Package ‘muhaz’

October 13, 2022

Description Produces a smooth estimate of the hazard function for censored data.

Version 1.2.6.4

Author S original by Kenneth Hess,
 R port by R. Gentleman

Title Hazard Function Estimation in Survival Analysis

Depends R(>= 2.3)

Imports survival

License GPL

Maintainer David Winsemius <dwinsemius@comcast.net>

Repository CRAN

Date/Publication 2021-04-21 10:43:31 UTC

NeedsCompilation yes

R topics documented:

kphaz.fit ... 2
kphaz.plot .. 3
muhaz .. 4
muhaz.object ... 6
pehaz .. 8
pehaz.object ... 9
plot.muhaz ... 9
plot.pehaz .. 10
print.pehaz ... 11
summary.muhaz ... 11

Index 13
Description

Calculates Kaplan-Meier type hazard estimates.

Usage

kphaz.fit(time,status,strata,q=1,method="nelson")

Arguments

time A vector of time values; all values must be greater than or equal to zero. Missing values (NAs) are not allowed.
status A vector of status values. The values are 0 for censored or 1 for uncensored (dead). Missing values (NAs) are not allowed. Must have the same length as time.
strata An optional vector that will be used to divide the subjects into disjoint groups. Each group generates a hazard curve. If missing, all subjects are assumed to be in the same strata. Missing values (NAs) are allowed.
q Number of failure times combined for estimating the hazard at their midpoint. Default is 1.
method Type of hazard estimation made. Must be one of "nelson" or "product-limit". The default is "nelson".

Details

Let

\[t[1] < t[2] < \cdots < t[m] \]

denote the \(m \) "distinct" death times.

1. Estimate the cumulative hazard, \(H[t[j]] \), and the variance of the cumulative hazard, \(\text{Var}(H[t[j]]) \), at each of the \(m \) distinct death times according to the method selected.
 a. For the "nelson" method:

 \[
 H[t[j]] = \text{sum}(t[i] <= t[j])status[i]/(n - i + 1)
 \]
 \[
 \text{Var}(H[t[j]]) = \sum(t[i] <= t[j])status[i]/((n - i + 1)^2)
 \]

 b. For the "product-limit" method:

 \[
 H[t[j]] = \text{sum}(t[i] <= t[j]) - \log(1 - status[i]/(n - i + 1))
 \]
 \[
 \text{Var}(H[t[j]]) = \text{sum}(t[i] <= t[j])status[i]/((n - i + 1) * (n - i))
 \]
2. For k=1,\ldots,(m-q), define the hazard estimate and variance at time[k] = (t[q+j]+t[j])/2 to be
\[
\text{haz}[\text{time}[k]] = (H[t[q + j]] - H[t[j]])/(t[q + j] - t[j])
\]
\[
\text{var}[\text{time}[k]] = (\text{Var}(H[t[q + j]]) - \text{Var}(H[t[j]]))/(t[q + j] - t[j])^2
\]

Note that if the final time is a death time rather than a censoring time, the "product-limit" estimate will be Inf for the final hazard and variance estimates.

Value

A list representing the results of the hazard estimation, with the following components:

- **time**: A vector containing the times at which hazard estimations were made.
- **haz**: A vector containing the hazard estimate at each time.
- **var**: A vector containing variance estimates for each hazard estimate.
- **strata**: A vector which divides the hazard estimate into disjoint groups. This vector is returned only if 'strata' is defined when 'kphaz.fit' is called.

References

See Also

`kphaz.plot`

Examples

```r
  time <- 1:10
  status <- rep(1,10)
  kphaz.fit(time,status)
```

```r
  kphaz.plot
```

Description

Plots a Kaplan-Meier type hazard estimate.

Usage

```r
  kphaz.plot(fit, ...)
```

Arguments

- **fit**: A list representing the results of a call to "kphaz.fit".
- **...**: Any legal argument for the plot function.
Side Effects

A plot with multiple hazard curves. One for each unique strata with 1 or more point.

See Also

kphaz.fit

Examples

Use "kphaz.fit" to generate a hazard estimate
data(cancer, package="survival")
attach(ovarian)
kpfit <- kphaz.fit(futime, fustat)
Use "kphaz.plot" to plot the estimate
kphaz.plot(kpfit)

muhaz

Estimate hazard function from right-censored data.

Description

Estimates the hazard function from right-censored data using kernel-based methods. Options include three types of bandwidth functions, three types of boundary correction, and four shapes for the kernel function. Uses the global and local bandwidth selection algorithms and the boundary kernel formulations described in Mueller and Wang (1994). The nearest neighbor bandwidth formulation is based on that described in Gefeller and Dette (1992). The statistical properties of many of these estimators are reported and compared in Hess et al (1999). Based on the HADES program developed by H.G. Mueller. Returns an object of class 'muhaz.' NOTE: For comparison to the smoothed hazard function estimates, we have also made available a set of functions based on piecewise exponential estimation. These estimates are similar in concept to the histogram estimator of the density function. They give a feel for the features of the data without the manipulations involved in smoothing. They also help to confirm that muhaz is generating realistic estimates of the underlying hazard function. These functions are called: pehaz, plot.pehaz, lines.pehaz, print.pehaz.

Usage

muhaz(times, delta, subset, min.time, max.time, bw.grid, bw.pilot,
bw.smooth, bw.method="local", b.cor="both", n.min.grid=51,
n.est.grid=101, kern="epanechnikov")

Arguments

times Vector of survival times. Does not need to be sorted.
delta Vector indicating censoring 0 - censored (alive) 1 - uncensored (dead) If delta is missing, all the observations are assumed uncensored.
subset Logical vector, indicating the observations used in analysis. T - observation is used F - observation is not used If missing, all the observations will be used.
min.time Left bound of the time domain used in analysis. If missing, min.time is considered 0.
max.time Right bound of the time domain used in analysis. If missing, max.time is the
time at which ten patients remain at risk.
bw.grid Bandwidth grid used in the MSE minimization. If bw.method= ”global” and
bw.grid has one component only, no MSE minimization is performed. The hazard
estimates are computed for the value of bw.grid. If bw.grid is missing, then
a bandwidth grid of 21 components is built, having as bounds:

\[
[0.2 \times \text{bw.pilot}, 20 \times \text{bw.pilot}]
\]

bw.pilot Pilot bandwidth used in the MSE minimization. If missing, the default value is
the one recommended by Mueller and Wang (1994):

\[
\text{bw.pilot} = (\text{max.time} - \text{min.time})/(8 \times \text{nz}^{0.2})
\]

where nz is the number of uncensored observations
bw.smooth Bandwidth used in smoothing the local bandwidths. Not used if bw.method= ”global”
If missing:

\[
\text{bw.smooth} = 5 \times \text{bw.pilot}
\]
bw.method Algorithm to be used. Possible values are: "global" - same bandwidth for all grid
points. The optimal bandwidth is obtained by minimizing the IMSE. "local" -
different bandwidths at each grid point. The optimal bandwidth at a grid point
is obtained by minimizing the local MSE. "knn" - k nearest neighbors distance
bandwidth. The optimal number of neighbors is obtained by minimizing the
IMSE. Default value is "local". Only the first letter needs to be given (e.g. "g",
instead of "global").
b.cor Boundary correction type. Possible values are: "none" - no boundary correction
"left" - left only correction "both" - left and right corrections Default value is
"both". Only the first letter needs to be given (e.g. b.cor="n").
n.min.grid Number of points in the minimization grid. This value greatly influences the
computing time. Default value is 51.
n.est.grid Number of points in the estimation grid, where hazard estimates are computed.
Default value is 101.
kern Boundary kernel function to be used. Possible values are: "rectangle", "epanechnikov",
"biquadratic", "triquadratic". Default value is "epanechnikov". Only the
first letter needs to be given (e.g. kern="b").

Details

The muhaz object contains a list of the input data and parameter values as well as a variety of
output data. The hazard function estimate is contained in the haz.est element and the corresponding
time points are in est.grid. The unsmoothed local bandwidths are in bw.loc and the smoothed local
bandwidths are in bw.loc.sm.

For bw.method = 'local' or 'knn', to check the shape of the bandwidth function used in the esti-
mation, use plot(fitpinmin.grid, fit$bw.loc) to plot the unsmoothed bandwidths and use
lines(fit$est.grid, fit$bw.loc.sm) to superimpose the smoothed bandwidth function. Use bw.smooth to change the amount of smoothing used on the bandwidth function.

For bw.method='global', to check the minimization process, plot the estimated IMSE values over the bandwidth search grid. Use plot(fit$bw.grid, fit$globlmse). Use k.grid and k.imse for bw.method='k'. You may want to repeat the search using a finer grid over a shorter interval to fine-tune the optimization or if the observed minimum is at the extreme of the grid you should specify a different grid.

Value

Returns an object of class 'muhaz', containing input and output values. Methods working on such an object are: plot, lines, summary. For a detailed description of its components, see object.muhaz.

References

See Also

summary.muhaz, plot.muhaz, lines.muhaz, muhaz.object

Examples

to compute a locally optimal estimate
data(cancer, package="survival")attach(ovarian)fit1 <- muhaz(futime, fustat)plot(fit1)summary(fit1)# to compute a globally optimal estimatefit2 <- muhaz(futime, fustat, bw.method="g")# to compute an estimate with global bandwidth set to 5fit3 <- muhaz(futime, fustat, bw.method="g", bw.grid=5)
Arguments

- **pin.common**: list containing the input parameters. Its components are:
 - `times`: the survival times vector
 - `delta`: the censoring vector
 - `nobs`: the number of observations
 - `min.time`: the minimum time used in analysis
 - `max.time`: the maximum time used in analysis
 - `n.min.grid`: number of points in the minimization grid
 - `min.grid`: the minimization grid
 - `n.est.grid`: number of points in the estimation grid
 - `bw.pilot`: the pilot bandwidth
 - `bw.smooth`: the smoothing bandwidth for the local optimal bandwidths
 - `bw.method`: the method used to estimate the hazard rates
 - `b.cor`: boundary correction used
 - `kernel.type`: kernel function used in the smoothing

- **est.grid**: the estimation grid where the hazard rates are computed.

- **haz.est**: the hazard estimates calculated at the estimation grid points.

- **imse.opt**: IMSE for the optimal bandwidth.

- **bw.glob**: optimal global bandwidth. For `bw.method="global"` only.

- **glob.imse**: vector of IMSE, computed at each point in `bw.grid`. For `bw.method="global"` only.

- **bw.grid**: Grid of bandwidth values used in the minimization. For `bw.method="global"` or `"local"`.

- **bw.loc**: vector of optimal local bandwidths computed by minimizing the MSE at each point in the minimization grid. Not used for `bw.method="local"`.

- **bw.loc.sm**: vector of smoothed local bandwidths, computed at each point in the estimation grid by smoothing `bw.loc` using `bw.smooth` as the smoothing bandwidth. Not used for `bw.method="global"`.

- **bias.min**: vector of minimized bias, computed at each point in the minimization grid for the optimal local bandwidth. For `bw.method="local"` only.

- **var.min**: vector of minimized variance, computed at each point in the minimization grid for the optimal local bandwidth. For `bw.method="local"` only.

- **k.grid**: grid of nearest neighbor numbers used in the minimization. For `bw.method="knn"` only.

- **k.imse**: vector of IMSE, computed at each of the points of `k.grid`. For `bw.method="knn"` only.

- **k.opt**: optimum number of nearest neighbors. For `bw.method="knn"` only.

METHODS

Objects of this class have methods for the functions `summary`, `plot`, and `lines`.

STRUCTURE

Common components of a muhaz object:

See Also

- `muhaz`, `plot.muhaz`, `summary.muhaz`.
pehaz Estimates piecewise exponential hazard function from right-censored data.

Description

Divides the time domain into bins of equal width, and then estimates the hazard in each bin as the number of events in that bin divided by the total follow-up time in that bin.

Usage

pehaz(times, delta=NA, width=NA, min.time=0, max.time=NA)

Arguments

times Vector of survival times. Does not need to be sorted.
delta Vector indicating censoring 0 - censored (alive) 1 - uncensored (dead) If status is missing, all observations are assumed uncensored.
width Bin width. Default value is that recommended by Mueller, $width = \frac{(max.time - min.time)}{(8 * (nu)^{0.2})}$ where nu is the number of uncensored observations.
min.time Left bound of the time domain used in the analysis. If missing, min.time is considered 0.
max.time Right bound of the time domain used in the analysis. If missing, max.time is considered max(times).

Value

Returns an object of class 'pehaz', containing input and output values. Methods working on such an object are: plot, lines, print. For a detailed description of its components, see object.pehaz.

See Also

pehaz.object

Examples

data(cancer, package="survival")
attach(ovarian)
fit <- pehaz(futime, fustat)
plot(fit)
Estimated Piecewise Exponential Hazard Rate Object

Description

This class of objects is returned by `pehaz`, which estimates the hazard function from censored data.

METHODS

Objects of this class have methods for the functions `summary`, `plot`, and `lines`.

STRUCTURE

Common components of a `pehaz` object:

- **call**: the call to `pehaz`
- **Width**: the width of the bins
- **Cuts**: the cutpoints used for the bins
- **Hazard**: the estimated hazard for each bin
- **Events**: the number of events in each bin
- **At.Risk**: the number at risk in each bin
- **F.U.Time**: the followup time (for the bin?)

See Also

- `pehaz`

plots.muhaz

Plots estimated hazard function from an object of class `muhaz`.

Description

Default time limits are those provided to `muhaz`, which default to zero and the time corresponding to when ten patients remain at risk. Default y-axis limits are 0 and the maximum estimated hazard rate. Additional lines can be added to the same set of axes using the `lines` method.

Usage

```r
## S3 method for class 'muhaz'
plot(x, ylim, type, xlab, ylab, ...)
## S3 method for class 'muhaz'
lines(x, ...)
```
Arguments

- **x**: Object of class `muhaz` (output from calling `muhaz` function)
- **ylim**: Limits for the y axis.
- **type**: Type argument for `plot`.
- **xlab**: Label for the x axis.
- **ylab**: Label for the y axis.
- **...**: Additional arguments to be passed along.

See Also

- `muhaz`

plot.pehaz

Plot a pehaz object.

Description

A plot of the pehaz object is produced on the current device. If `lines.pehaz` was called then the estimated curve is added to the current plot.

Usage

```r
## S3 method for class 'pehaz'
plot(x, xlab="Time", ylab="Hazard Rate", ...)  
## S3 method for class 'pehaz'
lines(x, lty=2, ...)
```

Arguments

- **x**: A pehaz object.
- **xlab**: The x-axis label.
- **ylab**: The y-axis label.
- **lty**: The line type to use when plotting.
- **...**: Other graphical parameters, passed to `plot`

Value

No value is returned, the object is plotted on the active device.

See Also

- `pehaz.object`
Examples

```r
data(cancer, package="survival")
attach(ovarian)
fit <- pehaz(futime, fustat)
plot(fit)
```

Description

The pehaz object is printed.

Usage

```r
## S3 method for class 'pehaz'
print(x, ...)
```

Arguments

- `x` An object of class pehaz.
- `...` Ignored.

Value

No value is returned. `x` is printed.

See Also

- `pehaz.object`

summary.muhaz

Display the most important input parameters used in calling the ‘muhaz’ function.

Description

It also displays some of the output data. Common to all three methods: * number of observations * number of censored observations * bandwidth method used (global, local or nearest neighbor) * boundary correction type (none, left only, both left and right) * kernel type (rectangle, Epanechnikov, biquadratic, triquadratic) * minimum time * maximum time * number of points in MSE minimization grid * number of points in estimation grid * pilot bandwidth * estimated IMSE for optimal bandwidth For bw.method="global" also reports optimal global bandwidth. For bw.method="knn" also reports optimal number of nearest neighbors. For bw.method="local" and bw.method="knn" also reports smoothing bandwidth used to smooth the optimal local bandwidths.
Usage

```r
## S3 method for class 'muhaz'
summary(object, ...)
```

Arguments

- `object` Object of class `muhaz` (output from calling `muhaz` function)
- `...` Ignored for now.

See Also

- `muhaz`, `muhaz.object`

Examples

```r
data(cancer, package="survival")
attach(ovarian)
fit <- muhaz(futime, fustat)
summary(fit)
```
Index

* smooth
 muhaz, 4

* survival
 kphaz.fit, 2
 kphaz.plot, 3
 muhaz, 4
 muhaz.object, 6
 pehaz, 8
 pehaz.object, 9
 plot.muhaz, 9
 plot.pehaz, 10
 print.pehaz, 11
 summary.muhaz, 11

kphaz.fit, 2, 4
kphaz.plot, 3, 3

lines.muhaz (plot.muhaz), 9
lines.pehaz (plot.pehaz), 10

muhaz, 4, 7, 10, 12
muhaz.object, 6, 12

pehaz, 8, 9
pehaz.object, 8, 9, 10, 11
plot.muhaz, 7, 9
plot.pehaz, 10
print.pehaz, 11

summary.muhaz, 7, 11