Package ‘multiUS’

February 16, 2022

Type Package
Title Functions for the Courses Multivariate Analysis and Computer Intensive Methods
Version 1.1.0
Description Provides utility functions for multivariate analysis (factor analysis, discriminant analysis, and others). The package is primary written for the course Multivariate analysis and for the course Computer intensive methods at the masters program of Applied Statistics at University of Ljubljana.
License GPL (>= 2)
Encoding UTF-8
Imports stats, gplots, graphics, MASS
Suggests CCA
RoxygenNote 7.1.2
NeedsCompilation no
Author Žiberna Aleš [aut], Cugmas Marjan [cre, aut], Torgo Luis [cph], Ki-Yeol Kim [cph], Gwan-Su Yi [cph], Liaw Andy [cph], Leisch Friedrich [cph]
Maintainer Cugmas Marjan <marjan.cugmas@fdv.uni-lj.si>
Repository CRAN
Date/Publication 2022-02-16 20:10:02 UTC

R topics documented:

antiImage .. 2
BoxMTest .. 3
cancorPlus ... 4
compLoad .. 5
Description

The function computes anti-image matrix (i.e., with partial correlations on the off-diagonal and with KMO-MSAs on the diagonal) and the overall KMO.

Usage

\[\text{antiImage}(X) \]

Arguments

| \(X \) | A data frame with the values of numerical variables. |

Value

A list with two elements:

- \(\text{AIR} \) - Anti-image matrix.
- \(\text{KMO} \) - Overall KMO.

Author(s)

Marjan Cugmas
BoxMTest

References

Examples

```r
antiImage(X = mtcars[, c(1, 3, 4, 5)])
```

<table>
<thead>
<tr>
<th>BoxMTest</th>
<th>Box's test for equivalence of covariance matrices</th>
</tr>
</thead>
</table>

Description

The function performs Box's test for testing the null hypothesis that two or more covariance matrices are equal.

Usage

```r
BoxMTest(X, cl, alpha = 0.05, test = "any")
```

Arguments

- `X`: A data frame with the values of numerical variables.
- `cl`: An nominal or ordinal variable which defines groups (a partition) (must be of type `factor`).
- `alpha`: Significance level (default `0.05`).
- `test`: Whether the F-test (`test = "F"`) or Chi-square (`test = "ChiSq"`) test should be forced (see Details). In the case of default value any, the test is chosen based on the number of units by groups.

Details

If the size of any group is at least 20 units (sufficiently large), the test takes a Chi-square approximation, otherwise it takes an F approximation.

Value

A list with the following elements:

- `MBox`: The value of the Box's M statistic.
- `ChiSq` or `F`: The approximation statistic test.
- `p`: An observed significance level.

Author(s)

Andy Liaw and Aleš Žiberna (minor modifications)
References

Examples

```r
BoxMTest(X = mtcars[, c(1, 3, 4, 5)], cl = as.factor(mtcars[, 2]), alpha = 0.05)
```

cancorPlus Canonical correlations

Description

The function computes canonical correlations (by using cc or cancort functions) and provides with the test of canonical correlations and with the eigenvalues of the canonical roots (including with the proportion of explained variances by correlation and other related statistics).

Usage

```r
cancorPlus(x, y, xcenter = TRUE, ycenter = TRUE, useCCApackage = FALSE)
```

Arguments

- `x`: A data frame or a matrix with the values that correspond to the first set of variables (X-variables).
- `y`: A data frame or a matrix with the values that correspond to the second set of variables (Y-variables).
- `xcenter`: Whether any centering have to be done on the `x` values before the analysis. If TRUE (default), subtract the column means. If FALSE, do not adjust the columns. Otherwise, a vector of values to be subtracted from the columns.
- `ycenter`: Analogous to `xcenter`, but for the `y` values.
- `useCCApackage`: Whether cc function (from CCA package) or cancort function (from stats package) should be used to obtain canonical correlations.

Value

The function returns the same output as functions cancort or cc with the following additional elements:

- `$sigTest`
 - `WilksL`: Value of the Wilk’s lambda statistic (it is a generalization of the multivariate R2; values near 0 indicate high correlation while values near 1 indicate low correlation).
 - `F`: Corresponding (to Wilk’s lambda) F-ratio.
 - `df1`: Degrees of freedom for the corresponding F-ratio.
 - `df2`: Degrees of freedom for the corresponding F-ratio.
\textit{compLoad}

\begin{itemize}
 \item \textit{p} - Probability value (p-value) for the corresponding F-ratio (Ho: The current and all the later canonical correlations equal to zero).
 \item eigModel
 \begin{itemize}
 \item \textit{Eigenvalues} - Eigenvalues of the canonical roots.
 \item \textit{\%} - Proportion of explained variance of correlation.
 \item \textit{Cum \%} - Cumulative proportion of explained variance of correlation.
 \item \textit{Cor} - Canonical correlation coefficient.
 \item \textit{Sq. Cor} - Squared canonical correlation coefficient.
 \end{itemize}
\end{itemize}

\textbf{Author(s)}

Adapted by Aleš Žiberna based on the source in References.

\textbf{References}

\textbf{See Also}

testCC

\textbf{Examples}

cancorPlus(x = mtcars[, c(1,2,3)], y = mtcars[, c(4,5, 6)])

\begin{tabular}{ll}
 \textbf{compLoad} & \textit{Compare factor loadings} \\
\end{tabular}

\textbf{Description}

The function compares two sets of factor loadings by considering different possible orders of factors and different possible signs of factor loadings.

\textbf{Usage}

\texttt{compLoad(L1, L2)}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{L1} \hspace{1cm} First set of factor loadings in a matrix form (variables are organized in rows and factors are organized in columns).
 \item \textbf{L2} \hspace{1cm} Second set of factor loadings in a matrix form (variables are organized in rows and factors are organized in columns).
\end{itemize}
corTestDf

Value

A list with the following elements:

- **err** - Sum of squared differences between the values of L1 and L2 (for the corresponding permutation and signs).
- **perm** - Permutation of columns of L1 that results in the lowest err value.
- **sign** - Signs of factor loadings of L1. The first value corresponds to the first column of L1 and the second value corresponds to the second column of L1.

Author(s)

Aleš Žiberna and Friedrich Leisch (permutations)

Examples

```r
L1 <- cbind(c(0.72, 0.81, 0.92, 0.31, 0.22, 0.15), c(0.11, 0.09, 0.17, 0.77, 0.66, 0.89))
L2 <- cbind(c(-0.13, -0.08, -0.20, -0.78, -0.69, -0.88), c(0.72, 0.82, 0.90, 0.29, 0.20, 0.17))
compLoad(L1, L2)
```

corTestDf

Compute correlations and test their statistical significance

Description

The function computes the whole correlation matrix and corresponding sample sizes and p-values.

Usage

```r
corTestDf(X, method = "p", use = "everything", ...)
```

Arguments

- **X**
 Data matrix with selected variables.
- **method**
 A type of correlation coefficient to be calculated, see function `cor`.
- **use**
 In the case of missing values, which method should be used, see function `cor`.
- **...**
 Arguments passed to other functions, see `cor.test`.

Value

A list with the following elements:

- **cor** - correlation matrix.
- **p** - a matrix of p-values.
- **n** - a matrix of corresponding sample sizes.
discretize

Author(s)

Aleš Žiberna

See Also

cor.test

Examples

corTestDf(mtcars[, 3:5])

discretize

Transform continuous variable to a discrete variable

Description

The function transforms a continuous variable to a \(k \)-point discrete variable (similar to a Likert-item type variable). Different styles of answering to a survey are possible.

Usage

```r
discretize(x, type = "eq", q = 1.5, k = 5, r = range(x), num = TRUE)
```

Arguments

- `x`: Vector with values to be transformed.
- `type`: Type of transformation. Possible values are: `eq` (default) (equal wide intervals), `yes` (wider intervals at higher values of \(x \)), `no` (wider intervals at lower values of \(x \)), `avg` (wider intervals near the mean of \(x \)).
- `q`: Extension factor. Tells how much is each next interval wider then the previous one. Not used when `type="eq"`.
- `k`: Number of classes.
- `r`: Minimum and maximum values to define intervals of \(x \). Default are minimum and maximum values of \(x \).
- `num`: If `TRUE` (default) numerical values are returned, otherwise intervals are returned.

Value

Transformed values are organized into a vector.

Author(s)

Aleš Žiberna
Examples

x <- rnorm(1000)
hist(x = discretize(x, type = "eq"), breaks = 0:5+0.5, xlab = "answer", main = "type = 'eq'")
hist(x = discretize(x, type = "yes"), breaks = 0:5+0.5, xlab = "answer", main = "type = 'yes'")
hist(x = discretize(x, type = "no"), breaks = 0:5+0.5, xlab = "answer", main = "type = 'no'")
hist(x = discretize(x, type = "avg"), breaks = 0:5+0.5, xlab = "answer", main = "type = 'avg'")

freqTab

Create a frequency table

Description

The function creates a frequency table with percentages for the selected categorical variable.

Usage

freqTab(x, dec = 2, cum = TRUE, ...)

Arguments

x Vector with the values of a categorical variable.
dec Number of decimal places for percentages.
cum wheter to calculate cummulative frequencies and percentages (default TRUE).
... Arguments passed to function table.

Value

A frequency table (as a dataframe).

Author(s)

Aleš Žiberna

Examples

freqTab(mtcars[,2], dec = 1)
histNorm

Histogram with normal curve

Description

The function draws a histogram with a normal density curve. The parameters (mean and standard deviation) are estimated on the empirical data.

Usage

```
histNorm(y, breaks = "Sturges", freq = TRUE, ...)
```

Arguments

- `y` - A vector of observations.
- `breaks` - See help file for function `hist`.
- `freq` - Whether frequencies (`freq = TRUE`) of density (`freq = FALSE`) should be represented on `y`-axis.
- `...` - Arguments passed to function `hist`.

Value

A list with two elements:

- `x` - breaks, see `graphics::hist`.
- `y` - frequencies or relative frequencies, see `graphics::hist`.

Author(s)

Marjan Cugmas

Examples

```r
histNorm(rnorm(1000), freq = TRUE)
histNorm(rnorm(1000), freq = FALSE)
```
KNNimp

KNN-imputation method

Description

Function that fills in all NA values using the k-nearest-neighbours of each case with NA values. By default it uses the values of the neighbours and obtains an weighted (by the distance to the case) average of their values to fill in the unknowns. If \texttt{meth}='median' it uses the median/most frequent value, instead.

Usage

\texttt{KNNimp(data, k = 10, scale = TRUE, meth = "weighAvg", distData = NULL)}

Arguments

- \texttt{data} A data frame with the data set.
- \texttt{k} The number of nearest neighbours to use (defaults to 10).
- \texttt{scale} Boolean setting if the data should be scale before finding the nearest neighbours (defaults to TRUE).
- \texttt{meth} String indicating the method used to calculate the value to fill in each NA. Available values are \texttt{median} or \texttt{weighAvg} (the default).
- \texttt{distData} Optionally you may sepcify here a data frame containing the data set that should be used to find the neighbours. This is usefull when filling in NA values on a test set, where you should use only information from the training set. This defaults to NULL, which means that the neighbours will be searched in data.

Details

This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For each case with any NA value it will search for its k most similar cases and use the values of these cases to fill in the unknowns. If \texttt{meth}='median' the function will use either the median (in case of numeric variables) or the most frequent value (in case of factors), of the neighbours to fill in the NAs. If \texttt{meth}='weighAvg' the function will use a weighted average of the values of the neighbours. The weights are given by \(\exp(-\text{dist}(k,x)) \) where \text{dist}(k,x) is the euclidean distance between the case with NAs (x) and the neighbour k.

Value

A dataframe with imputed values.

Note

This is a slightly modified function from package \texttt{DMwR} by Luis Torgo. The modification allows the units with missing values at almost all variables.
ldaPlus

Author(s)
Luis Torgo

References

See Also
seqKNNimp

Examples

```r
mtcars$mpg[sample(1:nrow(mtcars), size = 5, replace = FALSE)] <- NA
KNNimp(data = mtcars)
```

ldaPlus

Linear discriminant analysis

Description
The function performs a linear discriminant analysis (by using the `MASS::lda` function). Compared to the `MASS::lda` function, the `ldaPlus` function enable to consider the prior probabilities to predict the values of a categorical variable, it provides with predicted values and with (Jack-knife) classification table and also with statistical test of canonical correlations between the variable that represents groups and numeric variables.

Usage

```r
ldaPlus(x, grouping, pred = TRUE, CV = TRUE, usePriorBetweenGroups = TRUE, ...)
```

Arguments

- **x**: A data frame with values of numeric variables.
- **grouping**: Categorical variable that defines groups.
- **pred**: Whether to return the predicted values based on the model. Default is `TRUE`.
- **CV**: Whether to do cross-validation in addition to "ordinary" analysis, default is `TRUE`.
- **usePriorBetweenGroups**: Whether to use prior probabilities also in estimating the model (compared to only in prediction); default is `TRUE`.
- **...**: Arguments passed to function `MASS::lda`.

Details
The specified `prior` is not taken into account when computing eigenvalues and all statistics based on them (everything in components `eigModel` and `sigTest` of the returned value).
Value

The following objects are also a part of what is returned by the \texttt{MASS::lda} function.

- \texttt{prior} - Prior probabilities of class membership taken to estimate the model (it can be estimated based on the sample data or it can be provided by a researcher).
- \texttt{counts} - Number of units in each category of categorical variable taken to estimate the model.
- \texttt{means} - Group means.
- \texttt{scaling} - Matrix that transforms observations to discriminant functions, normalized so that within groups covariance matrix is spherical.
- \texttt{lev} - Levels (groups) of the categorical variable.
- \texttt{svd} - Singular values, that give the ratio of the between-group and within-group standard deviations on linear discriminant variables. Their squares are the canonical F-statistics.
- \texttt{N} - Number of observations used.
- \texttt{call} - the (matched) function call.

The additional following objects are generated by the \texttt{multiUS::ldaPlus} function.

- \texttt{standCoefWithin} - Standardized coefficients (within groups) of discriminant function.
- \texttt{standCoefTotal} - Standardized coefficients of discriminant function.
- \texttt{betweenGroupsWeights} - Proportions/priors used when estimating the model.
- \texttt{sigTest} - Test of canonical correlations between the variable that represent groups (binary variable) and numeric variables (see function \texttt{testCC} for more details) (Ho: The current and all the later canonical correlations equal to zero.).
- \texttt{eigModel} - Table with eigenvalues and canonical correlations (see function \texttt{testCC} for more details).
- \texttt{centroids} - Means of discriminant variables by levels of categorical variable (not predicted, but actual).
- \texttt{corr} - Pooled correlations whithin groups (correlations between values of numerical variables and values of linear discriminat function(s)).
- \texttt{pred}
 - \texttt{class} - Predicted values of categorical variable
 - \texttt{posterior} - Posterior probabilities (the values of the Fisher’s classification linear discrimination function)
 - \texttt{x} - Estimated values of discriminat function(s) for each unit
- \texttt{class} - Classification table:
 - \texttt{orgTab} - Frequency table.
 - \texttt{perTab} - Percentages.
 - \texttt{corPer} - Percentage of correctly predicted values (alternatively, percentage of correctly classified units).
- \texttt{classCV} - Similar to \texttt{class} but based on cross validation (Jack-knife).

Author(s)

Aleš Žiberna
References

Examples

```r
ldaPlus(x = mtcars[,c(1, 3, 4, 5, 6)], grouping = mtcars[,10])
```

makeFactorLabels Make factor labels

Description

The function transforms a numeric variable into categorical one, based on the attribute data from a given SPSS file.

Usage

```r
makeFactorLabels(x, reduce = TRUE, ...)
```

Arguments

- `x` Data for the selected variable, see Details.
- `reduce` Wheter to reduce categories with zero frequency, default is TRUE.
- `...` Arguments passed to function `factor`.

Details

Data have to be imported by using the `MASS::read.spss` function. The use of the function makes sense when the parameter `use.value.labels` in the function `read.spss` is set to FALSE.

Value

Categorical variable (vector).

Author(s)

Aleš Žiberna
mapLda

LDA mapping

Description

The function draws two dimensional map of discriminant functions.

Usage

mapLda(
 object,
 xlim = c(-2, 2),
 ylim = c(-2, 2),
 npoints = 101,
 prior = object$prior,
 dimen = 2,
 col = NULL
)

Arguments

object Object obtained by ldaPlus function or MASS::lda function.
xlim Limits of the x-axis.
ylim Limits of the y-axis.
npoints Number of points on y-axis and x-axis (i.e., drawing precision).
prior Prior probabilities of class membership to estimate the model (they can be estimated based on the sample data or they can be provided by a researcher).
dimen Number of dimensions used for prediction. Probably only 2 (as these are used for drawing) makes sense.
col Vector of mapping colors, default is NULL (i.e., it takes the default R colors).

Value

No return value, called for side effects (plotting a map).

Author(s)

Aleš Žiberna

Examples

Estimate the LDA model:
ldaCars <- ldaPlus(x = mtcars[,c(1, 3, 4, 5, 6)], grouping = mtcars[,10])
Plot LDA map:
mapLda(ldaCars)
Description

The function plots the means of several numerical variables by the levels of one categorical variable.

Usage

```r
plotMeans(
  x, 
  by, 
  plotCI = TRUE, 
  alpha = 0.05, 
  ylab = "averages", 
  xlab = "", 
  plotLegend = TRUE, 
  inset = 0.01, 
  xleg = "topleft", 
  legPar = list(), 
  gap = 0, 
  labels = NULL, 
  ...
)
```

Arguments

- `x` Data frame with values of numeric variables.
- `by` Categorical variable that defines groups.
- `plotCI` Whether to plot confidence intervals or not, default is `TRUE`.
- `alpha` A confidence level for calculating confidence intervals (default is `0.05`).
- `ylab` The title of `y-axis`.
- `xlab` The title of `x-axis`.
- `plotLegend` Whether to plot a legend or not, default is `TRUE`.
- `inset` Inset distance(s) from the margins as a fraction of the plot region when legend is placed by keyword.
- `xleg` Position of a legend, default is `topleft`.
- `legPar` Additional parameters for a legend. They have to be provided in a list format.
- `gap` Space left between the center of the error bar and the lines marking the error bar in units of the height (width). Defaults to 1.0
- `labels` Labels of `x-axis`.
- `...` Arguments passed to functions `matplot` and `axis`.
Value

A list with the following elements:

- **means** - mean values by groups.
- **CI** - widths of confidence intervals by groups.

Author(s)

Aleš Žiberna

Examples

```r
plotMeans(x = mtcars[, c(1, 3, 5)], by = mtcars[, 8])
```

predict.ldaPlus

Predict the values of a categorical variable based on a linear discriminant function

Description

The function predicts the values of a categorical variable based on a linear discriminant function.

Usage

```r
## S3 method for class 'ldaPlus'
predict(
  object,
  newdata,
  prior = object$prior,
  dimen,
  method = c("plug-in", "predictive", "debiased"),
  betweenGroupsWeights = object$betweenGroupsWeights,
  ...
)
```

Arguments

- **object**

 Object obtained by the ldaPlus function or by the MASS::lda.

- **newdata**

 New dataset (without categorical variable).

- **prior**

 Prior probabilities of class membership to be used to predict values.

- **dimen**

 The number of dimensions/linear discriminant functions to use. Defaults to all.

- **method**

 Possible values are plug-in, predictive and debiased.

- **betweenGroupsWeights**

 The proportions/weights used when computing the grand/total mean from group means.

- **...**

 Other arguments passed to function MASS::predict.
Value

A list with the following elements:

- `class` - Predicted values of categorical variable.
- `posterior` - Posterior probabilities (the values of the Fisher’s classification linear discrimination function).
- `x` - Estimated values of discriminant function(s) for each unit.

Author(s)

Aleš Žiberna

See Also

MASS::predict

Examples

Use the first 20 cars to estimate the model and the rest of cars to predict # (for each car) whether it has a V-shape engine or a straight engine.
ldaCars <- ldaPlus(x = mtcars[1:20,c(1, 2, 4, 5, 6)], grouping = mtcars[1:20,8])
predict.ldaPlus(object = ldaCars, newdata = mtcars[20:32,c(1, 2, 4, 5, 6)])

printCorTestDf

Print the results of the CorTestDf function

Description

The function prints the results of the CorTestDf function.

Usage

printCorTestDf(l, digits = c(3, 3), format = NULL)

Arguments

- `l` Output of corTestDf function.
- `digits` Vector of length two for the number of digits (the first element of a vector corresponds to the number of digits for correlation coefficients and the second element of a vector corresponds to the number of digits for p-values).
- `format` a vector of length two for the formatting of the output values.

Value

Formatted table (character output) with the results of the CorTestDf function.
Author(s)
Aleš Žiberna

See Also
CorTestDf

Examples

corCars <- corTestDf(mtcars[, 3:5])
printCorTestDf(corCars, digits = c(2, 2))

printP(p)

Print p-value

Description
The function round and prints p-value.

Usage
printP(p)

Arguments
p Value to be printed.

Value
A string (formatted p-value).

Author(s)
Marjan Cugmas

Examples
printP(p = 0.523)
printP(p = 0.022)
printP(p = 0.099)
renameVar

Rename variables

Description

The function for renaming one or several variables in a dataframe.

Usage

renameVar(data, renames)

Arguments

data A dataframe.
renames A list with oldnames and newnames (e.g. list("oldname1" = "newname1", "oldname2" = "newname2").

Value

A dataframe with renamed columns.

Author(s)

Marjan Cugmas

Examples

renameVar(mtcars, list("cyl" = "Cylinders", "wt" = "Weight", "am" = "Transmission"))

seqKNNimp

Sequential KNN imputation method

Description

This function estimates missing values sequentially from the units that has least missing rate, using weighted mean of k nearest neighbors.

Usage

seqKNNimp(data, k = 10)

Arguments

data A data frame with the data set.
k The number of nearest neighbours to use (defaults to 10).
Details

The function separates the dataset into an incomplete set with missing values and into a complete set without missing values. The values in an incomplete set are imputed in the order of the number of missing values. A missing value is filled by the weighted mean value of a corresponding column of the nearest neighbour units in the complete set. Once all missing values for a given unit are imputed, the unit is moved into the complete set and used for the imputation of the rest of units in the incomplete set. In this process, all missing values for one unit can be imputed simultaneously from the selected neighbour units in the complete set. This reduces execution time from previously developed KNN method that selects nearest neighbours for each imputation.

Value

A dataframe with imputed values.

Note

This is the function from package SeqKNN by Ki-Yeol Kim and Gwan-Su Yi.

Author(s)

Ki-Yeol Kim and Gwan-Su Yi

References

See Also

KNNimp

Examples

mtcars$mpg[sample(1:nrow(mtcars), size = 5, replace = FALSE)] <- NA
seqKNNimp(data = mtcars)

testCC

Test of canonical correlations

Description

The function perform the Wilk’s test for the statistical significance of canonical correlations.

Usage

testCC(cor, n, p, q)
Arguments

cor Vector with canonical correlations.
n Number of units.
p Number of variables in the first group of variables.
q Number of variables in the second group of variables.

Value

The results are organized in a list format with two data tables:

sigTest

• WilksL - Value of the Wilk’s lambda statistic (it is a generalization of the multivariate R2; values near 0 indicate high correlation while values near 1 indicate low correlation).
• F - Corresponding (to Wilk’s lambda) F-ratio.
• df1 - Degrees of freedom for the corresponding F-ratio.
• df2 - Degrees of freedom for the corresponding F-ratio.
• p - Probability value (p-value) for the corresponding F-ratio (Ho: The current and all the later canonical correlations equal to zero).

eigModel

• Eigenvalues - Eigenvalues of the canonical roots.
• % - Proportion of explained variance of correlation.
• Cum % - Cumulative proportion of explained variance of correlation.
• Cor - Canonical correlation coefficient.
• Sq. Cor - Squared canonical correlation coefficient.

Author(s)

Aleš Žiberna

References

Examples

testCC(cor = c(0.76, 0.51, 0.35, 0.28, 0.10), n = 51, p = 5, q = 5)
Calculate the value of the Ward criterion function

Description

The function calculate the value of the Ward criterion function, based on a set of numerical variables and one categorical variable (partition).

Usage

wardKF(X, clu)

Arguments

- **X**: Data frame with values of numerical variables (usually the ones that were/are used for clustering).
- **clu**: Partition.

Value

The value of the Ward criterion function.

Author(s)

Aleš Žiberna
Index

antiImage, 2
BoxMTTest, 3
cancorPlus, 4
compLoad, 5
corTestDf, 6
discretize, 7
freqTab, 8
histNorm, 9
KNNimp, 10
ldaPlus, 11
makeFactorLabels, 13
mapLda, 14
plotMeans, 15
predict.ldaPlus, 16
printCorTestDf, 17
printP, 18
renameVar, 19
seqKNNimp, 19
testCC, 20
wardKF, 22