans object

Description

Plot method for an object of class 'probtrans'. It plots the transition probabilities as estimated by
probtrans.

Usage

## S3 method for class 'probtrans'
plot(
x,
from = 1,
type = c("filled", "single", "separate", "stacked"),
ord,
cols,
xlab = "Time",
ylab = "Probability",
xlim,
ylim,
lwd,
lty,
cex,
legend,
legend.pos = "right",
bty = "n",
xaxs = "i",
plot.protrans

yaxs = "i",
use.ggplot = FALSE,
conf.int = 0.95,
conf.type = c("log", "plain", "none"),
label,
...
)

Arguments

x
Object of class 'probtrans', containing estimated transition probabilities

from
The starting state from which the probabilities are used to plot

type
One of "stacked" (default), "filled", "single" or "separate"; in case of "stacked", the transition probabilities are stacked and the distance between two adjacent curves indicates the probability, this is also true for "filled", but the space between adjacent curves are filled, in case of "single", the probabilities are shown as different curves in a single plot, in case of "separate", separate plots are shown for the estimated transition probabilities

ord
A vector of length equal to the number of states, specifying the order of plotting in case type="stacked" or "filled"

cols
A vector specifying colors for the different transitions; default is a palette from green to red, when type="filled" (reordered according to ord, and 1 (black), otherwise

xlab
A title for the x-axis; default is "Time"

ylab
A title for the y-axis; default is "Probability"

xlim
The x limits of the plot(s), default is range of time

ylim
The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits

lwd
The line width, see par; default is 1

lty
The line type, see par; default is 1

cex
Character size, used in text; only used when type="stacked" or "filled"

legend
Character vector of length equal to the number of transitions, to be used in a legend; if missing, numbers will be used; this and the legend arguments following are ignored when type="separate"

legend.pos
The position of the legend, see legend; default is "topleft"

bty
The box type of the legend, see legend

xaxs
See par, default is "i", for type="stacked"

yaxs
See par, default is "i", for type="stacked"

use.ggplot
Default FALSE, set TRUE for ggplot version of plot

conf.int
Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.

conf.type
Type of confidence interval - either "log" or "plain". See function details for details.
label

Only relevant for type = "filled" or "stacked", set to "annotate" to have state labels on plot, or leave unspecified.

... Further arguments to plot

Details

Regarding confidence intervals: let \( p \) denote a predicted probability, \( \sigma \) its estimated standard error, and \( z_{\alpha/2} \) denote the critical value of the standard normal distribution at confidence level \( 1 - \alpha \).

The confidence interval of type "plain" is then

\[
p \pm z_{\alpha/2} \ast \sigma
\]

The confidence interval of type "log", based on the Delta method, is then

\[
\exp(\log(p) \pm z_{\alpha/2} \ast \sigma / p)
\]

Value

No return value

Author(s)

Hein Putter <H.Putter@lumc.nl>
Edouard F. Bonneville <e.f.bonneville@lumc.nl>

See Also

probtrans

Examples

# transition matrix for illness-death model
tmat <- trans.illdeath()
# data in wide format, for transition 1 this is dataset E1 of
# Therneau and Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
    dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
    x1=c(1,1,1,0,0,0),x2=c(6:1))
# data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
    data=tg,keep=c("x1","x2"),trans=tmat)
# events
events(tglong)
table(tglong$status,tglong$to,tglong$from)
# expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
# Cox model with different covariate
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
    data=tglong,method="breslow")
summary(cx)
# new data, to check whether results are the same for transition 1 as
# those in appendix E.1 of Therneau and Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
msf <- msfit(cx,newdata,trans=tmat)
# probtrans
pt <- probtrans(msf,predt=0)
# default plot
plot(pt,ord=c(2,3,1),lwd=2,cex=0.75)
# filled plot
plot(pt,type="filled",ord=c(2,3,1),lwd=2,cex=0.75)
# single plot
plot(pt,type="single",lwd=2,col=rep(1,3),lty=1:3,legend.pos=c(8,1))
# separate plots
par(mfrow=c(2,2))
plot(pt,type="sep",lwd=2)
par(mfrow=c(1,1))

# ggplot version - see vignette for details
library(ggplot2)
plot(pt, ord=c(2,3,1), use.ggplot = TRUE)

print.MarkovTest

print.MarkovTest  
*Print method for a MarkovTest object*

**Description**

Print method for an object of class 'MarkovTest'

**Usage**

```r
S3 method for class 'MarkovTest'
print(x, ...)
```

**Arguments**

- `x`  
  Object of class 'markovTest', as obtained by call to `MarkovTest`  
- `...`  
  Further arguments to print

**Value**

No return value

**Author(s)**

Hein Putter <H.Putter@lumc.nl>

**See Also**

- `MarkovTest`
## Examples

```r
Not run:
Example provided by the prothrombin data
data("prothr")
Apply Markov test to grid of monthly time points over the first 7.5 years
year <- 365.25
month <- year / 12
grid <- month * (1:90)
Markov test for transition 1 (wild bootstrap based on 25 replications for brevity)
MT <- MarkovTest(prothr, id = "id", transition = 1,
 grid = grid, B = 25)
MT
End(Not run)
```

---

### print.msdata

**Print method for a msdata object**

**Description**

Print method for an object of class 'msdata'

**Usage**

```r
S3 method for class 'msdata'
print(x, trans = FALSE, ...)
```

**Arguments**

- `x` Object of class 'msdata’, as prepared for instance by `msprep`
- `trans` Boolean specifying whether or not the transition matrix should be printed as well; default is FALSE
- `...` Further arguments to print

**Value**

No return value

**Author(s)**

Hein Putter <H.Putter@lumc.nl>

**See Also**

`probtrans`
print.summary.msfit

Examples

# transition matrix for illness-death model
tmat <- trans.illdeath()
# some data in wide format
tg <- data.frame(stt=rep(0,6),sts=rep(0,6),
illt=c(1,1,6,6,8,9),ills=c(1,0,1,0,1,1),
dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
x1=c(1,1,2,2,2),x2=c(6:1))
tg$x1 <- factor(tg$x1,labels=c("male","female"))
tg$patid <- factor(2:7,levels=1:8,labels=as.character(1:8))
# define time, status and covariates also as matrices
tt <- matrix(c(rep(NA,6),tg$illt,tg$dt),6,3)
st <- matrix(c(rep(NA,6),tg$ills,tg$ds),6,3)
keepmat <- data.frame(gender=tg$x1,age=tg$x2)
# data in long format using msprep
msp <- msprep(time=tt,status=st,trans=tmat,keep=as.matrix(keepmat))
print(msp)
print(msp, trans=TRUE)

print.summary.msfit  Print method for summary.msfit object

Description

Print method for summary.msfit object

Usage

## S3 method for class 'summary.msfit'
print(x, complete = FALSE, ...)

Arguments

x  Object of class 'summary.msfit', to be printed

complete  Whether or not the complete estimated cumulative transition intensities should be printed (TRUE) or not (FALSE); default is FALSE, in which case the estimated cumulative transition hazards will be printed for the first and last 6 time points of each transition or of the selected times (or all when there are at most 12 of these time points)

...  Further arguments to print

Examples

## Not run:
# If all time points should be printed, specify complete=TRUE in the print statement
print(x, complete=TRUE)
print.summary.probtrans

Print method for a summary.probtrans object

Description

Print method for a summary.probtrans object

Usage

## S3 method for class 'summary.probtrans'
print(x, complete = FALSE, ...)

Arguments

x
  Object of class 'summary.probtrans', to be printed

complete
  Whether or not the complete estimated transition probabilities should be printed
  (TRUE) or not (FALSE); default is FALSE, in which case the estimated transition
  probabilities will be printed for the first and last 6 time points of each starting state
  or of the selected times (or all when there are at most 12 of these time points

... Further arguments to print

Examples

## Not run:
# If all time points should be printed, specify complete=TRUE in the print statement
print(x, complete=TRUE)

## End(Not run)

probtrans

Compute subject-specific or overall transition probabilities with standard errors

Description

This function computes subject-specific or overall transition probabilities in multi-state models. If requested, also standard errors are calculated.
probtrans

Usage

probtrans(
  object,
  predt,
  direction = c("forward", "fixedhorizon"),
  method = c("aalen", "greenwood"),
  variance = TRUE,
  covariance = FALSE
)

Arguments

object       msfit object containing estimated cumulative hazards for each of the transitions in the multi-state model and, if standard errors are requested, (co)variances of these cumulative hazards for each pair of transitions
predt        A positive number indicating the prediction time. This is either the time at which the prediction is made (if direction= "forward") or the time for which the prediction is to be made (if direction="fixedhorizon")
direction    One of "forward" (default) or "fixedhorizon", indicating whether prediction is forward or for a fixed horizon
method       A character string specifying the type of variances to be computed (so only needed if either variance or covariance is TRUE). Possible values are "aalen" or "greenwood"
variance     Logical value indicating whether standard errors are to be calculated (default is TRUE)
covariance   Logical value indicating whether covariances of transition probabilities for different states are to be calculated (default is FALSE)

Details

For details refer to de Wreede, Fiocco & Putter (2010).

Value

An object of class "probtrans", which is a list of which item [[s]] contains a data frame with the estimated transition probabilities (and standard errors if variance=TRUE) from state s. If covariance=TRUE, item varMatrix contains an array of dimension K^2 x K^2 x (nt+1) (with K the number of states and nt the distinct transition time points); the time points correspond to those in the data frames with the estimated transition probabilities. Finally, there are items trans, method, predt, direction, recording the transition matrix, and the method, predt and direction arguments used in the call to probtrans. Plot and summary methods have been defined for "probtrans" objects.

Author(s)

Liesbeth de Wreede and Hein Putter <H.Putter@lumc.nl>
References


Examples

# transition matrix for illness-death model
tmat <- trans.illdeath()
# data in wide format, for transition 1 this is dataset E1 of
# Therneau & Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
x1=c(1,1,1,0,0,0),x2=c(6:1))
# data in long format using msprep
tglong <- msprep(time=c(NA,"illt"),"dt"),status=c(NA,"ills"),"ds"),
data=tg,keep=c("x1","x2"),trans=tmat)
# events
events(tglong)
table(tglong$status,tglong$to,tglong$from)
# expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
# Cox model with different covariate
Cx <- coxph(Surv(Tstart,Tstop,status)=x1.1+x2.2+strata(trans),
data=tglong,method="breslow")
summary(Cx)
# new data, to check whether results are the same for transition 1 as
# those in appendix E.1 of Therneau & Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
HH <- msfit(Cx,newdata,trans=tmat)
# probtrans
pt <- probtrans(HH,predt=0)
# predictions from state 1
pt[[1]]
Description

This function estimates regression coefficients in reduced rank proportional hazards models for competing risks and multi-state models.

Usage

redrank(
  redrank,
  full = ~1,
  data,
  R,
  strata = NULL,
  Gamma.start,
  method = "breslow",
  eps = 1e-05,
  print.level = 1
)

Arguments

redrank  Survival formula, starting with either Surv(time,status) ~ or with Surv(Tstart,Tstop,status) ~, followed by a formula containing covariates for which a reduced rank estimate is to be found
full  Optional, formula specifying that part which needs to be retained in the model (so not subject to reduced rank)
data  Object of class 'msdata', as prepared for instance by msprep, in which to interpret the redrank and, optionally, the full formulas
R  Numeric, indicating the rank of the solution
strata  Name of covariate to be used inside the strata part of coxph
Gamma.start  A matrix of dimension K x R, with K the number of transitions and R the rank, to be used as starting value
method  The method for handling ties in coxph
eps  Numeric value determining when the iterative algorithm is finished (when for two subsequent iterations the difference in log-likelihood is smaller than eps)
print.level  Determines how much output is written to the screen; 0: no output, 1: iterations, for each iteration solutions of Alpha, Gamma, log-likelihood, 2: also the Cox regression results

Details

For details refer to Fiocco, Putter & van Houwelingen (2005, 2008).

Value

A list with elements

Alpha  the Alpha matrix
**Gamma** the Gamma matrix

**Beta** the Beta matrix corresponding to covariates

**Beta2** the Beta matrix corresponding to fullcovs

**cox.itr1** the `coxph` object resulting from the last call giving Alpha

**alphaX** the matrix of prognostic scores given by Alpha, n x R, with n number of subjects

**niter** the number of iterations needed to reach convergence

**df** the number of regression parameters estimated

**loglik** the log-likelihood

**Author(s)**

Marta Fiocco and Hein Putter <H.Putter@lumc.nl>

**References**


**Examples**

```r
Not run:
This reproduces the results in Fiocco, Putter & van Houwelingen (2005)
Takes a while to run
data(ebmt2)
transition matrix for competing risks
tmat <- trans.comprisk(6, names=c("Relapse","GvHD","Bacterial","Viral","Fungal","Other"))
preparing long dataset
ebmtlong <- msprep(time=c(NA,rep("time",6)),
 stat=c(NA,paste("stat",1:6,sep="")),
 data=ebmt2, keep=covs, trans=tmat)

The reduced rank 2 solution
rr2 <- redrank(Surv(Tstart,Tstop,status) ~ dissub+match+tcd+year+age, data=ebmtlong, R=2)
rr2$Alpha; rr2$Gamma; rr2$Beta; rr2$loglik

The reduced rank 3 solution
rr3 <- redrank(Surv(Tstart,Tstop,status) ~ dissub+match+tcd+year+age, data=ebmtlong, R=3)
rr3$Alpha; rr3$Gamma; rr3$Beta; rr3$loglik
```


```r
The reduced rank 3 solution, with no reduction on age
rr3 <- redrank(Surv(Tstart,Tstop,status) ~ dissub+match+tcd+year, full=~age,
data=ebmtlong, R=3)
rr3$Alpha; rr3$Gamma; rr3$Beta; rr3$loglik

The full rank solution
fullrank <- redrank(Surv(Tstart,Tstop,status) ~ dissub+match+tcd+year+age,
data=ebmtlong, R=6)
fullrank$Beta; fullrank$loglik

End(Not run)
```

### summary.Cuminc

**Summary method for a summary.Cuminc object**

**Description**

Summary method for a summary.Cuminc object

**Usage**

```r
S3 method for class 'Cuminc'
summary(object, ...)
```

**Arguments**

- `object` Object of class 'Cuminc', to be summarised
- `...` Further arguments to summarise

### summary.msfit

**Summary method for an msfit object**

**Description**

Summary method for an object of class 'msfit'. It prints a selection of the estimated cumulative transition intensities, and, if requested, also of the (co)variances.
### Usage

```r
S3 method for class 'msfit'
summary(
 object,
 times,
 transitions,
 variance = TRUE,
 conf.int = 0.95,
 conf.type = c("log", "none", "plain"),
 extend = FALSE,
 ...
)
```

### Arguments

- **object**: Object of class `msfit`, containing estimated cumulative transition intensities for all transitions in a multi-state model.
- **times**: Time points at which to evaluate the cumulative transition hazards.
- **transitions**: The transition for which to summarize the cumulative transition hazards.
- **variance**: Whether or not the standard errors of the estimated cumulative transition intensities should be printed; default is `TRUE`.
- **conf.int**: The proportion to be covered by the confidence intervals, default is 0.95.
- **conf.type**: The type of confidence interval, one of "log", "none", or "plain". Defaults to "log".
- **extend**: Logical value: if `TRUE`, prints information for all specified times, even if there are no subjects left at the end of the specified times. This is only valid if the `times` argument is present.
- **...**: Further arguments to `summary`.

### Value

Function `summary.msfit` returns an object of class "summary.msfit", which is a list (for each from state) of cumulative transition hazards at the specified (or all) time points. The `print` method of a `summary.probtrans` doesn't return a value.

### Author(s)

Hein Putter <H.Putter@lumc.nl>

### See Also

- `msfit`
Examples

# Start with example from msfit

tmat <- trans.illdeath()
tg <- data.frame(illt=c(1,1,6,6,8,9), ills=c(1,0,1,1,0,1),
                 dt=c(5,1,9,7,8,12), ds=c(1,1,1,1,1,1),
                 x1=c(1,1,1,0,0,0), x2=c(6:1))
tglong <- msprep(time=c(NA,"illt","dt"), status=c(NA,"ills","ds"),
data=tg, keep=c("x1","x2"), trans=tmat)
tglong <- expand.covs(tglong,c("x1","x2"))
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
data=tglong, method="breslow")
newdata <- data.frame(trans=1:3, x1.1=c(0,0,0), x2.2=c(0,1,0), strata=1:3)
msf <- msfit(cx,newdata, trans=tmat)

# Default, all transitions, with SE
summary(msf)
summary(msf, conf.type="plain")
# Only transitions 1 and 3
summary(msf, tra=c(1,3))
# Default is 95% confidence interval, change here to 90%
summary(msf, conf.int=0.90)
# Do not show variances (nor confidence intervals)
summary(msf, variance=FALSE)
# Cumulative hazards only at specified time points
summary(msf, times=seq(0,15,by=3))
# Last specified time point is larger than last observed, not printed
# Use extend=TRUE as in summary.survfit
summary(msf, times=seq(0,15,by=3), extend=TRUE)
# Different types of confidence intervals, default is log
summary(msf, times=seq(0,15,by=3), conf.type="plain")
summary(msf, times=seq(0,15,by=3), conf.type="no")
# When the number of time points specified is larger than 12, head and tail is shown
x <- summary(msf, times=seq(5,8,by=0.25))
x

summary.probtrans  

Summary method for a probtrans object

Description

Summary method for an object of class 'probtrans'. It prints a selection of the estimated transition probabilities, and, if requested, also of the variances.

Usage

## S3 method for class 'probtrans'
summary(
  object,
times,
from = 1,
to = 0,
variance = TRUE,
conf.int = 0.95,
conf.type = c("log", "none", "plain"),
extend = FALSE,
...)

Arguments

object Object of class 'probtrans', containing estimated transition probabilities from
and to all states in a multi-state model

times Time points at which to evaluate the transition probabilities

from Specifies from which state the transition probabilities are to be printed. Should
be subset of 1:S, with S the number of states in the multi-state model. Default is
print from state 1 only. User can specify from=0 to print transition probabilities
from all states

to Specifies the transition probabilities to which state are to be printed. User can
specify to=0 to print transition probabilities to all states. This is also the default

variance Whether or not the standard errors of the estimated transition probabilities should
be printed; default is TRUE

conf.int The proportion to be covered by the confidence intervals, default is 0.95

conf.type The type of confidence interval, one of "log", "none", or "plain". Defaults to
"log"

extend logical value: if TRUE, prints information for all specified times, even if there are
no subjects left at the end of the specified times. This is only valid if the times
argument is present

... Further arguments to print

Value

Function summary.probtrans returns an object of class "summary.probtrans", which is a list (for
each from state) of transition probabilities at the specified (or all) time points. The print method
of a summary.probtrans doesn't return a value.

Author(s)

Hein Putter <H.Putter@lumc.nl>

See Also

probtrans
Examples

# First run the example of probtrans
tmat <- trans.illdeath()
tg <- data.frame(illt=c(1,1,6,6,8,9), ills=c(1,0,1,1,0,1),
                    dt=c(5,1,9,7,8,12), ds=c(1,1,1,1,1,1),
                    x1=c(1,1,0,0,0,0), x2=c(6:1))
tglong <- msprep(time=c(NA,"illt","dt"), status=c(NA,"ills","ds"),
                  data=tg, keep=c("x1","x2"), trans=tmat)
tglong <- expand.covs(tglong, c("x1", "x2"))
cx <- coxph(Surv(Tstart, Tstop, status) ~ x1+x2.2+strata(trans),
            data=tglong, method="breslow")
newdata <- data.frame(trans=1:3, x1.1=c(0,0,0), x2.2=c(0,1,0), strata=1:3)
HVH <- msfit(cx, newdata, trans=tmat)
pt <- probtrans(HVH, predt=0)

# Default, prediction from state 1
summary(pt)
# Only from states 1 and 3
summary(pt, from=c(1, 3))
# Use from=0 for prediction from all states
summary(pt, from=0)
# Only to states 1 and 2
summary(pt, to=1:2)
# Default is 95% confidence interval, change here to 90%
summary(pt, to=1:2, conf.int=0.90)
# Do not show variances (nor confidence intervals)
summary(pt, to=1:2, variance=FALSE)
# Transition probabilities only at specified time points
summary(pt, times=seq(0, 15, by=3))
# Last specified time point is larger than last observed, not printed
# Use extend=TRUE as in summary.survfit
summary(pt, times=seq(0, 15, by=3), extend=TRUE)
# Different types of confidence intervals, default is log
summary(pt, times=seq(0, 15, by=3), conf.type="plain")
summary(pt, times=seq(0, 15, by=3), conf.type="no")
# When the number of time points specified is larger than 12, head and tail is shown
x <- summary(pt, times=seq(5, 8, by=0.25))
x

trans2tra

Convert transition matrix from mstate to etm format

Description

Convert transition matrix from mstate to etm format

Usage

trans2tra(trans)
transhelp

Help functions for transition matrix

Description
Help functions to get insight into the structure of a transition matrix.

Arguments
trans Transition matrix in mstate format

Details
Function to.trans2 simply lists the transitions in trans in a data frame; function trans2Q converts trans to a Q matrix, the (j,k)th element of which contains the (shortest) number of transitions needed to travel from the jth to the kth state; function absorbing returns a vector (named if trans contains row or column names) with the state numbers that are absorbing; function is.circular returns (a Boolean) whether the transition matrix specified in trans is circular or not.

Value
See details.

Author(s)
Hein Putter <H.Putter@lumc.nl>

Examples
# Irreversible illness-death model
tmat <- trans.illdeath(c("Healthy", "Illness", "Death"))
tmat
to.trans2(tmat)
trans2Q(tmat)
absorbing(tmat)
is.circular(tmat)
# Reversible illness-death model
tmat <- transMat(x = list( c(2, 3), c(1, 3), c() ),
                  names = c("Healthy", "Illness", "Death"))
tmat
to.trans2(tmat)
trans2Q(tmat)
absorbing(tmat)
is.circular(tmat)
Define transition matrix for multi-state model

Description

Define transition matrices for multi-state model. Specific functions for defining such transition matrices are pre-defined for common multi-state models like the competing risks model and the illness-death model.

Usage

transMat(x, names)

Arguments

x
List of possible transitions; x[i] consists of a vector of state numbers reachable from state i

names
A character vector containing the names of either the competing risks or the states in the multi-state model specified by the competing risks or illness-death model. names should have the same length as the list x (for transMat), or either K or K+1 (for trans.comprisk), or 3 (for trans.illdeath)

Details

If names is missing, the names "eventfree", "cause1", etcetera are assigned in trans.comprisk, or "healthy", "illness", "death" in trans.illdeath.

Value

A transition matrix describing the states and transitions in the multi-state model.

Author(s)

Steven McKinney <smckinney@bccrc.ca>; Hein Putter <H.Putter@lumc.nl>

Examples

transMat(list(c(2, 3), c(), c(1, 2)),
names = c("Disease-free", "Death", "Relapsed"))
tmat <- transMat(x = list( c(2, 3), c(1, 3), c() ),
                   names = c("Normal", "Low", "Death"))
tmat
transListn <- list("Normal" = c(2, 3), "Low" = c(1, 3), "Death" = c())
transMat(transListn)
trans.comprisk(3)
trans.comprisk(3,c("c1","c2","c3"))
trans.comprisk(3,c("nothing","c1","c2","c3"))
trans.illdeath()
trans.illdeath(c("nothing","ill","death"))

---

**varHaz.fixed**  
*Upgrade the varHaz object*

**Description**

A function that upgrades varHaz from the msfit object where the variances are estimated using the Greenwood estimator; it is further assumed that variances for the population hazards are equal to zero.

**Usage**

varHaz.fixed(varHaz, link_trans, varHaz_original)

**Arguments**

- **varHaz**  
  The varHaz object (present in a msfit object).

- **link_trans**  
  A list that gives the linkage between the original and upgraded transition matrix.

- **varHaz_original**  
  The original varHaz object from msfit (without the eventual time conversion).

**Value**

Return the upgraded varHaz object containing variances for the split transitions.

**Author(s)**

Damjan Manevski <damjan.manevski@mf.uni-lj.si>

---

**vis.mirror.pt**  
*Mirror plot comparing two probtrans objects*

**Description**

A mirror plot for comparing two different "probtrans" objects. Useful for comparing predicted probabilities for different levels of a covariate, or for different subgroups at some prediction time horizon.
Usage

vis.mirror.pt(
  x,
  titles,
  size_titles = 5,
  horizon = NULL,
  breaks_x_left,
  breaks_x_right,
  from = 1,
  cols,
  ord,
  xlab = "Time",
  ylab = "Probability",
  legend.pos = "right"
)

Arguments

x A list of two "probtrans" objects. The first element will be on the left of the mirror plot, and the second on the right

titles A character vector c("Title for left", "Title for right")

size_titles Numeric, size of the title text

horizon Numeric, position denoting (in time) where to symmetrically mirror the plots. Default is maximum follow-up of from both plots.

breaks_x_left Numeric vector specifying axis breaks on the left plot

breaks_x_right Numeric vector specifying axis breaks on the right plot

from The starting state from which the probabilities are used to plot

cols A vector specifying colors for the different transitions; default is a palette from green to red, when type="filled" (reordered according to ord, and 1 (black), otherwise

ord A vector of length equal to the number of states, specifying the order of plotting in case type="stacked" or "filled"

xlab A title for the x-axis, default is "Time"

ylab A title for the y-axis, default is "Probability"

legend.pos Position of the legend, default is "right"

Value

A ggplot2 object.

Author(s)

Edouard F. Bonneville <e.f.bonneville@lumc.nl>
See Also

plot.probtrans

Examples

```r
library(ggplot2)

data("aidssi")
head(aidssi)
si <- aidssi

Prepare transition matrix
tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI"))

Run msprep
si$stat1 <- as.numeric(si$status == 1)
si$stat2 <- as.numeric(si$status == 2)

silong <- msprep(
time = c(NA, "time", "time"),
status = c(NA, "stat1", "stat2"),
data = si, keep = "ccr5", trans = tmat
)

Run cox model
silong <- expand.covs(silong, "ccr5")
c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),
data = silong)

1. Prepare reference patient data - both CCR5 genotypes
WW <- data.frame(
ccr5WM.1 = c(0, 0),
ccr5WM.2 = c(0, 0),
trans = c(1, 2),
strata = c(1, 2)
)

WM <- data.frame(
ccr5WM.1 = c(1, 0),
ccr5WM.2 = c(0, 1),
trans = c(1, 2),
strata = c(1, 2)
)

2. Make msfit objects
msf.WW <- msfit(c1, WW, trans = tmat)
msf.WM <- msfit(c1, WM, trans = tmat)

3. Make probtrans objects
pt.WW <- probtrans(msf.WW, predt = 0)
pt.WM <- probtrans(msf.WM, predt = 0)
```
# Mirror plot split at 10 years - see vignette for more details
vis.mirror.pt(
  x = list(pt.WW, pt.WM),
  titles = c("WW", "WM"),
  horizon = 10
)

---

**Description**

Helper function allowing to visualise state probabilities for different reference patients/covariates. Multiple "probtrans" objects are thus needed.

**Usage**

```r
vis.multiple.pt(
 x,
 from = 1,
 to,
 xlab = "Time",
 ylab = "Probability",
 xlim = NULL,
 ylim = NULL,
 cols,
 lwd,
 labels,
 conf.int = 0.95,
 conf.type = c("log", "plain", "none"),
 legend.title
)
```

**Arguments**

- `x` A list of "probtrans" objects
- `from` The starting state from which the probabilities are used to plot Numeric, as in plot.probtrans
- `to` (Numeric) destination state
- `xlab` A title for the x-axis; default is "Time"
- `ylab` A title for the y-axis; default is "Probability"
- `xlim` The x limits of the plot(s), default is range of time
- `ylim` The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits
cols: A vector specifying colors for the different transitions; default is a palette from green to red, when type="filled" (reordered according to ord, and 1 (black), otherwise.

lwd: The line width, see par; default is 1.

labels: Character vector labelling each element of x (e.g. label for a reference patient) - so labels = c("Patient 1", "Patient 2")

conf.int: Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.

conf.type: Type of confidence interval - either "log" or "plain". See function details for details.

legend.title: Character - title of legend

Value
A ggplot object.

Author(s)
Edouard F. Bonneville <e.f.bonneville@lumc.nl>

Examples
library(ggplot2)
data("aidssi")
head(aidssi)
si <- aidssi

# Prepare transition matrix
tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI"))

# Run msprep
si$stat1 <- as.numeric(si$status == 1)
si$stat2 <- as.numeric(si$status == 2)

silong <- msprep(
time = c(NA, "time", "time"),
status = c(NA, "stat1", "stat2"),
data = si, keep = "ccr5", trans = tmat)

# Run cox model
silong <- expand.covs(silong, "ccr5")
c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),
data = silong)

# 1. Prepare patient data - both CCR5 genotypes
WW <- data.frame(
ccr5WM.1 = c(0, 0),
ccr5WM.2 = c(0, 0),
...
trans = c(1, 2),
strata = c(1, 2)
)

WM <- data.frame(
ccr5WM.1 = c(1, 0),
ccr5WM.2 = c(0, 1),
trans = c(1, 2),
strata = c(1, 2)
)

# 2. Make msfit objects
msf.WW <- msfit(cl, WW, trans = tmat)
msf.WM <- msfit(cl, WM, trans = tmat)

# 3. Make probtrans objects
pt.WW <- probtrans(msf.WW, predt = 0)
pt.WM <- probtrans(msf.WM, predt = 0)

# Plot - see vignette for more details
vis.multiple.pt(
  x = list(pt.WW, pt.WM),
  from = 1,
  to = 2,
  conf.type = "log",
  cols = c(1, 2),
  labels = c("Pat WW", "Pat WM"),
  legend.title = "Ref patients"
)

---

xsect  

*Make a cross-section of multi-state data at a given time point*

### Description

Given a dataset in long format, for instance generated by `msprep`, this function takes a cross-section at a given time point, to list the subjects under observation (at risk) at that time point and the states currently occupied.

### Usage

```r
xsect(msdata, xtime = 0)
```

### Arguments

- **msdata**: An object of class "msdata", such as output by `msprep`
- **xtime**: The time point at which the intersection is to be made
Details

It is possible that subjects have moved to one of the absorbing states prior to \texttt{xtime}; this is NOT taken into account. The function \texttt{xsect} only concerns subjects currently (at \texttt{time}) at risk.

Value

A list containing \texttt{idstate}, a data frame containing id’s and state, the number of the state currently occupied; \texttt{atrisk}, the number at risk, and \texttt{prop}, a table counting how many of those at risk occupy which state.

Author(s)

Hein Putter \textless{}H.Putter@lumc.nl\textgreater{}

Examples

\begin{verbatim}
tmat <- trans.illdeath(names=c("Tx","PR","RelDeath"))
data(ebmt3) # data from Section 4 of Putter, Fiocco & Geskus (2007)
msebm <- msprep(time=c(NA,"prtime","rfstime"),status=c(NA,"prstat","rfsstat"),
data=ebmt3,trans=tmat)
  # At the start everyone is in state 1 (default \texttt{xtime}=0 is used)
  xsect(msebm)
  # At 5 years
  xsect(msebm, xtime=1826)
\end{verbatim}
Index

* array
  paths, 43
transMat, 67
* datagen
  crprep.default, 6
etm2msdata, 17
expand.covs, 19
expand.covs.msdata, 20
msboot, 29
msprep, 38
mssample, 40
* datasets
aidssi, 4
bmt, 5
EBMT cause of death data, 12
EBMT data, 13
EBMT platelet recovery data, 14
EBMT year of relapse data, 15
Liver cirrhosis data, 23
* hplot
  plot.MarkovTest, 46
plot.msfit, 48
plot.probtrans, 50
print.MarkovTest, 53
print.msfdata, 54
* package
mstate-package, 3
* print
  summary.msfit, 61
summary.probtrans, 63
* survival
  crprep.default, 6
Cuminc, 9
LMAJ, 24
msfit, 33
probtrans, 56
redrank, 58
* univar
cutLMms, 11
ELOS, 16
events, 18
MarkovTest, 25
transhelp, 66
xsect, 73
absorbing (transhelp), 66
aidssi, 4
aidssi2 (aidssi), 4
bmt, 5
coxph, 33, 34, 59, 60
crprep (crprep.default), 6
crprep.default, 6
Cuminc, 9
cutLMms, 11
data.frame, 6, 13–15, 23
EBMT cause of death data, 12
EBMT data, 13
EBMT platelet recovery data, 14
EBMT year of relapse data, 15
EBMT1 (EBMT year of relapse data), 15
EBMT2 (EBMT cause of death data), 12
EBMT3 (EBMT platelet recovery data), 14
EBMT4 (EBMT data), 13
ELOS, 16
etm2msdata, 17
events, 18
expand.covs, 19
expand.covs.msdata, 20, 20
haz_function, 22
is.circular (transhelp), 66
legend, 45, 49, 51
Liver cirrhosis data, 23
LMAJ, 24
MarkovTest, 25, 46, 47, 53
model.matrix, 19, 21
modify_transMat, 28
msboot, 29, 31
msboot.relsurv, 30, 32
msfit, 33, 36, 41, 49, 57, 62
msfit.relsurv, 23, 35
msprep, 11, 18, 19, 21, 29, 34, 37, 41–43, 54, 59, 73
mssample, 40
mstate (mstate-package), 3
mstate-package, 3

optimal_weights_matrix (MarkovTest), 25
optimal_weights_multiple (MarkovTest), 25

par, 44, 48, 49, 51, 72
paths, 42, 43
plot.Cuminc, 44
plot.MarkovTest, 46
plot.msfit, 34, 48
plot.probtrans, 50, 70
print.Cuminc (Cuminc), 9
print.MarkovTest, 53
print.msdata, 54
print.summary.msfit, 55
print.summary.probtrans, 56
probtrans, 16, 24, 50, 52, 54, 56, 64
proth (Liver cirrhosis data), 23

redrank, 58

strata, 59
summary.Cuminc, 61
summary.msfit, 61
summary.probtrans, 63
survfit, 33

to.trans2 (transhelp), 66
tra2trans (etm2msdata), 17
trans.comprisk (transMat), 67
trans.illdeath (transMat), 67
trans2Q (transhelp), 66
trans2tra, 65
transhelp, 66
transMat, 28, 67

varHaz.fixed, 68
vis.mirror.pt, 68
vis.multiple.pt, 71
xsect, 73

vis.multiple(pt, 71
xsect, 73

xsect, 73