Package ‘multiROC’

October 13, 2022

Title Calculating and Visualizing ROC and PR Curves Across Multi-Class Classifications

Version 1.1.1

Description

License GPL-3

Encoding UTF-8

LazyData true

Imports zoo, magrittr, boot, stats

Suggests dplyr, ggplot2

NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-26 20:24:05 UTC

RoxygenNote 6.0.1.9000

Author Runmin Wei [aut, cre], Jingye Wang [aut], Wei Jia [ctb]

Maintainer Runmin Wei <runmin@hawaii.edu>

R topics documented:

cal_auc ... 2
cal_confus .. 3
multi_pr .. 4
multi_roc ... 5
cal_auc

Area under ROC curve

Description

This function calculates the area under ROC curve

Usage

cal_auc(X, Y)

Arguments

X A vector of true positive rate
Y A vector of false positive rate, same length with TPR

Details

This function calculates the area under ROC curve.

Value

A numeric value of AUC will be returned.

References

https://www.r-bloggers.com/calculating-auc-the-area-under-a-roc-curve/

See Also

cal_confus()

Examples

data(test_data)
true_vec <- test_data[, 1]
pred_vec <- test_data[, 5]
confus_res <- cal_confus(true_vec, pred_vec)
AUC_res <- cal_auc(confus_res$TPR, confus_res$FPR)
Description
This function calculates the confusion matrices across different cutoff points.

Usage
\[
\text{cal_confus(true_vec, pred_vec, force_diag=TRUE)}
\]

Arguments
- `true_vec`: A binary vector of real labels
- `pred_vec`: A continuous predicted score(probabilities) vector, must be the same length with `true_vec`
- `force_diag`: If TRUE, TPR and FPR will be forced to across (0, 0) and (1, 1)

Details
This function calculates the TP, FP, FN, TN, TPR, FPR and PPV across different cutoff points of `pred_vec`. TPR and FPR are forced to across (0, 0) and (1, 1) if `force_diag=TRUE`.

Value
- TP: True positive
- FP: False positive
- FN: False negative
- TN: True negative
- TPR: True positive rate
- FPR: False positive rate
- PPV: Positive predictive value

References
https://en.wikipedia.org/wiki/Confusion_matrix

Examples
\[
data(test_data)
true_vec <- test_data[, 1]
pred_vec <- test_data[, 5]
confus_res <- cal_confus(true_vec, pred_vec)
\]
multi_pr

Multi-class classification PR

Description

This function calculates the Precision, Recall and AUC of multi-class classifications.

Usage

```
multi_pr(data, force_diag=TRUE)
```

Arguments

- `data`: A data frame contain true labels of multiple groups and corresponding predictive scores.
- `force_diag`: If TRUE, TPR and FPR will be forced to across (0, 0) and (1, 1).

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF), thus this function allows calculating ROC on multiple classifiers.

Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.

Recall, Precision, AUC for each group and each method will be calculated. Macro/Micro-average AUC for all groups and each method will be calculated.

Micro-average ROC/AUC was calculated by stacking all groups together, thus converting the multi-class classification into binary classification. Macro-average ROC/AUC was calculated by averaging all groups results (one vs rest) and linear interpolation was used between points of ROC.

AUC will be calculated using function `cal_auc()`.

Value

- **Recall**: A list of recalls for each group, each method and micro-/macro- average
- **Precision**: A list of precisions for each group, each method and micro-/macro- average
- **AUC**: A list of AUCs for each group, each method and micro-/macro- average
- **Methods**: A vector contains the name of different classifiers
- **Groups**: A vector contains the name of different groups

Examples

```
data(test_data)
pr_test <- multi_pr(test_data)
pr_test$AUC
```
Description

This function calculates the Specificity, Sensitivity and AUC of multi-class classifications.

Usage

\texttt{multi_roc(data, force_diag=TRUE)}

Arguments

\begin{itemize}
\item \texttt{data} \quad A data frame contain true labels of multiple groups and corresponding predictive scores
\item \texttt{force_diag} \quad If TRUE, TPR and FPR will be forced to across (0, 0) and (1, 1)
\end{itemize}

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as \texttt{XX_true} (e.g. \texttt{S1_true}, \texttt{S2_true} and \texttt{S3_true}) and predictive scores (continuous) columns named as \texttt{XX_pred_YY} (e.g. \texttt{S1_pred_SVM}, \texttt{S2_pred_RF}), thus this function allows calculating ROC on multiple classifiers.

Predictive scores could be probabilities among \([0, 1]\) and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.

Specificity, Sensitivity, AUC for each group and each method will be calculated. Macro/Micro-average AUC for all groups and each method will be calculated.

Micro-average ROC/AUC was calculated by stacking all groups together, thus converting the multi-class classification into binary classification. Macro-average ROC/AUC was calculated by averaging all groups results (one vs rest) and linear interpolation was used between points of ROC.

AUC will be calculated using function \texttt{cal_auc()}.

Value

\begin{itemize}
\item \texttt{Specificity} \quad A list of specificities for each group, each method and micro-/macro- average
\item \texttt{Sensitivity} \quad A list of sensitivities for each group, each method and micro-/macro- average
\item \texttt{AUC} \quad A list of AUCs for each group, each method and micro-/macro- average
\item \texttt{Methods} \quad A vector contains the name of different classifiers
\item \texttt{Groups} \quad A vector contains the name of different groups
\end{itemize}

References

\url{http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html}
Examples

```r
data(test_data)
roc_test <- multi_roc(test_data)
roc_test$AUC
```

plot_pr_data

Generate PR plotting data

Description

This function generates plotting PR data for following data visualization.

Usage

```r
plot_pr_data(pr_res)
```

Arguments

- **pr_res**: A list of results from `multi_pr` function.

Value

- **pr_res_df**: The dataframe of results from `multi_pr` function, which is easy be visualized by `ggplot2`.

Examples

```r
data(test_data)
pr_res <- multi_pr(test_data)
pr_res_df <- plot_pr_data(pr_res)
```

plot_roc_data

Generate ROC plotting data

Description

This function generates plotting ROC data for following data visualization.

Usage

```r
plot_roc_data(roc_res)
```

Arguments

- **roc_res**: A list of results from `multi_roc` function.
pr_auc_with_ci

Value
roc_res_df The dataframe of results from multi_roc function, which is easy be visualized by ggplot2.

Examples
data(test_data)
roc_res <- multi_roc(test_data)
roc_res_df <- plot_roc_data(roc_res)

pr_auc_with_ci Output of PR bootstrap confidence intervals

Description
This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of PR-AUC with different required percentages and output a dataframe with AUCs, lower CIs, and higher CIs of all methods and groups.

Usage
pr_auc_with_ci(data, conf = 0.95, type = 'bca', R = 100)

Arguments
data A data frame contains true labels of multiple groups and corresponding predictive scores.
conf A scalar contains the required level of confidence intervals, and the default number is 0.95.
type A vector of character strings includes five different types of equi-tailed two-sided nonparametric confidence intervals (e.g., "norm","basic", "stud", "perc", "bca").
R A scalar contains the number of bootstrap replicates, and the default number is 100.

Details
A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.
Using the normal approximation to calculate the confidence intervals.

Using the basic bootstrap method to calculate the confidence intervals.

Using the studentized bootstrap method to calculate the confidence intervals.

Using the bootstrap percentile method to calculate the confidence intervals.

Using the adjusted bootstrap percentile method to calculate the confidence intervals.

Not run: data(test_data)
pr_auc_with_ci_res <- pr_auc_with_ci(test_data, conf= 0.95, type='bca', R = 100)
End(Not run)

pr_ci

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of PR-AUC with different required percentages.

Usage

pr_ci(data, conf= 0.95, type='basic', R = 100, index = 4)

Arguments

- **data**: A data frame contains true labels of multiple groups and corresponding predictive scores.
- **conf**: A scalar contains the required level of confidence intervals, and the default number is 0.95.
- **type**: A vector of character strings includes five different types of equi-tailed two-sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca", "all").
- **R**: A scalar contains the number of bootstrap replicates, and the default number is 100.
- **index**: A scalar contains the position of the variable of interest.

Details

A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.
roc_auc_with_ci

Value

- **norm**: Using the normal approximation to calculate the confidence intervals.
- **basic**: Using the basic bootstrap method to calculate the confidence intervals.
- **stud**: Using the studentized bootstrap method to calculate the confidence intervals.
- **perc**: Using the bootstrap percentile method to calculate the confidence intervals.
- **bca**: Using the adjusted bootstrap percentile method to calculate the confidence intervals.
- **all**: Using all previous bootstrap methods to calculate the confidence intervals.

Examples

```r
## Not run: data(test_data)
pr_ci_res <- pr_ci(test_data, conf = 0.95, type = 'basic', R = 1000, index = 4)
## End(Not run)
```

roc_auc_with_ci, *Output of ROC bootstrap confidence intervals*

Description

This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of ROC-AUC with different required percentages and output a dataframe with AUCs, lower CIs, and higher CIs of all methods and groups.

Usage

```r
roc_auc_with_ci(data, conf = 0.95, type = 'bca', R = 100)
```

Arguments

- **data**: A data frame contains true labels of multiple groups and corresponding predictive scores.
- **conf**: A scalar contains the required level of confidence intervals, and the default number is 0.95.
- **type**: A vector of character strings includes five different types of equi-tailed two-sided nonparametric confidence intervals (e.g., "norm", "basic", "stud", "perc", "bca").
- **R**: A scalar contains the number of bootstrap replicates, and the default number is 100.
Details
A data frame is required for this function as input. This data frame should contain true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.

Value
- **norm**: Using the normal approximation to calculate the confidence intervals.
- **basic**: Using the basic bootstrap method to calculate the confidence intervals.
- **stud**: Using the studentized bootstrap method to calculate the confidence intervals.
- **perc**: Using the bootstrap percentile method to calculate the confidence intervals.
- **bca**: Using the adjusted bootstrap percentile method to calculate the confidence intervals.

Examples
```r
## Not run: data(test_data)
roc_auc_with_ci_res <- roc_auc_with_ci(test_data, conf = 0.95, type = 'bca', R = 100)
## End(Not run)
```

roc_ci

<table>
<thead>
<tr>
<th>Description</th>
<th>This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of ROC-AUC with different required percentages.</th>
</tr>
</thead>
</table>

Usage
```r
roc_ci(data, conf = 0.95, type = 'basic', R = 100, index = 4)
```

Arguments
- **data**: A data frame contains true labels of multiple groups and corresponding predictive scores.
- **conf**: A scalar contains the required level of confidence intervals, and the default number is 0.95.
- **type**: A vector of character strings includes five different types of equi-tailed two-sided nonparametric confidence intervals (e.g., "norm","basic", "stud", "perc", "bca", "all").
- **R**: A scalar contains the number of bootstrap replicates, and the default number is 100.
- **index**: A scalar contains the position of the variable of interest.
Details

A data frame is required for this function as input. This data frame should contain true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won’t affect results.

Value

- **norm**: Using the normal approximation to calculate the confidence intervals.
- **basic**: Using the basic bootstrap method to calculate the confidence intervals.
- **stud**: Using the studentized bootstrap method to calculate the confidence intervals.
- **perc**: Using the bootstrap percentile method to calculate the confidence intervals.
- **bca**: Using the adjusted bootstrap percentile method to calculate the confidence intervals.
- **all**: Using all previous bootstrap methods to calculate the confidence intervals.

Examples

```r
## Not run: data(test_data)
roc_ci_res <- roc_ci(test_data, conf = 0.95, type = 'basic', R = 1000, index = 4)
## End(Not run)
```

test_data

Example dataset

Description

This example dataset contains two classifiers (m1, m2), and three groups (G1, G2, G3).

Usage

```r
data("test_data")
```

Format

A data frame with 85 observations on the following 9 variables.

- **G1_true**: true labels of G1 (0 - Negative, 1 - Positive)
- **G2_true**: true labels of G2 (0 - Negative, 1 - Positive)
- **G3_true**: true labels of G3 (0 - Negative, 1 - Positive)
- **G1_pred_m1**: predictive scores of G1 in the classifier m1
- **G2_pred_m1**: predictive scores of G2 in the classifier m1
- **G3_pred_m1**: predictive scores of G3 in the classifier m1
G1_pred_m2 predictive scores of G1 in the classifier m2
G2_pred_m2 predictive scores of G2 in the classifier m2
G3_pred_m2 predictive scores of G3 in the classifier m2

Examples

data(test_data)
Index

* cal_auc
 cal_auc, 2
* cal_confus
 cal_confus, 3
* datasets
 test_data, 11
* multi_pr
 multi_pr, 4
* multi_roc
 multi_roc, 5
* plot_pr_data
 plot_pr_data, 6
* plot_roc_data
 plot_roc_data, 6
* pr_auc_with_ci_res
 pr_auc_with_ci, 7
* pr_ci
 pr_ci, 8
* roc_auc_with_ci_res
 roc_auc_with_ci, 9
* roc_ci
 roc_ci, 10

cal_auc, 2
cal_confus, 3
cal_confus(), 2

multi_pr, 4
multi_roc, 5

plot_pr_data, 6
plot_roc_data, 6
pr_auc_with_ci, 7
pr_ci, 8

roc_auc_with_ci, 9
roc_ci, 10

test_data, 11