Package ‘mudens’

October 30, 2018

Type Package
Title Density Estimate
Version 1.3.2
Date 2018-10-9
Author Dick Herrick, Hans-Georg Mueller, Dan Serachitopal, Liangcai Zhang, Kenneth R. Hess
Description Compute a density estimate from a vector of right-censored survival time using kernel functions.
Maintainer Kenneth R. Hess <khess@mdanderson.org>
Imports survival, Rcpp
RoxygenNote 6.1.0
License GPL (>= 2)
LinkingTo Rcpp
NeedsCompilation yes
Suggests testthat
Encoding UTF-8
Repository CRAN
Date/Publication 2018-10-30 16:20:11 UTC

R topics documented:

kernden . 2
lines.mudens . 3
mudens . 4
plot.mudens . 6
summary.mudens . 7

Index 9
Calculate global bandwidth kernel estimates of density function

Description

Estimates global bandwidth kernel from right-censored data using the Epanechnikov kernel described in Silverman BW (1986).

Usage

kernden(timesL statusL estgridL bandwidth)

Arguments

times A vector of survival times. It does not need to be sorted.
status A vector indicating censoring: 0 - censored (alive), 1 - uncensored (dead). If status is missing, all the observations are assumed uncensored.
estgrid A vector of time points at which the estimation will be made.
bandwidth Bandwidth used to determine the degree of smoothing. Larger values of bandwidth will result in smoother of mean estimates. It is suggested to start with a value of approximately 20% of the range of the survival times.

Details

Calculate global bandwidth kernel estimates of density function for survival times

Value

Returns an object containing the time points of estimations (estgrid) and corresponding density estimates (denest).

Author(s)

R. Herrick and Dan Serachitopol

References

lines.mudens

Plots estimated density function from an object of class 'mudens'.

Description

Add connected segments to a plot of estimated density function from an object of class 'mudens'.

Usage

S3 method for class 'mudens'
lines(x,...)

Arguments

x Object of class mudens (output from calling mudens function)
...
Additional arguments for basic lines(.) function to be passed along.

Details

Plots estimated density function from an object of class 'mudens'.

Plots estimated density function from an object of class 'mudens'. Default time limits are those provided to mudens, which default to zero and the max observed time. Default y-axis limits are 0 and the maximum estimated density.

Author(s)

Kenneth R. Hess

References

See Also

mudens

Description

Estimate density function from a vector of right-censored survival times using kernel functions. Options include three types of bandwidth functions, three types of boundary correction, and four shapes for the kernel function. Uses the global and local bandwidth selection algorithms and the boundary kernel formulations described in Mueller and Wang (1994). The nearest neighbor bandwidth formulation is based on that described in Gefeller and Dette (1992). The statistical properties of many of these estimators are reported and compared in Hess et al. The `mudens(.)` function is an R wrapper around C code and returns an object of class 'mudens' based on the density estimation in the HADES program developed by H.G. Mueller.

Usage

```r
mudens(times, delta, subset, min.time, max.time, bw.grid, bw.pilot,
        bw.smooth, bw.method="local", b.cor="both", n.min.grid=51,
        n.est.grid = 101, kern="epanechnikov")
```

Arguments

- **times**: A vector of survival times. It does not need to be sorted.
- **delta**: A vector indicating censoring: 0 - censored (alive), 1 - uncensored (dead). If delta is missing, all the observations are assumed uncensored.
- **subset**: A logical vector indicating the observations used in analysis. TRUE - observation is used, FALSE - observation is not used. If missing, all the observations will be used.
- **min.time**: Left bound of the time domain used in analysis. If missing, min.time is set to 0.
- **max.time**: Right bound of the time domain used in analysis. If missing, max.time is the maximum value of times.
- **bw.grid**: Bandwidth grid used in the MSE minimization. If bw.method="global" and bw.grid has one component only, no MSE minimization is performed. The hazard estimates are computed for the value of bw.grid. If bw.grid is missing, then a bandwidth grid of 21 components is built, having as bounds: [0.2*bw.pilot, 20*bw.pilot]
- **bw.pilot**: Pilot bandwidth used in the MSE minimization. If missing, the default value is the one recommended by Mueller and Wang (1994):

 \[
 \text{bw.pilot} = (\text{max.time} - \text{min.time})/(8*\text{nz}^0.2),
 \]

 where nz is the number of uncensored observations.
- **bw.smooth**: Bandwidth used in smoothing the local bandwidths. Not used if bw.method="global". If missing: bw.smooth=5*bw.pilot.
bw.method
Algorithm to be used. Possible values are: "global" - same bandwidth for all grid points. In this case, the optimal bandwidth is obtained by minimizing the IMSE. "local" - different bandwidths at each grid point, and the optimal bandwidth at a grid point is obtained by minimizing the local MSE. "knn" - k nearest neighbors distance bandwidth, and the optimal number of neighbors is obtained by minimizing the IMSE. Note: The default value is "local". Only the first letter needs to be given (e.g. "g", instead of "global").

b.cor
Boundary correction type. Possible values are: "none" - no boundary correction, "left" - left only correction, "both" - left and right corrections. The default value is set to "both". Only the first letter needs to be given (e.g. b.cor="n").

n.min.grid
Number of points in the minimization grid. This value greatly influences the computing time. Default value is 51.

n.est.grid
Number of points in the estimation grid, where hazard estimates are computed. Default value is 101.

kern
Boundary kernel function to be used. Possible values are: "rectangle", "epanechnikov", "biquadratic", "triangular". The default value is "epanechnikov". Only the first letter needs to be given (e.g. kern="b").

Details

Estimate density function from a vector of right-censored survival times.

The mudens object contains a list of the input data and parameter values as well as a variety of output data. The density function estimate is contained in the haz.est element and the corresponding time points are in est.grid. The unsmoothed and smoothed local bandwidths are in bw.loc and bw.loc.sm, respectively.

When setting bw.method='local' or 'knn', to check the shape of the bandwidth function used in the estimation, use plot(fitpinmin.grid, fit$bw.loc) to plot the unsmoothed bandwidths and use lines(fit$est.grid, fit$bw.loc.sm) to superimpose the smoothed bandwidth function. We can also use bw.smooth to change the amount of smoothing used on the bandwidth function.

For bw.method='global', use plot(fit$bw.grid, fit$globlmse) to check the minimization process, and plot the estimated IMSE values over the bandwidth search grid; while for bw.method='k', use plot(fit$k.grid, fit$k.imse).

You may want to repeat the search using a finer grid over a shorter interval to fine-tune the optimization or if the observed minimum is at the extreme of the grid you should specify a different grid.

Value

Returns an object of class `mudens`, containing input and output values. Methods working on such an object are: plot, lines, summary. For a detailed description of its components, see `object.mudens` in the mudens package.

Author(s)

Kenneth R. Hess
References

Examples

time <- rexp(1000)
stat <- sample(c(0,1), 1000, 0.5)
fit <- mudens(time, stat)
summary(fit)

plot.mudens

Plots estimated density function from an object of class ‘mudens’.

Description

Plot estimated density function from an object of class ‘mudens’.

Usage

S3 method for class 'mudens'
plot(x,...)

Arguments

x Object of class mudens (output from calling mudens function)
... Additional arguments of basic plot(.) function to be passed along.

Details

Plots estimated density function from an object of class ‘mudens’.

Default time limits are those provided to mudens, which default to zero and the time corresponding to the maximum value of the times. Default y-axis limits are 0 and the maximum estimated density.

Author(s)

Kenneth R. Hess

References

summary.mudens

See Also
mudens

summary.mudens

Display the most important input parameters used in calling the 'mudens' function

Description
It also displays some of the output data. Common to all three methods: (1) number of observations, (2) number of censored observations, (3) bandwidth method used (global, local or nearest neighbor), (4) boundary correction type (none, left only, both left and right), (5) kernel type (rectangle, Epanechnikov, biquadratic, triquadratic), (6) minimum time, (7) maximum time, (8) number of points in MSE minimization grid, (9) number of points in estimation grid, (10) pilot bandwidth, (11) estimated IMSE for optimal bandwidth.

This function will also report the following two results for different selections of methods: (12) Smoothing Bandwidth and (13) Optimal Number of Nearest Neighbor. If \texttt{bw.method}="global", this function will display the optimal global bandwidth. If \texttt{bw.method}="knn", it will show optimal number of nearest neighbors. If \texttt{bw.method="local"} and \texttt{bw.method="knn"}, the summary result will include the smoothing bandwidth used to smooth the optimal local bandwidths.

Usage

S3 method for class 'mudens'
summary(object, ...)

Arguments

object object of class mudens (output from calling mudens(.) function)

... Additional arguments to be passed along.

Details
Display the most important input parameters used in calling the 'mudens' function

Value
The summary result for mudens estimation

Author(s)
Kenneth R. Hess

References
See Also

mudens
Index

kernden, 2
lines.mudens, 3
mudens, 3, 4, 7, 8
plot.mudens, 6
summary.mudens, 7