Package ‘mtconnectR’

January 7, 2019

Type Package

Title Read Data from Delimited 'MTConnect' Data Files and Perform some Analysis

Version 1.2.1

Date 2019-01-03

Encoding UTF-8

Maintainer Ananthapadmanabhan P <ananthu@govimana.com>

Description Read data in the 'MTConnect' standard.
You can use the package to read data from historical 'MTConnect logs' along with the 'devices.xml' describing the device. The data is organised into a 'MTConnectDevice' S4 data structure and some convenience methods are also provided for basic read/view operations.

The package also includes some functions for analysis of 'MTConnect' data. This includes functions to simulate data (primarily position data, feed rate and velocities) based on the G code and visualisation functions to compare the actual and simulated data.

Depends R (>= 3.0.0)

Imports methods, data.table (>= 1.9.6), XML (>= 3.98), stringr (>= 1.0), plyr (>= 1.8.3), dplyr (>= 0.5.0), ggplot2, magrittr, lubridate, tidyR, dtw, proxy

License AGPL-3

LazyData TRUE

RoxygenNote 6.1.1

Suggests knitr, rmarkdown, testthat, roxygen2

BuildVignettes yes

VignetteBuilder knitr

NeedsCompilation no
Author Alex Joseph [aut],
 Sainath Adapa [aut],
 Nitin Madasu [aut],
 Ananthapadmanabhan P [aut, cre],
 Devaraj Phukan [aut],
 Subramanyam Ravishankar [aut]

Repository CRAN

Date/Publication 2019-01-07 19:00:22 UTC

R topics documented:

- add_data_item_to_mtc_device 3
- calculated_feed_from_position 4
- clean_reduntant_rows .. 4
- convert_interval_to_ts 5
- convert_ts_to_interval 5
- create_mtc_device_from_dmtcd 6
- create_mtc_device_from_ts 7
- example_dmtcd .. 7
- example_gcode_parsed ... 8
- example_mapped_plot ... 8
- example_mtc_data_item 9
- example_mtc_device .. 9
- example_mtc_device_2 10
- example_mtc_device_3 10
- example_mtc_device_sim 11
- example_mtc_sim_mapped 11
- example_parsed_device_xml 12
- example_simulated_gcode_data 12
- example_xpath_info ... 13
- extract_param_from_xpath 13
- filter_timestamps_mtc_device 14
- getData ... 15
- getData,MTCCycle-method 15
- getData,MTCDatalItem-method 16
- getDataItem ... 16
- getDataItem,MTCCycle,ANY-method 17
- getDataItem,MTCCycle,character-method 17
- getDataItem,MTCCycle,numeric-method 18
- getMetaData .. 18
- getMetaData,MTCDatalItem-method 19
- getDevice ... 19
- getDevice_info_from_xml 20
- get_xpaths_from_xml 20
- grep_subset .. 20
- map_gcode_mtc .. 21
- merge,MTCCycle,ANY-method 22
- merge,MTCCycle,character-method 22
add_data_item_to_mtc_device

Description
Add a new data item to an existing MTC Device Class

Usage
add_data_item_to_mtc_device(mtc_device, data_item_data, data_item_name, category = "EVENT")

Arguments
mtc_device An existing object of MTCDevice Class
data_item_data Data for the new data item to add
data_item_name Name of the new data item
category Category of the new data item. Can be EVENT or SAMPLE

Examples
data_item_data = data.frame(timestamp = as.POSIXct(c(0.5, 1, 1.008, 1.011) + 1445579573, tz = 'CST6CDT', origin = "1970-01-01"),
value = c("a", "b", "c", "d"))
data("example_mtc_device")
mtc_device_updated =
 add_data_item_to_mtc_device(example_mtc_device, data_item_data,
data_item_name = "test", category = "EVENT")
print(mtc_device_updated)
calculated_feed_from_position

Calculate feed rate from the path position data items

Description

Returns a data.frame which contains the calculated feed rates and the corresponding time stamps

Usage

`calculated_feed_from_position(mtc_device, pattern = "PATH_POSITION")`

Arguments

- `mtc_device` is the MTCDevice object
- `pattern` is the pattern of the path position data items in the device object

Examples

```r
data("example_mtc_device_3")
calculated_feed_from_position = calculated_feed_from_position(example_mtc_device_3)
```

clean_reduntant_rows

Removes Redundant Rows in a data frame assuming statefulness

Description

Removes Redundant Rows in a data frame assuming statefulness

Usage

`clean_reduntant_rows(df, clean_colname = "value", echo = F, clean_na = F)`

Arguments

- `df` Data.frame in timestamp, value1, value2,...
- `clean_colname` Name of the column to clean as basis
- `echo` Whether to return messages or not
- `clean_na` Whether to clean NA's when they are redundant

Examples

```r
test_interval =
data.frame(timestamp = as.POSIXct(c(0.5, 1, 1.008, 1.011), origin = "1970-01-01"),
            x = c("a", "b", "b", "b"),
            y = c("e", "e", "e", "f"))

clean_reduntant_rows(test_interval, "x")
```
convert_interval_to_ts

Convert Interval to Time Series

Description

Basically reverse the effect of `convert_ts_to_interval`. Column names should be same as mentioned in the example

Usage

```r
convert_interval_to_ts(df, time_colname = "start", end_colname = "end", remove_last = F)
```

Arguments

- `df` : Data.frame in start, end, duration, value1, value2,...
- `time_colname` : Name of the time column
- `end_colname` : Name of the end time column
- `remove_last` : Logical value to remove the last row in the result

See Also

- `convert_ts_to_interval`

Examples

```r
test_interval =
data.frame(start = as.POSIXct(c(0.5, 1, 1.008, 1.011), tz = 'CST6CDT', origin = "1970-01-01"),
        end = as.POSIXct(c(1, 1.008, 1.011, 2), tz = 'CST6CDT', origin = "1970-01-01"),
        duration = c(0.50, 0.01, 0.00, 0.99),
        y = c("e", "e", "e", "f"))
convert_interval_to_ts(test_interval)
```

convert_ts_to_interval

Convert Time Series to Intervals

Description

Function to convert a continuous time series data to interval data. The last row which goes to infinity can be deleted, else will be given dump value.
create_mtc_device_from_dmtcd

Create MTCDevice class from Delimited MTC Data and log file

Description
Create MTCDevice class from Delimited MTC Data and log file

Usage
create_mtc_device_from_dmtcd(file_path_dmtcd, file_path_xml, device_name,
 mtconnect_version = NULL)

Arguments
 file_path_dmtcd Path to Delimited MTC Data file
 file_path_xml Path to the XML file
 device_name Name of the device in the xml. List of all the devices and their names can be got using the get_device_info_from_xml function
 mtconnect_version Specify MTConnect Version manually. If not specified, it is inferred automatically from the data.

Usage
convert_ts_to_interval(df, endtime_lastrow = as.POSIXct(NA),
 arrange_cols = T, time_colname = "timestamp", round_duration = 6)

Arguments
 df
 endtime_lastrow POSIXct value for the last row. Defaults to NA
 arrange_cols Whether to add the interval and duration columns at the front or not
 time_colname Column name of the timestamp variable
 round_duration Number of decimals to rounds the duration to. Defaults to 2. If no rounding required, give NULL.

See Also
convert_interval_to_ts

Examples
ts_data = data.frame(ts = as.POSIXct(c(0.5, 1, 1.008, 1.011), tz = 'UTC', origin = "1970-01-01"),
 x = c("a", "b", "c", "d"), y = c("e", "e", "e", "f"))
convert_ts_to_interval(ts_data, time_colname = "ts", endtime_lastrow = ts_data$ts[1] + 10)
create_mtc_device_from_ts

Examples

```
file_path_dmtcd = "testdata/dataExtraction/test_dmtcd.log"
file_path_xml = "testdata/dataExtraction/test_devices.xml"
device_name = "test_device"
mtc_device = create_mtc_device_from_dmtcd(
    system.file(file_path_dmtcd, package = "mtconnectR"),
    system.file(file_path_xml, package = "mtconnectR"),
    device_name)
print(summary(mtc_device))
```

create_mtc_device_from_ts

Create a MTC device object from a merged time series data frame

Description

Create a MTC device object from a merged time series data frame

Usage

```
create_mtc_device_from_ts(merged_device, device_uuid = "unmerged_device")
```

Arguments

- `merged_device`: An existing object of MTCDevice Class
- `device_uuid`: UUID to be given to the device

Examples

```
data("example_mtc_device")
merged_device = merge(example_mtc_device)
create_mtc_device_from_ts(merged_device)
```

example_dmtcd

Example data set showing MTC Log data

Description

A manually created dataset showing a log data file, parsed and read into R. The columns are

- timestamp. Timestamp of the event
- data_item_name. Name of the data Item from the delimited MTC data. Can be empty.
- value. of the data item
Usage

dmtdc

Format

A data frame with some rows and 3 variables

Example data set showing parsed G code data

Description

A manually created dataset showing a raw gcode data file, parsed and read into R. The columns are

- line Line number
- single_block A single block of G code from a line
- value Value of the data item corresponding to the command
- priority Priority of the block as per the pre-written dictionary
- prefix Prefix of the block
- type Type
- subtype Subtype
- supported Whether the specific G code block is supported or not by the dictionary

Usage

dmtdc

Format

A data frame with some rows and 8 variables

Example data set showing parsed G code data

Description

A ggrep plot object showing mapping between simulated and actual time series

Usage

dmtdc

Format

A ggplot object
example_mtc_data_item

Example data set showing a MTConnect DataItem

Description

The data can be accessed using the @ function. The slots are:

- data Data for a single data item in a data.frame in timestamp, value format
- data_type Type of Data - can be event or sample
- path XML Xpath
- data_source Source from which the data item was created
- xmlID ID of the data item in the devices XML

Usage

example_mtc_data_item

Format

An MTCDevice data item

example_mtc_device

Example data set showing a MTConnect Device

Description

The data can be accessed using the @ function. The slots are:

- rawdata Original delimited MTC data (parsed from the file using which the data was created)
- metadata Metadata (if any) for the device
- data_item_list Processed data showing each data item as a separate device
- device_uuid UUID of the device

Usage

example_mtc_device

Format

An MTCDevice data item
Description

The data can be accessed using the @ function. The slots are:

- rawdata Original delimited MTC data (parsed from which the data was created)
- metadata Metadata (if any) for the device
- data_item_list Processed data showing each data item as a separate device
- device_uuid UUID of the device

Usage

example_mtc_device_2

Format

An MTCDevice data item

Example data set showing a MTConnect Device

Description

The data can be accessed using the @ function. The slots are:

- rawdata Original delimited MTC data (parsed from the file using which the data was created)
- metadata Metadata (if any) for the device
- data_item_list Processed data showing each data item as a separate device
- device_uuid UUID of the device

Usage

example_mtc_device_3

Format

An MTCDevice data item
example_mtc_device_sim

MTCDevice object showing simulated G code data

Description

MTCDevice object created using the simulate_gcode function using parsed G code and convert_mtc_device_from_ts to convert data.frame to MTCDevice object.

Usage

example_mtc_device_sim

Format

A data frame with some rows and 13 variables

example_mtc_sim_mapped

MTCDevice object containing actual and simulated data and the mapping

Description

MTCDevice object containing actual and simulated data and the mapping

Usage

example_mtc_sim_mapped

Format

An MTCDevice object
example_parsed_device_xml

Example dataset showing the parsed xml for a device

Description

The data can be accessed using the `@` function. The slots are:

- `parsed_xml` Raw XML
- `device_details` Name, uuid and id of the device
- `mtconnect_version`

Usage

`example_parsed_device_xml`

Format

An MTCDevice data item

example_simulated_gcode_data

Example data set showing simulated G code data

Description

Dataset created using the `simulate_gcode` function using parsed G code. The columns are

- `timestamp` Simulated timestamp
- `lineid` Line ID
- `program` Program name
- `tool_id` Tool ID
- `pfr` Simulated path feed rate
- `rot_vel` Simulated rotational velocity
- `x_pos` Simulated X axis position
- `y_pos` Simulated Y axis position
- `z_pos` Simulated Z axis position
- `x_vel` Simulated X axis velocity
- `y_vel` Simulated Y axis velocity
- `z_vel` Simulated Z axis velocity
- `state_upcoming_tool` State upcoming tool
Example data set showing Xpaths from a device XML

Dataset showing a parsed DeviceXML file showing all the XPaths and the properties

- **id**: ID of the data item
- **name**: Name of the data Item from the delimited MTC data. Can be empty.
- **type**: MTC Type of the data item
- **category**: MTC Category of the data item
- **subType**: MTC subType of the data item. Can be empty
- **xpath**: xpath showing the truncated path to the particular data item in the device XML

Usage

element_example_info

Format

A data frame with some rows and 13 variables

extract_param_from_xpath

Extract different parts of a xpath

Description

Returns a single parameter extracted from the xpath vector. It could be Data Item Name or Data Item type or name of the Device. If the character vector is not in xpath format, the original name is returned and a warning is given

Usage

```
extract_param_from_xpath(strName, param = "DIName", removeExtended = F, show_warnings = T)
```

Arguments

strName is the xpath string
param is the parameter to be extracted. Can be "DIName", "DIType" or "Device"
removeExtended if True, then the x: prefix is removed from extended JSON class Types
show_warnings if false, silences the warnings

Examples

```
xpaths = c("timestamp",
    "nist_testbed_Mazak_QT_1<Device>:avail<AVAILABILITY> ",
    "nist_testbed_Mazak_QT_1<Device>:execution<EXECUTION> ",
    "nist_testbed_Mazak_QT_1<Device>:Fovr<x:path_feedrateMoverride> ")

extract_param_from_xpath(xpaths, "DIName")
extract_param_from_xpath(xpaths, "DIType")
extract_param_from_xpath(xpaths, "DIType", TRUE)
extract_param_from_xpath(xpaths, "Device")
```

Description

Helper function to quickly filter based on time range

Usage

```
filter_timestamps_mtc_device(mtc_device, start_time, end_time)
```

Arguments

mtc_device is the MTCDevice objectcc
start_time is the Start time
end_time is the End time

Examples

```
data("example_mtc_device_3")
start_time = as.POSIXct("2016-03-22 12:45:00.000")
end_time = as.POSIXct("2016-03-22 12:45:10.000")
filtered_data = filter_timestamps_mtc_device(example_mtc_device_3,start_time,end_time)
```
getData

Get data from the object in a data frame form

Description

Get data from the object in a data frame form

Usage

getData(.Object)

Arguments

/Object A MTC Object

Examples

data("example_mtc_data_item")
getdata(example_mtc_data_item)

getData,MTCCycle-method

Get Data from MTCDevice/MTCCycle Object as a data.frame

Description

Get Data from MTCDevice/MTCCycle Object as a data.frame

Usage

S4 method for signature 'MTCCycle'
getData(.Object)

Arguments

/Object Object of MTCCycle or MTCDevice Class

Examples

data("example_mtc_device")
getdata(example_mtc_device)
get halfway

Get data from the object in a data frame form

Description

Get data from the object in a data frame form

Usage

```r
# S4 method for signature 'MTCDataItem'
getData(.Object)
```

Arguments

- `.Object` A MTC Object

Examples

```r
data("example_mtc_data_item")
getData(example_mtc_data_item)
```

get halfway

Get data on one or more data items from the class

Description

Get data on one or more data items from the class

Usage

```r
getDataItem(.Object, pattern)
```

Arguments

- `.Object` object of MTCCycle or MTCDevice Class
- `pattern` OPTIONAL can be used to query specific data items

Examples

```r
data("example_mtc_device")
getDataItem(example_mtc_device)
```
getDataItem, MTCCycle, ANY-method

Get the first dataitem

Description
Get the first dataitem

Usage
```r
## S4 method for signature 'MTCCycle,ANY'
getDataItem(.Object)
```

Arguments
- `.Object`: Object of MTCCycle or MTCDevice Class

Examples
```r
data("example_mtc_device")
getDataItem(example_mtc_device)
```

getDataItem, MTCCycle, character-method

Get one or more data items from the MTCCycle or MTCDevice using a character pattern

Description
Get one or more data items from the MTCCycle or MTCDevice using a character pattern

Usage
```r
## S4 method for signature 'MTCCycle,character'
getDataItem(.Object, pattern)
```

Arguments
- `.Object`: Object of MTCCycle or MTCDevice Class
- `pattern`: Regex of the pattern by which the data is queried

Examples
```r
data("example_mtc_device")
getDataItem(example_mtc_device, "POSIT")
```
getMetaData

Get MetaData from the Object as a list

Description
Get MetaData from the Object as a list

Usage
getMetaData(.Object)

Arguments
.Object Object of MTCDatarItem Class

Examples
data("example_mtc_data_item")
getMetaData(example_mtc_data_item)

getdataitemLmtccycleLnumericMmethod

Get one or more data items from the MTCCycle or MTCDevice using a numeric index

Description
Get one or more data items from the MTCCycle or MTCDevice using a numeric index

Usage
S4 method for signature 'MTCCycle, numeric'
getDataItem(.Object, pattern)

Arguments
.Object Object of MTCCycle or MTCDevice Class
.pattern Numeric index/indices of the data item to be queried

Examples
data("example_mtc_device")
getDataItem(example_mtc_device, 1:2)
getMetaData,MTCDataItem-method

Get MetaData from the Object as a list

Description
Get MetaData from the Object as a list

Usage
```r
## S4 method for signature 'MTCDataItem'
getMetaData(.Object)
```

Arguments

- `.Object` Object of MTCDataItem Class

Examples
```r
data("example_mtc_data_item")
getMetaData(example_mtc_data_item)
```

get_device_info_from_xml

Get info on all the devices in the xml file

Description
Device XML usually consists of the configuration details of multiple devices. This function can
detail all the device info in the XML into a data.frame for easy reference

Usage
```r
get_device_info_from_xml(file_path_xml, mtconnect_version = NULL)
```

Arguments

- `file_path_xml` Path to the XML file
- `mtconnect_version` Specify MTConnect Version manually. If not specified, it is inferred automati-
cally from the data.

See Also

`get_xpaths_from_xml`
Examples

```r
file_path_xml = "testdata/dataExtraction/test_devices.xml"
devices_info = get_device_info_from_xml(system.file(file_path_xml, package = "mtconnectR"))
print(devices_info)
```

`get_xpaths_from_xml` *Get XML xpath info*

Description

Get info on all the xpaths for a single device from the xml file. Data is organized into a data.frame

Usage

```r
get_xpaths_from_xml(file_path_xml, device_name, mtconnect_version = NULL)
```

Arguments

- `file_path_xml`: Path to the XML file
- `device_name`: Name of the device in the xml. List of all the devices and their names can be got using the `get_device_info_from_xml` function
- `mtconnect_version`: Specify MTConnect Version manually. If not specified, it is inferred automatically from the data.

Examples

```r
file_path_xml = "testdata/dataExtraction/test_devices.xml"
device_name = "test_device"
xpath_info = get_xpaths_from_xml(system.file(file_path_xml, package = "mtconnectR"), device_name)
print(xpath_info)
```

`grep_subset` *Subset a data frame using regex matching on the column name and also on the value*

Description

Subset a data frame using regex matching on the column name and also on the value

Usage

```r
grep_subset(dataFrame, colGrep, subGrep, echo = T, invert = F)
```
map_gcode_mtc

Arguments

dataFrame is a data.frame
colGrep is a regex pattern for finding the columns
subGrep is a regex pattern to subset the values in the matched column
echo If TRUE, messages are printed on the console
invert If TRUE, returns everything other than the rows and columns matched using colGrep and subGrep

Examples

df = data.frame(type = c("sample","event","condition","sample"), value = c("value1","value2", "value3","value4"))
filtered_df = grep_subset(df,"type","sample")

map_gcode_mtc Create a mapping between simulated and actual data

Description

Creates a timestamp based mapping to map every simulated timestamp to an actual timestamp based on real data

Usage

map_gcode_mtc(mtc_device_sim, mtc_device, elasticity = 2)

Arguments

mtc_device_sim is the simulated version
mtc_device is the actual log data
elasticity is the maximum consecutive reference elements skippable (passed to dtw::mvmStepPattern())

Examples

data("example_gcode_parsed") # Parsed gcode
data("example_mtc_device_3") # MTCDevice object of actual log data
simulated_gcode_data = na.omit(simulate_data_from_gcode(example_gcode_parsed, start_time = 0, data_res = 0.1, data_type = "HH"))
mtc_device_sim = create_mtc_device_from_ts(simulated_gcode_data)
mtc_sim_mapped = map_gcode_mtc(mtc_device_sim, example_mtc_device_3, elasticity = 200)
merge,MTCCycle,character-method

Merge all data items from the MTCCycle or MTCDevice

Description
Merge all data items from the MTCCycle or MTCDevice

Usage
S4 method for signature 'MTCCycle,ANY'
merge(x)

Arguments
x Object of MTCCycle or MTCDevice Class

Examples
data("example_mtc_device")
merge(example_mtc_device)

merge,MTCCycle,character-method

Merge one or more data items from the MTCCycle or MTCDevice using a character pattern

Description
Merge one or more data items from the MTCCycle or MTCDevice using a character pattern

Usage
S4 method for signature 'MTCCycle,character'
merge(x, y)

Arguments
x Object of MTCCycle or MTCDevice Class
y Regex for picking data items which has to be merged

Examples
data("example_mtc_device")
merge(example_mtc_device, "POSIT")
merge,MTCCycle,numeric-method

Merge one or more data items from the MTCCycle or MTCDevice using an index

Description

Merge one or more data items from the MTCCycle or MTCDevice using an index

Usage

```r
## S4 method for signature 'MTCCycle,numeric'
merge(x, y)
```

Arguments

- `x`: Object of MTCCycle or MTCDevice Class
- `y`: Numeric index/indices of the data items to be merged

Examples

```r
data("example_mtc_device")
merge(example_mtc_device, 1)
```

mergeTS

Merges all the data.frames in the list into single data.frame

Description

Merges all the data.frames in the list into single data.frame

Usage

```r
mergeTS(DF_list, output_DF = T, use_list_names = F,
additional_ts = .POSIXct(integer(0)), ignore_tz = F)
```

Arguments

- `DF_list`: is a list of data.frames. Each data.frame should be of type timestamp|value1|value2...
- `output_DF`: if TRUE, then returns output in the form of data.frame instead of data.table
- `use_list_names`: if TRUE, the names of the list are assigned the columns names
- `additional_ts`: an POSIXct vector of timestamps which needs to be added into the table. The values are repeated from the previous timestamp
- `ignore_tz`: timezone error is ignored.
Examples

```r
data("example_mtc_device")
mtc_device = merge(example_mtc_device)
df_1 = mtc_device[seq(1,17,2),]
df_2 = mtc_device[seq(2,17,2),]
merged_df = mergeTS(list(df_1,df_2))
```

MTCCycle-class

An S4 class to represent the different data items of a device

Description

An S4 class to represent the different data items of a device

Slots

- **data_item_list**: List of data items with data (data.frame of timestamp, value), data_type, path, dataSource, xmlID
- **device_uuid**: UUID of the device

MTCDriver-class

An S4 class to represent a device. It contains MTCCycle class and the slots below.

Description

An S4 class to represent a device. It contains MTCCycle class and the slots below.

Slots

- **rawdata**: Delimited MTC data (parsed from the file using which the data was created)
- **metadata**: Metadata (if any about) the device

Examples

```r
data('example_mtc_data_item')
example_mtc_data_item
```
mtconnectR: A package to read analyze data in the 'MTConnect' standard

Description
You can use the package to read data from historical 'MTConnect logs' along with the 'devices.xml' describing the device. The data is organised into a 'MTConnectDevice' S4 data structure and some convenience methods are also provided for basic read/view operations. The package also includes some functions for analysis of MTConnect data. This includes functions to simulate data (primarily position data, feed rate and velocities) based on the G code and visualisation functions to compare the actual and simulated data.

mtconnectR functions are divided into two categories
- Functions to read XML and log data
- Functions read Gcode and simulate data and visualize actual and simulated data of some analysis and visualization functions

parse_devicexml_for_a_device
Parse XML file for given device name

Description
Get all the info on a particular device present in the XML Returns a list of parsed_xml,device_details and mtconnect_version

Usage
parse_devicexml_for_a_device(file_path_xml, device_name, mtconnect_version = NULL)

Arguments
- file_path_xml: File path of the XML file
- device_name: Name of the device to be searched in the XML
- mtconnect_version: Version number of mtconnect standard

Examples

```r
file_path_xml = "testdata/dataExtraction/test_devices.xml"
device_name = "test_device"
parsed_device_xml = parse_devicexml_for_a_device(file_path_xml, package = "mtconnectR"),device_name)
```
parse_gcode

Read the gcode and translate it as per the dictionary

Description

Returns a data frame with each row referring to a block of G-code

Usage

```
parse_gcode(gcode_file_path)
```

Arguments

- `gcode_file_path`

 Directory path of the file containing G-code

Examples

```
gcode_file_path = "extdata/raw_gcode_sample.NC"
gcode_parsed = parse_gcode(system.file(gcode_file_path, package = "mtconnectR"))
```

plot_twoway

To plot the mapping between the simulated and actual versions

Description

This function is a wrapper around the dtwPlotTwoWay from the dtw package in R.

Usage

```
plot_twoway(mtc_sim_mapped, mtc_device_sim, mtc_device, offset = 100,
            total_maps = 50, mtc_map_string = "path_pos_x",
            sim_map_string = "x_pos")
```

Arguments

- `mtc_sim_mapped` is the mapping between simulated and actual data
- `mtc_device_sim` is the simulated data
- `mtc_device` is the actual log data
- `offset` is the amount by which the simulated data is shifted in the y axis
- `total_maps` is the number of mapping line segment between the two plots
- `mtc_map_string` is the name of the data item to match in the actual data
- `sim_map_string` is the name of the data item to match in the simulated data
Details

In our case, this function can be used to compare the variation of a single variable in the simulated and actual data. The simulated and actual data are represented on the same y axis with the time representing the x axis. An offset is provided to the simulated data to easily distinguish the two. Data points that are mapped to each other are connected by a line segment between the two graphs.

Examples

```r
data("example_mtc_device_3")  # MTCDevice object of actual log data
data("example_mtc_device_sim") # Simulated gcode
data("example_mtc_sim_mapped") # Mapping between simulated and actual data
mapping_ggplot = plot_twoWay(example_mtc_sim_mapped, example_mtc_device_sim, example_mtc_device_3, offset = 20, total_maps = 100)
```

read_dmtcd_file

Function to load Log data into R as a data.frame

Description

Function to load Log data into R as a data.frame

Usage

```r
read_dmtcd_file(file_path_dmtcd, condition_names = c(),
                 path_position_names = c())
```

Arguments

- `file_path_dmtcd`
 Path to the file containing log data
- `condition_names`
 A character string with the names of the data items that represent the conditions in the log data
- `path_position_names`
 A character string with the names of the data items that represent the path_position data items

Examples

```r
device_name = "test_device"
file_path_xml = "testdata/dataExtraction/test_devices.xml"
xpath_info = get_xpaths_from_xml(system.file(file_path_xml, package = "mtconnectR"), device_name)
```
simulate_data_from_gcode

Simulate position, velocity and other data from G-code

Description

Reads parsed gcode and returns simulated data

Usage

```r
simulate_data_from_gcode(gcode_parsed, start_time = 0, data_res = 0.2,
data_type = "ISO")
```

Arguments

- `gcode_parsed`: Parsed gcode
- `start_time`: Starting time (default 0)
- `data_res`: Resolution for occurrence of a new data point. (seconds)
- `data_type`: Data type

Examples

```r
data("example_gcode_parsed")
simulated_data_from_gcode <- simulate_data_from_gcode(example_gcode_parsed, start_time = 0,
data_res = 0.2, data_type = "HH")
```
Index

*Topic datasets
 example_dmtcd, 7
 example_gcode_parsed, 8
 exampleMapped_plot, 8
 example_mtc_data_item, 9
 example_mtc_device, 9
 example_mtc_device_2, 10
 example_mtc_device_3, 10
 example_mtc_device_sim, 11
 example_mtc_sim_mapped, 11
 example_parsed_device_xml, 12
 example_simulated_gcode_data, 12
 example_xpath_info, 13
 add_data_item_to_mtc_device, 3
 calculated_feed_from_position, 4
 clean_redundant_rows, 4
 convert_interval_to_ts, 5, 6
 convert_ts_to_interval, 5, 5
 create_mtc_device_from_dmtcd, 6
 create_mtc_device_from_ts, 7
 example_dmtcd, 7
 example_gcode_parsed, 8
 exampleMapped_plot, 8
 example_mtc_data_item, 9
 example_mtc_device, 9
 example_mtc_device_2, 10
 example_mtc_device_3, 10
 example_mtc_device_sim, 11
 example_mtc_sim_mapped, 11
 example_parsed_device_xml, 12
 example_simulated_gcode_data, 12
 example_xpath_info, 13
 extract_param_from_xpath, 13
 filter_timestamps_mtc_device, 14
 get_device_info_from_xml, 6, 19, 20
 get_xpaths_from_xml, 19, 20
 getData, 15
 getData, MTCCycle-method, 15
 getData, MTCDataItem-method, 16
 getItem, 16
 getItem, MTCCycle, ANY-method, 17
 getItem, MTCCycle, character-method, 17
 getItem, MTCCycle, numeric-method, 18
 getMetaData, 18
 getMetaData, MTCDataItem-method, 19
 grep_subset, 20
 map_gcode_mtc, 21
 merge, MTCCycle, ANY-method, 22
 merge, MTCCycle, character-method, 22
 merge, MTCCycle, numeric-method, 23
 mergeTS, 23
 MTCCycle-class, 24
 MTCDevice-class, 24
 mconnectR, 25
 mconnectR-package (mconnectR), 25
 parse_device_xml_for_a_device, 25
 parse_gcode, 26
 plot_twoway, 26
 read_dmtcd_file, 27
 simulate_data_from_gcode, 28