Package ‘mstknnclust’

October 13, 2022

Type Package
Title MST-kNN Clustering Algorithm
Version 0.3.1
Date 2020-09-05
Author Jorge Parraga-Alava [aut, cre],
 Pablo Moscato [aut],
 Mario Inostroza-Ponta [aut]
Maintainer Jorge Parraga-Alava <jorge.parraga@usach.cl>
Description Implements the MST-kNN clustering algorithm which was proposed by Inostroza-
Depends R (>= 3.2.5)
License GPL-2
Encoding UTF-8
Imports igraph, stats, base
RoxygenNote 7.1.1
VignetteBuilder knitr
Suggests knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2020-09-17 12:20:03 UTC

R topics documented:

dslanguages ... 2
dyeastexpression .. 2
generate.knn ... 3
generate.mst ... 4
mst.knn .. 6

Index 8
dslanguages

Indo-European languages dataset

Description

It contains the distances between 84 Indo-European languages based on the mean percent difference in cognacy, using the 200 Swadesh words.

Usage

`data(dslanguages)`

Format

An data frame with 84 rows and 84 columns containing a distance matrix.

Details

Once the data set is loaded, it can be accessed as an object of class dataframe called `dslanguages`.

References

dsyeastexpression

Budding Yeast dataset

Description

It contains the expression levels of 2467 genes on 79 samples corresponding to 8 different experiments of the budding yeast: alpha factor (18 samples), cdc15 (15 samples), cold shock (4 samples), diauxic shift (7 samples), DTT shock (4 samples), elutriation (14 samples), heat shock (6 samples) and sporulation (11 samples).

Usage

`data(dsyeastexpression)`

Format

An data frame with 2467 rows and 79 columns.

Details

Once the data set is loaded, it can be accessed as an object of class dataframe called `dsyeastexpression`.
generate.knn

Source

https://www.pnas.org/content/suppl/1998/12/08/95.25.14863.DC1/3917data.xls

References

generate.knn

Generates a kNN graph

Description

This function generates the k-Nearest Neighbors (kNN) graph which is a subgraph contains edges between nodes if, and only if, they are one of the k nearest neighbors considering the edges costs (distances). Each node represents an object of the complete graph.

Usage

```r
generate.knn(edges.complete.graph, suggested.k)
```

Arguments

- `edges.complete.graph`
 A object of class "data.frame" with three columns (`object_i`, `object_j`, `d_ij`) representing the distance `d_ij` between `object_i` and `object_j`.

- `suggested.k`
 It is an optional argument. A numeric value representing the suggested number of k-nearest neighbors to consider to generate the kNN graph.

Details

During its generation, the k value is automatically determined by the definition:

\[
\begin{align*}
 k &= \min \left\lfloor \ln(|\text{nodes.list}|) \right\rfloor; \text{minkNNisconnected}; \text{suggested.k}\\
\end{align*}
\]

If `suggested.k` parameter is not provided, it is not considered by the definition.

Value

A list with the elements:

- `edges.knn.graph`
 A object of class "data.frame" with three columns (`object_i`, `object_j`, `d_ij`) representing the `d_ij` between `object_i` and `object_j` that are part of the kNN graph.

- `knn.graph`
 A object of class "igraph" which is the k-Nearest Neighbors (kNN) graph generated.

- `k`
 The k value determined by the definition.
generate.mst

Author(s)
Mario Inostroza-Ponta, Jorge Parraga-Alava, Pablo Moscato

Examples

```r
set.seed(1987)

##Generates a data matrix of dimension 50X13
n=50; m=13
x <- matrix(runif(n*m, min = -5, max = 10), nrow=n, ncol=m)

##Computes a distance matrix of x.
library("stats")
d <- as.matrix(stats::dist(x, method="euclidean"))

##Generates complete graph (CG) without suggested.k parameter
cg <- generate.complete.graph(1:nrow(x),d)

##Generates kNN graph
knn <- generate.knn(cg)

##Visualizing kNN graph
plot(knn$knn.graph,
main=paste("kNN \n k=", knn$k, sep=""))

##Generates complete graph (CG) with suggested.k parameter
cg <- generate.complete.graph(1:nrow(x),d)

##Generates kNN graph
knn <- generate.knn(cg, suggested.k=4)

##Visualizing kNN graph
plot(knn$knn.graph,
main=paste("kNN \n k=", knn$k, sep=""))
```

generate.mst

Generates a MST graph

Description

This function generates the Minimal Spanning Tree (MST) graph which is a connected and acyclic subgraph contains all the nodes of the complete graph (CG) and whose edges sum (distances) has minimum costs. Each node represents an object of the complete graph.
Usage

generate.mst(edges.complete.graph)

Arguments

edges.complete.graph
 A object of class "data.frame" with three columns (object_i, object_j, d_ij) representing the distance d_ij between object i and object j of the complete graph.

Details

Generation of MST graph is performed using the Prim’s algorithm.

Value

A list with the elements

edges.mst.graph
 A object of class "data.frame" with three columns (object_i, object_j, d_ij) representing the distance d_ij between object i and object j that are part of the MST graph.

mst.graph
 A object of class "igraph" which is the Minimal Spanning Tree (MST) graph generated.

Author(s)

Mario Inostroza-Ponta, Jorge Parraga-Alava, Pablo Moscato

References

Examples

set.seed(1987)

#Generates a data matrix of dimension 50X13
n=50; m=13
x <- matrix(runif(n*m, min = -5, max = 10), nrow=n, ncol=m)

#Computes a distance matrix of x.
library("stats")
d <- base::as.matrix(stats::dist(x, method="euclidean"))

#Generates complete graph (CG)
mst.knn

Performs the MST-kNN clustering algorithm

Description

Performs the MST-kNN clustering algorithm which generates a clustering solution with automatic number of clusters determination using two proximity graphs: Minimal Spanning Tree (MST) and k-Nearest Neighbor (kNN) which are recursively intersected.

To create MST, Prim algorithm is used. To create kNN, distance.matrix passed as input is considered.

Usage

mst.knn(distance.matrix, suggested.k)

Arguments

distance.matrix
 A numeric matrix or data.frame with equals numbers of rows and columns representing distances between objects to group.

suggested.k
 It is an optional argument. A numeric value representing the suggested number of k-nearest neighbors to consider during the generating the kNN graph. Note that, due to the algorithm operation, this number may be different during the algorithm execution.

Details

To see more details of how MST-kNN works refers to the quick guide.

Value

A list with the elements

cnumber
 A numeric value representing the number of clusters of the solution.

cluster
 A named vector of integers from 1:cnrumber representing the cluster to which each object is assigned.
partition A partition matrix order by cluster where are shown the objects and the cluster where they are assigned.
csize A vector with the cardinality of each cluster in the solution.
network An object of class "igraph" as a network representing the clustering solution.

Author(s)
Mario Inostroza-Ponta, Jorge Parraga-Alava, Pablo Moscato

References

Examples

set.seed(1987)

##load package
library("mstknnclust")

##Generates a data matrix of dimension 100X15
n=100; m=15
x <- matrix(runif(n*m, min = -5, max = 10), nrow=n, ncol=m)

##Computes a distance matrix of x.
library("stats")
d <- base::as.matrix(stats::dist(x, method="euclidean"))

##Performs MST-kNN clustering using euclidean distance.
results <- mst.knn(d)

Visualizes the clustering solution
library("igraph")
plot(results$network, vertex.size=8,
vertex.color=igraph::clusters(results$network)$membership,
layout=igraph::layout.fruchterman.reingold(results$network, niter=10000),
main=paste("MST-kNN \n Clustering solution \n Number of clusters=",results$cnumber,sep=""))
Index

* datasets
 - dslanguages, 2
 - dsyeastexpression, 2
* graph
 - generate.knn, 3
 - generate.mst, 4
* knn
 - generate.knn, 3
* mst
 - generate.mst, 4

dslanguages, 2
dsyeastexpression, 2

generate.knn, 3
generate.mst, 4
mst.knn, 6